The Non – Perturbative Structure of Pion

Joseph Maerovitz

In Collaboration: Dr. Misak Sargsian and Dr. Christopher Leon

APS GHP Workshop 2023 Minneapolis, Minnesota 4-13-2023

Pion

- Lightest strongly interacting bound system of valence quark and anti-quark, sea quarks, and gluons (~ 140 *MeV*).
- Role in chiral symmetry breaking of QCD as a pseudo Goldstone boson.
- Short lifetime : π^+ , π^- (2.6 × 10⁻⁸ s) decay electroweakly and π^0 (8.5 × 10⁻¹⁷s) decay electromagnetically.
- Therefore, no fixed target experiments with pions.

Partonic Structure of Pions

- Historically, the first DY processes also demonstrated that pions have a partonic picture similar to baryons.
- One wants to understand the partonic structure of the pion by extracting the PDFs:
- Drell Yan Process (DY)
- Leading Neutron and Sullivan Process (LN)

Drell Yan (DY) Process

- Hadron Hadron collision
- Pion : $\pi A \rightarrow \mu^+ \mu^- X$
- Non perturbative, universal PDFs $f_i^{\pi}(x_{\pi}) \& f_j^{A}(x_A)$
- Hard Coefficients C_{ij} (factorization scale)

$$\begin{aligned} \frac{d^2\sigma}{dQ^2dY} &= \frac{4\pi\alpha^2}{9Q^2S} \sum_{i,j} \int_{x_{\pi}}^{1} \frac{d\hat{x}_{\pi}}{\hat{x}_{\pi}} \int_{x_{A}}^{1} \frac{d\hat{x}_{A}}{\hat{x}_{A}} \\ &\times C_{ij}(\hat{x}_{\pi}, \hat{x}_{A}, x_{\pi}, x_{A}, Q/\mu) f_{i}^{\pi}(\hat{x}_{\pi}, \mu) f_{j}^{A}(\hat{x}_{A}, \mu) \end{aligned}$$

$$x_{\pi} = \sqrt{\frac{Q^2}{s}}e^Y$$
, and $x_A = \sqrt{\frac{Q^2}{s}}e^{-Y}$

Invariant Mass of Lepton Pair (time - like) $Q^2 = x_{\pi}x_As$

Leading Neutron (LN) and Sullivan Process

- Electron Proton scattering : $e + p \rightarrow n + e' + X$
- p becomes n and near on-shell mass pion at low $|t| \& x_L \to 1$
- The n and e is detected , while the pion is shattered.

$$\frac{d^3\sigma}{dxdQ^2dx_L} = \frac{4\pi\alpha^2}{xQ^4}(1-y+\frac{y^2}{2})F_2^{LN(3)}(x,Q^2,x_L)$$
$$F_2^{LN(3)}(x,Q^2,x_L) = 2f_{\pi n}^{(on)}(\bar{x}_L)F_2^{\pi}(x_{\pi},Q^2)$$
$$F_2^{\pi}(x_{\pi},Q^2) = \sum_i \int_{x_{\pi}}^1 d\hat{x}H_i^{DIS}(\hat{x},\mu^2,Q^2)f_{i/\pi}(x_{\pi},\hat{x},\mu^2)$$

High x_{π} Debate

• For high x, Brodsky – Farrar Counting rule: $f_V(x) \sim (1-x)^{\beta_V} \quad \beta_V = 2$ Pion (pQCD) (1975 & 1979) $\beta_V = 2n - 1 + 2|\delta\lambda|$

E. L. Berger and S. J. Brodsky, Physical Review Letters42, 940 (1979).

- FermiLab DY data for the pion $\beta_V = 1.2$ for LO analysis (1989) J. S. Conway et al., Phys. Rev. D 39, 92 (1989)
- NLO analysis increased $\beta_V = 1.5$ (2005)

Phys. Rev. Lett. 105, 252003

JAM18

0.6

0.5

DY

DY

0.001

 ${(}^{0.4}_{\mu}x){}^{0.3}_{\mu}x{}^{0.2}_{\mu}$

0.2

0.1

 Extracted Pion PDF in DY and Sullivan process using Bayesian Monte Carlo Global Analysis – JAM18 $\beta_V = 1$

arXiv: 1804.01965.

