Projectile **Fragmentation: Physics** Validation Of **The GEANT4 Toolkit Against** LISE⁺⁺ For **Rare Isotopes Studies**

+

0

10th APS Topical Group on Hadronic Physics Workshop

April 12-14, 2023

Sokhna Bineta Lo Amar

Facility for Rare Isotope Beams

Motivation & Goals

GEANT4 & LISE++ Description

Isotopic Distribution Comparison

Isobaric Distribution Comparison

Conclusion & Perspectives

GEANT4 & LISE⁺⁺ Description

LISE++, "LIgne Super Epluchée"

- Software used worldwide and designed to simulate the fragment separators
- ✓ To produce a radioactive nuclear beam (RNB) via fragmentation;
- To predict the intensity and purity of rare isotope beams; and
- To simulate nuclear physics experiences;
- Friendly interface and no need to master C⁺⁺.

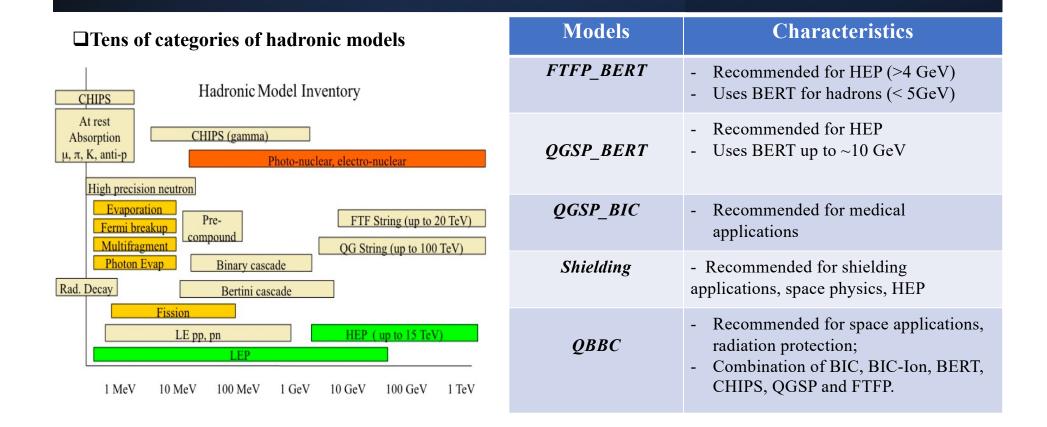
GEANT4, GEometry ANd Tracking 4

- Monte Carlo tool maintained by a world-wide collaboration;
- Especially dedicated for the simulation of interactions
 between particles and matter;
- Applications: high energy, nuclear physics, space and material science to medical physics;
- C⁺⁺ background is required.

Motivation & Goal-Expectation

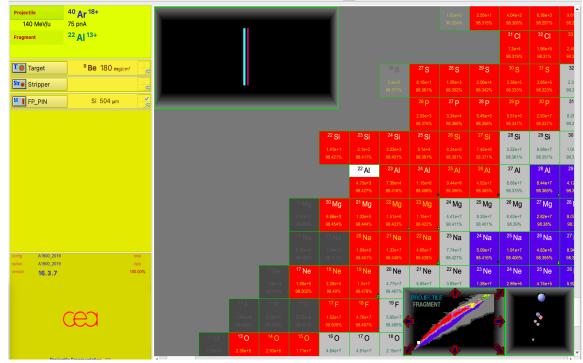
□FRIB (Facility for Rare Isotope Beams) uses intensively LISE⁺⁺ and GEANT4 to model the experiences for rare isotopes studies

 Comprehensive and systematic validation of these codes against each other is lacking.

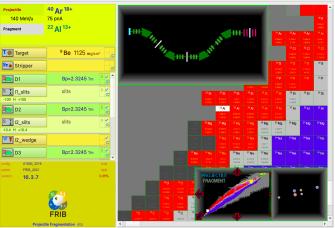

Goal: Validating fragmentation physics in GEANT4 using LISE⁺⁺ results

Comparative study between tools through isotopic and isobaric distributions in terms of cross-section - probabilities of given processes to occur

Expectation


- Identify the discrepancies between codes;
- Identify strengths and weaknesses of each of them;
- Development of a benchmark code for a systematic validation.

GEANT4 Models Study for Fragmentation reaction



LISE⁺⁺: **Spectrometer Design**

2 *** 🖉 🖷 @ @ | 💘 🕂 T 📄 🕾 🖾 🐺 📾 🗎 📐 🕷 🏹 🏷 🏷 🏷 🦉 🕸 🗶 🖉 🔂 🔅

Designing our own "Spectrometer" \rightarrow big challenge.