- JAM 2021 analysis applied threshold resummation on Drell-Yan (NLO, NLL) $\beta_V \approx 1 \text{ to } > 2.5$
- Lattice QCD pion PDF through of pseudo-/quasi-PDFs.
- $\beta_V = 1$ or $\beta_V = 2$ is debated.

x

DY

Goals

- We want to model the pion PDF using our model.
- For the nucleon, there are three mechanisms contributing to valence PDFs:
 - 1. mean field
 - 2. 2q short-range correlations,
 - 3. 3q short-range correlations.
- For the pion, we model the soft contribution and hard $q \overline{q}$ short-range correlations.

Residual Field Model - Pion

- Our goal to describe valence PDFs in the region : 0.1 < x < 1 as effective fermions whose number is conserved. (DIS)
- The model is based on assumption of pion transition into the valence $q\bar{q}$ cluster and residual system.
- In which 2 main mechanisms define the PDFs in the region of 0.1 < x < 1
- 2 main contributions
 - I. Soft contribution
 - II. Hard $q\overline{q}$ correlation contribution

Pion Residual Model

 Calculating PDF using Effective LF diagrammatic method (LO).

$$\tilde{\mathbf{k}}_{i,\perp} = \mathbf{k}_{i,\perp} - \beta_i \mathbf{k}_{V,\perp}$$
 (i=1,2)

 $=\psi_{q\bar{q}}(\{x_i,\mathbf{k}_{i,\perp}\}_{i=1,2})\psi_{VR}(x_R,\mathbf{k}_{R,\perp})$

 $\Psi(\{x_i, \mathbf{k}_{i,\perp}\}_{i=1,2,R})$

• Charge symmetry –

$$f_V(x, Q^2) = u_V^{\pi+}(x, Q^2) =$$

 $d_V^{\pi-}(x, Q^2)$

$$f_V(x_B, Q^2) = \int_0^{1-x_B} \frac{dx_R}{(16\pi^3)^2 x_B (1-x_B-x_R) x_R} \int_0^{Q^2} d^2 \tilde{\mathbf{k}}_{1,\perp} d^2 \tilde{\mathbf{k}}_{2,\perp} \delta^{(2)} \left(\sum_{i=1,2} \tilde{\mathbf{k}}_{i,\perp} \right) \\ |\psi_{q\bar{q}}(\{x_i, \tilde{\mathbf{k}}_{i,\perp}\}_{i=1,2})|^2 \int_0^{Q^2} d^2 \mathbf{k}_{R,\perp} |\psi_{VR}(x_R, \mathbf{k}_{R,\perp})|^2$$

$$= \int^{Q^{2}} \frac{dx_{1}d^{2}\mathbf{k}_{1,\perp}}{16\pi^{3}x_{1}} \frac{dx_{2}d^{2}\mathbf{k}_{2,\perp}}{16\pi^{3}x_{2}} \frac{dx_{R}d^{2}\mathbf{k}_{R,\perp}}{16\pi^{3}x_{R}} \delta(x_{1} - x_{B})$$

$$\times 16\pi^{3}\delta \left(1 - \sum_{i=1,2,R} x_{i}\right) \delta^{(2)} \left(\sum_{i=1,2,R} \mathbf{k}_{i,\perp}\right)$$

$$\times |\Psi(\{x_{i}, \mathbf{k}_{i,\perp}\}_{i=1,2,R})|^{2}$$
(6)

 $f \left(- \Omega^2 \right)$

10

Modeling Non – Perturbative Valence $q \overline{q}$ Lightfront Wavefunction

- Relativistic mutually coupled LF Relativistic Harmonic Oscillator for the valence $q \overline{q}$. $\psi_{qq}(\{x_i, k_{i,1}\}_{i=1,2})$
- Setting the quark masses is the same.

$$\psi_{q\bar{q}}(\{x_i, \mathbf{k}_{i,\perp}\}_{i=1,2}) = \sqrt{16\pi^3 m_\pi} A_V \exp\left[-\frac{B_V}{2}k_{12}^2\right] \sqrt{x_2}$$

$$k_{12}^2 = \frac{\left(s_{12} - (m_1 - m_2)^2\right)\left(s_{12} - (m_1 + m_2)^2\right)}{4s_{12}}$$

$$s = \sum_{i=1,2} \frac{\tilde{k}_{i,\perp}^2 + m^2}{\beta_i}$$

$$x_1 = x_B, \ \beta_1 = \frac{x_1}{x_V} = \frac{x_B}{1 - x_R} \text{ and } \beta_2 = \frac{x_2}{x_V} = \frac{1 - x_B - x_R}{1 - x_R}$$

 $\psi_{q\bar{q}}(\{x_i, \mathbf{k}_{i,\perp}\}_{i=1,2})$ $=\tilde{A}_V \exp\left[-\frac{B_V}{8}\sum_{i=1,2}\frac{\tilde{k}_{i,\perp}^2+m_i^2}{\beta_i}\right]\sqrt{x_2}$ \sim

Modeling VR Lightfront Wavefunction

• Relativistic LF Harmonic Oscillator

$$\psi_{VR}^{Rel}(\{x_i, \mathbf{k}_{i,\perp}\}_{i=V,R}) = \tilde{A}_R \exp\left[-\frac{B_R}{2}k_{VR}^2\right]\sqrt{x_R} \qquad k_{VR}^2 = \frac{(s_{VR} - (m_V - m_R)^2)(s_{VR} - (m_V + m_R)^2)}{4s_{VR}}$$

- Assume the R system is the same at all x.
- However, the masses aren't equal. $(m_R \neq m_V)$
- Non-relativistic LF Harmonic Oscillator wavefunction

$$\psi_{VR}^{NR}(\{x_i, \mathbf{k}_{i,\perp}\}_{i=V,R}) = \tilde{A}_R e^{-\frac{B_R}{2}((m_R x_R - m_R)^2 + k_{R,\perp}^2)} \sqrt{x_R}$$

PDF calculation

• Using Relativistic Harmonic Oscillator at m=0 and large Q²

$$f_V^{Rel}(x_B, Q^2) = \mathcal{N} \int_0^{1-x_B} \frac{(1-x_B-x_R)}{(1-x_R)^2} \int_0^\infty e^{-B_R k_{12}^2} dk_{R,\perp}^2 \quad \mathcal{N}^{Rel} = \frac{4\pi^2 |\bar{A_V}\bar{A_R}|^2}{B_V (16\pi^3)^2}.$$

• Using Non - Relativistic Harmonic Oscillator at m=0 and large Q².

$$\begin{aligned} f_V^{NR}(x_B) &= \mathcal{N}^{NR} \int_0^{1-x_B} dx_R \frac{(1-x_B-x_R)}{(1-x_R)^2} \\ &\times \exp\left[-B_R m_\pi^2 (x_R - m_R/m_\pi)^2\right] \end{aligned} \qquad \qquad \mathcal{N}^{NR} = \frac{4\pi^2 |\check{A}_V \check{A}_R|^2}{B_V B_R (16\pi^3)^2}. \end{aligned}$$

• Using saddle point approx., $xf^{NR}_V(x,Q^2) \sim x_B(1-x_B - \frac{m_R}{m_{\pi}})$ with peak $x_p^{NR} \approx \frac{1}{2} \left(1 - \frac{m_R}{m_{\pi}}\right)$

Fitting Results

Model has parameters that characterizes non – perturbative wave-function of the residual system.

Fit to parameters to match the peak position and height.

Model Fit

• Peak matching- insensitive to the high x structure.

High x structure:

- JAM 18: β_V = 1
- Soft contribution result: β_V = 2

Positronium-like Model

- Perhaps the LF Harmonic Oscillator this not give the best shape for the xf_V where we only fit it to the peak.
- Alternative model to the pion's valence quark and antiquark as a positronium-like model (EM interaction) to perhaps obtain a better shape of xf_V .

 $q\overline{q}$ Positronium – like Model

Positronium-like Model – Brodsky-Lepage LFWF

 We applied the same procedure of the Residual Field model (m = 0 and Q² → ∞) to the positronium-like LFWF for the soft contribution.

$$\psi(r) = \frac{1}{\sqrt{\pi}a^{\frac{3}{2}}}e^{-\frac{r}{a}} \qquad \int_{\mathbb{R}^3} |\psi(r)|^2 d^3r = 1$$