Projectile Fragmentation: Simulation

• A 140 MeV/u beam of ⁴⁰Ar with an intensity of 75 pnA impinges on 180 mg/cm² of ⁹Be target:

$^{40}\text{Ar} + {}^{9}\text{Be} \rightarrow X$, X indicates all fragments produced

LISE⁺⁺:

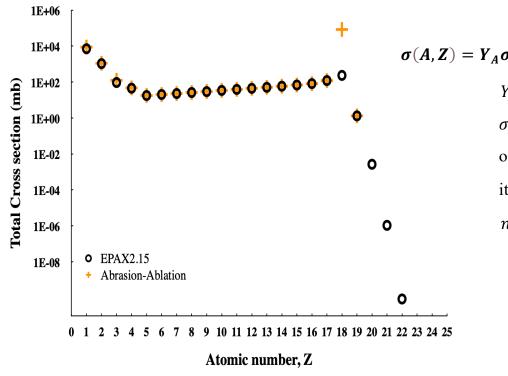
Beam characteristics: ⁴⁰Ar

- Energy: 140 MeV/u;
- Intensity: $75 \text{ pnA} = 4.68 \times 10^{11} \text{ pps} = 1350 \text{ enA}$

Target characteristics: 9Be

- Linear density: 180 mg/cm²
- Density: 1.848 g/cm³
- Thickness: 0.097297 cm

GEANT4:


Beam characteristics: ⁴⁰Ar

- Energy: 140 MeV/u;
- Incident events number: 10 million

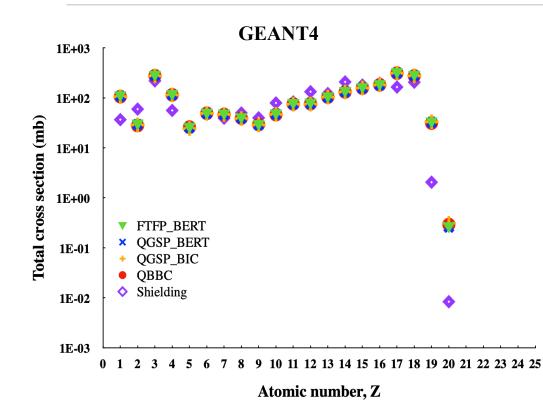
Target characteristics: 9Be

- Density: 1.848 g/cm³
- Thickness: 0.097297 cm
- Cut: 0.1 mm

LISE⁺⁺: **Cross-section production**

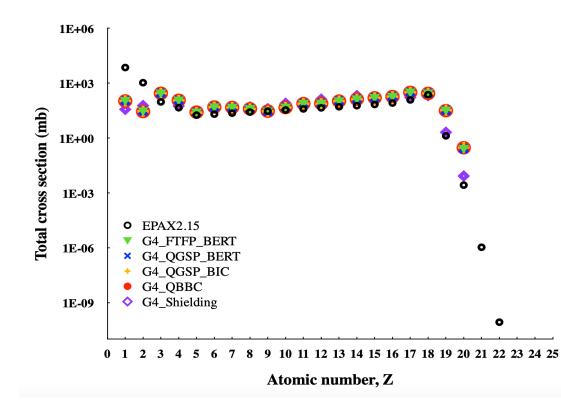
EPAX formula $\sigma(A, Z) = Y_A \sigma_Z (Z_{prob} - Z) = Y_A * n * exp (-R |Z_{prob} - Z|^U) \quad (1)$ $Y_A \text{ is the mass yield;}$ $\sigma_Z \text{ is the Charge dispersion, representing the distribution}$ of elemental cross sections with a given mass, A, around

its maximum, Z_{prob} ;

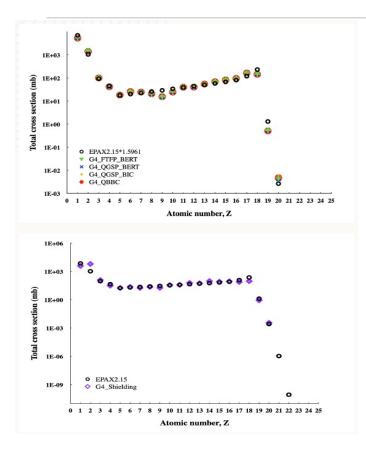

 $n = \sqrt{R/\pi}$ is a normalization factor.