Insert into PDF

$$f_V(x_B, Q^2) = \int_0^{1-x_B} \frac{dx_R}{(16\pi^3)^2 x_B (1-x_B-x_R) x_R} \int_0^{Q^2} d^2 \tilde{\mathbf{k}}_{1,\perp} d^2 \tilde{\mathbf{k}}_{2,\perp} \delta^{(2)} \left(\sum_{i=1,2} \tilde{\mathbf{k}}_{i,\perp} \right) |\psi_{q\bar{q}}(\{x_i, \tilde{\mathbf{k}}_{i,\perp}\}_{i=1,2})|^2 \int_0^{Q^2} d^2 \mathbf{k}_{R,\perp} |\psi_{VR}(x_R, \mathbf{k}_{R,\perp})|^2$$

Fourier Transform of $\psi(r)$

$$\begin{aligned} \phi(k) &= \frac{1}{(2\pi)^{\frac{3}{2}}} \int \psi(r) e^{-i\mathbf{k}\cdot\mathbf{r}} d^3r & \int^{Q^2 \to \infty} d^2 \tilde{\mathbf{k}}_{\perp} |\psi_{q\bar{q}}(\{x_i, \tilde{\mathbf{k}}_{i,\perp}\}_{i=1,2})|^2 = 16\pi^3 \beta_1 \\ \phi(k) &= \frac{2\sqrt{2}a^{\frac{3}{2}}}{\pi(1+a^2k^2)^2} & f_V^{Rel}(x_B) = \int_0^{1-x_B} \frac{dx_R}{(16\pi^3)^2 x_B(1-x_B-x_R)x_R} \Big(16\pi^3\beta_1\Big) \Big(|\tilde{A}_R|^2 x_R \pi \int_0^{Q^2 \to \infty} e^{-B_R k_{VR}^2} dk_{R,\perp}^2\Big) \\ r \text{ Coulomb interaction Bl} \end{aligned}$$

LFWF for Coulomb interaction BL

$$\begin{aligned} |\psi_{LF}(\beta_1,\beta_2,k_{\perp})|^2 &= \frac{16\pi^3 E_k |\psi_{NR}(k)|^2}{2\beta_2} \quad E_k = \sqrt{m^2 + k_{\perp}^2 + k_z^2} \quad = \frac{A_R^2}{16\pi^2} \int_0^{1-x_B} \frac{dx_R}{(1-x_B-x_R)(1-x_R)} \int_0^{\infty} e^{-B_R k_{VR}^2} dk_{R,\perp}^2 \\ \beta_1 &= \frac{k_z + E_k}{2E_k}, \ \beta_2 &= \frac{E_k - k_z}{2E_k} \quad \int \frac{|\psi_{LF}|^2 d\beta_1 d^2 k_{\perp}}{16\pi^3 \beta_1} = 1 \quad d\beta_1 = \frac{2\beta_1 \beta_2}{E_k} dk_z \\ |\psi_{LF}(\beta_1,\beta_2,k_{\perp})|^2 &= \frac{16\pi^3 E_k |\frac{2\sqrt{2a}^3}{\pi(1+a^2k^2)^2}|^2}{2\beta_2} \quad k_{12}^2 = \frac{\tilde{k}_{\perp}^2}{4\beta_1\beta_2} \end{aligned}$$

Conclusion

- We want to model the pion PDF using our model, the residual field model.
- Looking at soft part and modeling the LF wavefunction, we get the $(1 x)^2$ high x structure of the pion PDF.
- We also look at positronium-like PDF and we observe some sensitivity to the soft structure of the $q\bar{q}$ system (at the peak) compared to the harmonic oscillator like model.

References

• Residual Mean Field Model of Valence Quarks in the Nucleon Christopher Leon (Florida Intl. U.), Misak Sargsian (Florida Intl. U.) arxiv:2012.14030

- A Novel Feature of Valence Quark Distributions in Hadrons
 Christopher Leon (Florida Intl. U.), Misak M. Sargsian (Florida Intl. U.), Frank Vera (Florida Intl. U.) arxiv:2003.12902
- The Pion Valence Structure in the Residual Field Model

Christopher Leon, Joseph Maerovitz, Misak Sargsian (Current Work)

I would like to acknowledge financial support from The Gordon and Betty Moore Foundation and the American Physical Society to present this work at the GHP 2023 workshop.

Thank You

Deep Inelastic Scattering

Now using light-cone (LC) coordinates with the 4-momenta and four-products

$$k^{\mu} = (k^{+}, k^{-}, \mathbf{k}_{\perp}) \quad k^{\pm} = E \pm k^{z} \quad \mathbf{k}_{\perp} = (k^{x}, k^{y}) \quad k_{1} \cdot k_{2} = \frac{1}{2}k_{1}^{-}k_{2}^{+} + \frac{1}{2}k_{1}^{+}k_{2}^{-} - \mathbf{k}_{1,\perp} \cdot \mathbf{k}_{2,\perp}$$

ar-momenta of the pion, p^{μ}_{π} and the virtual photon, q^{μ} are: $p^{\mu}_{\pi} = (p^{+}_{\pi}, \frac{m^{2}_{\pi}}{p^{+}_{\pi}}, \mathbf{0}_{\perp}) \quad q^{\mu} = (0, \frac{2p_{\pi} \cdot q}{p^{+}_{\pi}}, \mathbf{q}_{\perp})$

The four-momenta of the pion, p^{μ}_{π} and the virtual photon, q^{μ} are:

The important kinematical condition of the chosen reference frame $p_{\pi}^{+} \gg m_{\pi}, k_{i}^{-}, k_{i,\perp}$

T

The pion nucleonic tensor
$$W_{\pi}^{\mu\nu} = \frac{F_2(x_B, Q^2)}{m_{\pi}(p_{\pi} \cdot q)} \left(p_{\pi}^{\mu} - \frac{p_{\pi} \cdot q}{q^2} q^{\mu} \right) \left(p_{\pi}^{\nu} - \frac{p_{\pi} \cdot q}{q^2} q^{\nu} \right)$$

The Stucture Function $F_2(x_B, Q^2) = \frac{m_{\pi}Q^2}{2x_B(p_{\pi}^+)^2} W^{++} \qquad F_2(x, Q^2) = \sum_i e_i^2 x f_i(x, Q^2)$

We have a pion that transitions in a valence system containing a quark and anti - quark and residual system. To calculate this amplitude, we apply effective light-front diagrammatic rules which results as:

1

$$A^{\mu} = \sum_{h_{V},h_{1}} \frac{1}{k_{V}^{+}} \frac{1}{k_{1}^{+}} \frac{\bar{u}(k_{1}',h_{1}')(ie_{1}\gamma^{\mu})u(k_{1},h_{1})\bar{u}(k_{1},h_{1})v(k_{2},h_{2})\Gamma^{V \to q\bar{q}}\chi_{V}\chi_{V}^{\dagger}\chi_{R}^{\dagger}\Gamma^{\pi \to VR}}{D_{1}D_{2}}$$
(71)

20

 $Q^2 = -q^2 = |q_\perp|^2$ $x_B = \frac{Q^2}{2p_N \cdot q}$

Effective Light Front Diagrammatic Rules

- Given for processes order in light-cone time $\tau = t + z$.
- Intermediate states get a LF energy denominator. $\frac{1}{D} = \frac{1}{\sum_{init.} p^- \sum_{interm.} p^- + i\epsilon}$
- Every vertex in the diagram gets effective transition factor Γ from particle A to n constituents.
- .For a transition of particle A to n constituents, the LF wave function is defined as: $\prod_{i=1}^{n} \chi_{fi}(x_i, k_{i,\perp}, h_i) \Gamma \chi_A(p_A, h_A)$

$$\psi(\{x_i, k_{i,\perp}, h_i\}_i^n) = \frac{\prod_{i=1}^{n} \chi_{fi}(x_i, k_{i,\perp}, h_i) \Gamma \chi_A(p_A, h_A)}{p_A^+ \mathcal{D}}$$

The denominator for pion splitting to the residual and valence parts is $D_1 = p_{\pi}^- - k_R^- - k_V^- = \frac{1}{p_{\pi}^+} (m_{\pi}^2 - \frac{k_{R,\perp} + m_R^2}{x_R} - \frac{k_{V,\perp} + m_V^2}{x_V})$ The denominator for valence splitting to the quark and anti- quark of the Pion is $D_2 = k_V^- - k_1^- + k_2^- = \frac{1}{k_V^+} (m_V^2 + k_{V,\perp}^2 - \frac{k_{1,\perp}^2 + m_1^2}{\beta_1} - \frac{k_{2,\perp}^2 + m_2^2}{\beta_2})$ scattering amplitude $\beta_1 = \frac{k_1^+}{k_V^+}$ and $\beta_2 = \frac{k_2^+}{k_V^+}$ $x_R = \frac{k_R^+}{p_N^+}$ and $x_V = \frac{k_V^+}{p_N^+}$.