Abrasion-Ablation model

$$Y = I * t * N_t * \sigma * \varepsilon_t$$
 (2)


$$N_t = \frac{d_t * A}{N_A} \tag{3}$$

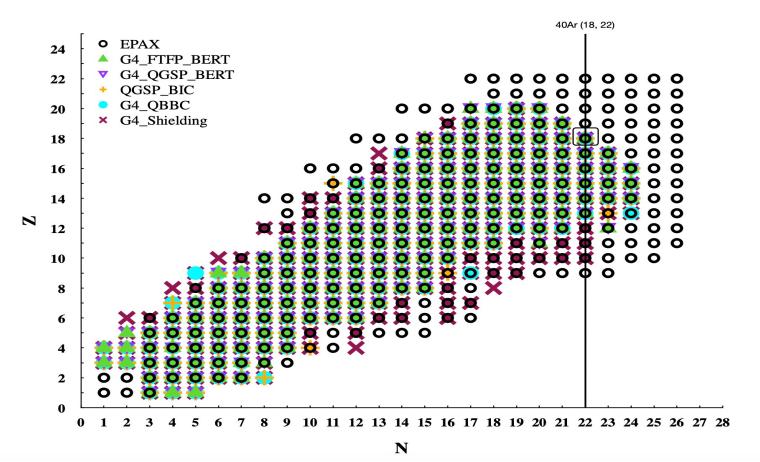
GEANT4: Cross-section production 2/2


- The look of the distributions are almost the same, except a slight differences with Shielding in the light fragments production and up to Z=18 region;
- QGSP_BERT and FTFP_BERT superimpose perfectly because they are interchangeable and can become competitive in some specific cases.

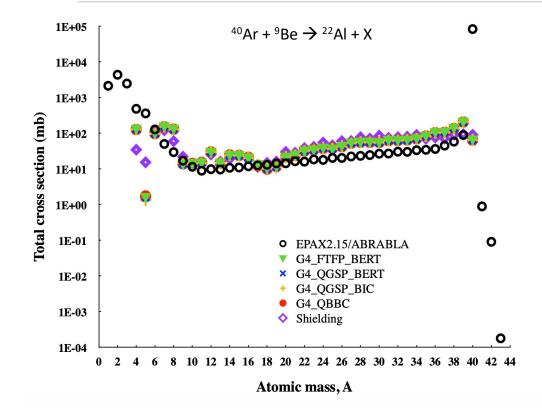
GEANT4 vs. LISE⁺⁺: Isotopic distributions

- All five GEANT4 models overlap with the EPAX distribution
- GEANT4 and LISE⁺⁺ disagree in the lightest fragments production region
- Shielding model looks more suitable in the region up to Z=18
- Characterize the processes in the domain up to the beam: Pick-up, charge exchange.

GEANT4 vs. LISE⁺⁺: Agreement



EPAX-GEANT4 (FTFP_BERT, QGSP_BERT, QGSP_BIC, QBBC)					
Atomic mass range	1-2	3-4	5	6-18	19-20
Order of magnitude	50.96	2.74	1.42	1.89	60.94
EPAX-Shielding					
Order of magnitude	105.78	1.78	1.37	2.16	2.35


□ FTFP_BERT, QGSP_BERT, QGSP_BIC and QBBC

- good agreement with EPAX in the Z=2-18 region;
- Significant disagreement in the Z=1-2 and up to Z=18 regions.
- □ Shielding
- Good agreement except in the light fragments production region

Fragments production: GEANT4 vs. LISE⁺⁺

GEANT4 vs. LISE⁺⁺: Isobaric distributions

- LISE⁺⁺ through EPAX and the ABRABLA model superimpose perfectly each other;
- The region of the light nuclei and beyond A=40 need further studies;
- Confirmation of the conclusions that arose from the isotopic distribution;
- The physics underlying the fragmentation processes well described by GEANT4.

Conclusion & Perspectives

Conclusion

- □Five GEANT4 models, Shielding, QGSP_BIC, QGSP_BERT, FTFP_BERT and QBBC were compared to the LISE⁺⁺ tool through the parameterized formula EPAX2.15 and the Abrasion-Ablation model
- GEANT4 describes reasonably the physics underlying the fragmentation reaction using LISE⁺⁺ results
- ☐ Shielding model turns out to be particularly interesting for the study of rare isotopes

□A paper is in a review process and will be submitted in the coming days

Perspectives

- □Further studies needed to highlight the strengths and weaknesses of each tool
- Provide explanation about the difference between GEANT4 and LISE⁺⁺ in the light and up to the beam fragments production region;
- Provide clarification on the so-called pick-up or charge exchange process between the tools.

Thank you for your attention!

Acknowledgements

Collaborators: Paul Gueye (FRIB), Oumar Ka (UCAD), Thomas Baumann (FRIB), MoNA Collaboration

≻Alliance for African Partnership (AAP)

≻Facility for Rare Isotope Beams (DE-SC0000661)

≻National Science Foundation (PHY-2012040)