$$A^{\mu} = \sum_{h_{V},h_{1}} \frac{1}{x_{V}} \frac{1}{\beta_{1}} \frac{\bar{u}(k_{1}',h_{1}')(ie_{1}\gamma^{\mu})u(k_{1},h_{1})\bar{u}(k_{1},h_{1})v(k_{2},h_{2})\Gamma^{V \to q\bar{q}}\chi_{V}\chi_{V}^{\dagger}\chi_{V}^{\dagger}\chi_{R}^{\dagger}\Gamma^{\pi \to VR}}{(m_{\pi}^{2} - \frac{k_{R,\perp} + m_{R}^{2}}{x_{R}} - \frac{k_{V,\perp} + m_{V}^{2}}{x_{V}})(m_{V}^{2} + k_{V,\perp}^{2} - \frac{k_{1,\perp}^{2} + m_{1}^{2}}{\beta_{1}} - \frac{k_{2,\perp}^{2} + m_{2}^{2}}{\beta_{2}})} \qquad \psi_{VR}(x_{V},\mathbf{k}_{R,\perp},x_{R},\mathbf{k}_{V,\perp}) = \frac{\chi_{V}\chi_{R}^{1}u^{*VR}}{m_{\pi}^{2} - \frac{k_{V,\perp}^{2} + m_{V}^{2}}{x_{V}} - \frac{k_{R,\perp}^{2} + m_{L}^{2}}{x_{R}}} \\ A^{\mu} = \sum_{h_{1},h_{V}} \bar{u}(k_{1}',h_{1}')(ie_{1}\gamma^{\mu})u(k_{1},h_{1}) \quad \frac{\psi_{VR}(x_{V},\mathbf{k}_{V,\perp},x_{R},\mathbf{k}_{R,\perp})}{x_{V}} \frac{\psi_{q\bar{q}}(\beta_{1},\beta_{2},\mathbf{k}_{1,\perp},\mathbf{k}_{2,\perp},h_{1},h_{2})}{\beta_{1}} \qquad \psi_{q\bar{q}}(x_{1},x_{2},\mathbf{k}_{1,\perp},\mathbf{k}_{2,\perp}) = \frac{\bar{u}(k_{1},h_{1})\Gamma^{V \to q\bar{q}}\chi_{V}v(k_{2},h_{2})}{m_{V}^{2} + k_{V,\perp}^{2} - \sum_{i=1}^{2}\frac{k_{i,\perp}^{2} + m_{i}^{2}}{\beta_{i}}} \\ \psi_{q\bar{q}}(x_{1},x_{2},\mathbf{k}_{1,\perp},\mathbf{k}_{2,\perp}) = \frac{\bar{u}(k_{1},h_{1})\Gamma^{V \to q\bar{q}}\chi_{V}v(k_{2},h_{2})}{m_{V}^{2} + k_{V,\perp}^{2} - \sum_{i=1}^{2}\frac{k_{i,\perp}^{2} + m_{i}^{2}}{\beta_{i}}} \\ \psi_{q\bar{q}}(x_{1},x_{2},\mathbf{k}_{1,\perp},\mathbf{k}_{2,\perp}) = \frac{\bar{u}(k_{1},h_{1})\Gamma^{V \to q\bar{q}}\chi_{V}v(k_{2},h_{2})}{m_{V}^{2} + k_{V,\perp}^{2} - \sum_{i=1}^{2}\frac{k_{i,\perp}^{2} + m_{i}^{2}}{\beta_{i}}} \\ \psi_{q\bar{q}}(x_{1},x_{2},\mathbf{k}_{1,\perp},\mathbf{k}_{2,\perp}) = \frac{\bar{u}(k_{1},h_{1})\Gamma^{V \to q\bar{q}}\chi_{V}v(k_{2},h_{2})}{m_{V}^{2} + k_{V,\perp}^{2} - \sum_{i=1}^{2}\frac{k_{i,\perp}^{2} + m_{i}^{2}}{\beta_{i}}} \\ \psi_{q\bar{q}}(x_{1},x_{2},\mathbf{k}_{1,\perp},\mathbf{k}_{2,\perp}) = \frac{\bar{u}(k_{1},h_{1})\Gamma^{V \to q\bar{q}}\chi_{V}v(k_{2},h_{2})}{m_{V}^{2} + k_{V,\perp}^{2} - \sum_{i=1}^{2}\frac{k_{i,\perp}^{2} + m_{i}^{2}}}{\beta_{i}}} \\ \psi_{q\bar{q}}(x_{1},x_{2},\mathbf{k}_{1,\perp},\mathbf{k}_{2,\perp}) = \frac{\bar{u}(k_{1},h_{1})\Gamma^{V \to q\bar{q}}\chi_{V}v(k_{2},h_{2})}{m_{V}^{2} + k_{V,\perp}^{2} - \sum_{i=1}^{2}\frac{k_{i,\perp}^{2} + m_{i}^{2}}}{\beta_{i}}} \\ \psi_{q\bar{q}}(x_{1},x_{2},\mathbf{k}_{1,\perp},\mathbf{k}_{2,\perp}) = \frac{\bar{u}(k_{1},h_{1})\Gamma^{V \to q\bar{q}}\chi_{V}v(k_{2},h_{2})}{m_{V}^{2} + k_{V,\perp}^{2} - \sum_{i=1}^{2}\frac{k_{i,\perp}^{2} + m_{i}^{2}}}{\beta_{i}}}$$

The pion nucleonic tensor $W^{\mu\nu}_{\pi}$ for the case of the final state is the ongoing valence quark

and residual system, in the leading order.

$$\begin{split} W_{\pi}^{\mu\nu} &= \frac{1}{4\pi m_{\pi}} \sum_{q,h_{i}} \int \delta(k_{R}^{2} - m_{R}^{2}) \frac{d^{4}k_{R}}{(2\pi)^{3}} \delta(k_{1}^{\prime 2} - m_{1}^{2}) \frac{d^{4}k_{1}}{(2\pi)^{3}} \delta(k_{2}^{2} - m_{2}^{2}) \frac{d^{4}k_{2}}{(2\pi)^{3}} \quad (2\pi)^{4} \delta^{(4)}(p_{\pi} + q - k_{1}^{\prime} - k_{2} - k_{R}) A^{\mu\dagger} A^{\nu} \\ \delta(k_{i}^{2} - m_{i}^{2}) d^{4}k &= \frac{dx_{i} d^{2} \mathbf{k}_{i,\perp}}{2x_{i}} \Big|_{k_{i}^{-}} = \frac{k_{i,\perp}^{2} + m_{i}^{2}}{x_{i} p_{\pi}^{+}} \qquad \delta^{(4)}(p_{\pi} + q - k_{1}^{\prime} - k_{2} - k_{R}) \approx \frac{x_{1}}{p_{\pi} \cdot q} \delta(1 - x_{1} - x_{2} - x_{R}) \delta(x_{1} - x_{B}) \delta^{(2)}(\mathbf{k}_{1,\perp} + \mathbf{k}_{2,\perp} + \mathbf{k}_{R,\perp}) \\ W_{\pi}^{\mu\nu} &= \frac{1}{4\pi m_{\pi}} \sum_{q,h_{i}} \int \frac{dx_{R} d^{2} \mathbf{k}_{R,\perp}}{2x_{R}(2\pi)^{3}} \frac{dx_{1} d^{2} \mathbf{k}_{1,\perp}}{2x_{1}(2\pi)^{3}} \frac{dx_{2} d^{2} \mathbf{k}_{2,\perp}}{2x_{2}(2\pi)^{3}} (2\pi)^{4} \frac{x_{1}}{p_{\pi} \cdot q} \delta(1 - x_{1} - x_{2} - x_{R}) \delta(x_{1} - x_{B}) \delta^{(2)}(\mathbf{k}_{1,\perp} + \mathbf{k}_{2,\perp} + \mathbf{k}_{R,\perp}) A^{\mu\dagger} A^{\nu} \\ A^{+} &= 2 \sum_{h_{V}} (ie_{1}) x_{1} p_{\pi}^{+} \frac{\psi_{VR}(x_{V}, \mathbf{k}_{V,\perp}, x_{R}, \mathbf{k}_{R,\perp})}{x_{V}} \frac{\psi_{q\bar{q}}(\beta_{1}, \beta_{2}, \mathbf{k}_{1,\perp}, \mathbf{k}_{2,\perp}, h_{1}, h_{2})}{\beta_{1}} \end{array}$$

$$W_{\pi}^{++} = \frac{1}{m_{\pi}} \sum_{q,h_i,h_V} \int [dx] [d^2 \mathbf{k}_{\perp}] \frac{x_1}{p_{\pi} \cdot q} \delta(x_1 - x_B) e_1^2 p_{\pi}^{+2} |\psi_{VR}(x_V, \mathbf{k}_{V,\perp}, x_R, \mathbf{k}_{R,\perp})|^2 |\psi_{q\bar{q}}(\beta_1, \beta_2, \mathbf{k}_{1,\perp}, \mathbf{k}_{2,\perp}, h_1, h_2)|^2$$

$$F_{2}(x_{B},Q^{2}) = \sum_{q,h_{i},h_{V}} \int [dx][d^{2}\mathbf{k}_{\perp}]e_{1}^{2}x_{1}\delta(x_{1}-x_{B})|\psi_{VR}(x_{V},\mathbf{k}_{V,\perp},x_{R},\mathbf{k}_{R,\perp})|^{2} |\psi_{q\bar{q}}(\beta_{1},\beta_{2},\mathbf{k}_{1,\perp},\mathbf{k}_{2,\perp},h_{1},h_{2})|^{2}$$

$$F_{2}(x_{B},Q^{2}) = \frac{m_{\pi}Q^{2}}{2x_{B}(p_{\pi}^{+})^{2}} W^{++} \qquad F_{2}(x,Q^{2}) = \sum_{i}e_{i}^{2}xf_{i}(x,Q^{2})$$

Calculating pion PDF using Effective Light-Front diagrammatic method (LO)

$$\begin{split} f_{V}(x_{B},Q^{2}) &= [\int \delta(1-x_{1}-x_{2}-x_{R})\frac{dx_{R}}{x_{R}}\frac{dx_{1}}{x_{1}}\frac{dx_{2}}{x_{2}}16\pi^{3}\delta^{(2)}(\mathbf{k}_{1,\perp}+\mathbf{k}_{2,\perp}+\mathbf{k}_{R,\perp})\\ &\frac{d^{2}\mathbf{k}_{R,\perp}}{16\pi^{3}}\frac{d^{2}\mathbf{k}_{1,\perp}}{16\pi^{3}}\frac{d^{2}\mathbf{k}_{2,\perp}}{16\pi^{3}}\delta(x_{1}-x_{B})|\psi_{VR}(x_{V},\mathbf{k}_{V,\perp},x_{R},\mathbf{k}_{R,\perp})|^{2}|\psi_{q\bar{q}}(\beta_{1},\beta_{2},\mathbf{k}_{1,\perp},\mathbf{k}_{2,\perp},h_{1},h_{2})|^{2}\\ &\text{Charge symmetry} - f_{V}(\mathbf{x},\mathbf{Q}^{2}) = u_{V}^{\pi+}(x,Q^{2}) = d_{V}^{\pi-}(x,Q^{2}) \end{split}$$

$$\mathbf{k}_{i,\perp} = \mathbf{k}_{i,\perp} - \beta_i \mathbf{k}_{V,\perp} \quad (i=1,2)$$

$$f_{V}(x_{B},Q^{2}) = \int_{0}^{1-x_{B}} \frac{dx_{R}}{(16\pi^{3})^{2}x_{1}x_{2}x_{R}}$$

$$\times \int^{Q^{2}} d^{2}\tilde{\mathbf{k}}_{1,\perp} d^{2}\tilde{\mathbf{k}}_{2,\perp} \delta^{(2)} \left(\sum_{i=1,2} \tilde{\mathbf{k}}_{i,\perp}\right) |\psi_{q\bar{q}}(\{x_{i},\tilde{\mathbf{k}}_{i,\perp}\}_{i=1,2})|^{2}$$

$$\times \int^{Q^{2}} d^{2}\mathbf{k}_{R,\perp} |\psi_{VR}(x_{R},\mathbf{k}_{R,\perp})|^{2}$$