

Effects of Conservation Laws on Particle Correlations in Relativistic Nuclear Collisions

Harvir Dhindsa, Chun Shen

Wayne State University

We acknowledge financial support from The Gordon and Betty Moore Foundation and the American Physical Society

Talk Outline

• Motivation

• Setup

- Workflow in simulation chain
- Conventional particle sampling technique
- Microcanonical particle sampler

Results

- Single particle observables
- Two particle correlations

- Techniques for simulating hadronization include conventional grand-canonical (iSS) sampler and recently developed microcanonical sampler. [D. Oliinychenko and V. Koch, Phys. Rev. Lett. 123, 182302 (2019)]
- Explore sensitivity of correlation observables to local conservation laws of electric charge, strangeness, and baryon number with microcanonical particle sampling.

Workflow Microcanonical Hydro Surface

iSS

- Microcanonical sampling imposes non-trivial correlations to particles from local conservation laws. [D. Oliinychenko and V. Koch, Phys. Rev. Lett. 123, 182302 (2019)]
- Particle correlations are further propagated in hadronic transport.

Analysis

Microcanonical Sampler - The Physics

[D. Oliinychenko and V. Koch, Phys. Rev. Lett. 123, 182302 (2019)]

- The hypersurface is divided into patches, which in turn contain fluid cells.
- Each patch is considered an isolated system, with fixed total energy and momentum.
- Conservation laws apply over individual patches.

$$egin{aligned} &Pigg(N,\{N_S\}^{species},\{x_i\}_{i=1}^N,\{p_i\}_{i=1}^Nigg)\ &=Nigg(\prod_Srac{1}{N_S!}igg)\prod_{i=1}^Nrac{g_i}{(2\pi h)^3}rac{d^3p_i}{p_i^0}p_i^\mu d\sigma_\mu f_i(p_i^
u_
u,T,\mu_i\ & imes\delta^{(4)}igg(\sum_ip^\mu-P_{tot}^\muigg)\delta^{B_{tot}}_{\sum_i^{B_i}}\delta^{S_{tot}}_{\sum_i^{S_i}}\delta^{Q_{tot}}_{\sum_i^{Q_i}} \end{aligned}$$

$$egin{pmatrix} P_{tot}^{\mu} \ B_{tot} \ S_{tot} \ Q_{tot} \end{pmatrix} = \sum_i \int egin{pmatrix} p_i^{\mu} \ B_i \ S_i \ Q_i \end{pmatrix} rac{p^{arphi} d\sigma_
u}{p^0} f_i(p^lpha u_lpha,T,\mu_i) rac{g_i d^3 p}{\left(2\pi h
ight)^3} \end{cases}$$

[D. Oliinychenko, (2020)]

Estimates of Patch Number & Patch Size

• Different patch energies relate to different patch numbers and patch sizes

For 0 - 10 % Au-Au Collisions at 19.6 GeV

Patch energy (GeV)	Patch number	Patch size (fm)
100	38	7.4
50	77	5.8
10	386	3.4

Single Particle Observables

Particle spectra becomes steeper as we reduce the patch energy, reflecting conservation of energy.

Single Particle Observables

Within statistical fluctuations, no significant difference between grand-canonical and microcanonical sampling treatments.

8

• Identified particle pairs are assorted in a 3x3 matrix.

$$\Delta C_2 = C_2(OS) - C_2(SS); C_2 = rac{
ho^{(2)}(p_1,p_2)}{
ho^{(1)}(p_1)
ho^{(1)}(p_2)}$$

- The "background" correlations are subtracted out by same-sign correlations to leave only the "true" correlations.
- Correlations are studied as functions of rapidity difference between the pairs $|\Delta y|$.

• Correlations in the iSS+SMASH case are from resonance decay + hadronic scattering.

• The local electric charge conservation produces stronger short-range correlations.

• The local electric charge and strangeness conservation produce stronger short-range correlations.

• Correlation functions are narrower with smaller patch energy (shorter correlation length).

• The local electric charge and baryon number conservation overcomes annihilation in small $|\Delta y|$.

• Correlation functions are sensitive to the correlation length for B and Q conservation.

Conclusion

- Setup of simulation framework to study local conservation laws on particle correlations.
- Local charge (B, S, Q) conservations enhance the two particle correlations in small |Δy| between identified particle pairs.
- Outlook:
 - Study physics of off-diagonal particle correlations with more statistics.
 - Study the effects of local conservation laws on three-particle correlations.
 - Comparison to STAR measurements.

Bibliography

D. Oliinychenko and V. Koch. "Microcanonical Particlization with Local Conservation Laws," Phys. Rev. Lett. **123**, no. 18, 182303 (2019).

ALICE Collaboration. "The ALICE Experiment – A Journey Through QCD," (2022). <u>https://doi.org/10.48550/arXiv.2211.04384</u>.

S. A. Voloshin. "Heavy Ion Collisions: Correlations and Fluctuations in Particle Production," J. Phys.:Conf Ser. **50** (2006).

D. Oliinychenko, S. Shi, and V. Koch. "Effects of Local Event-by-Event Conservation Laws in Ultrarelativistic Heavy Ion Collisions at Particlization," Phys. Rev. C. **102**, no. 3, 034904 (2020).

Pelin Kurt. "Overview of Experimental Results in PbPb Collisions at $\sqrt{S_{NN}} = 2.76 TeV$ by the CMS Collaboration," J. Phys.:Conf Ser. **347**, 012004 (2012).

Scott McDonald. "M.Sc. Thesis, The Initial State of Heavy Ion Collisions in the IP-Glasma Framework," McGill University (2016). <u>https://escholarship.mcgill.ca/concern/theses/0g354h86b</u>.

Appendix - $C_2(OS)$ and $C_2(SS)$ Plots

Appendix - $C_2(OS)$ and $C_2(SS)$ Plots

Appendix - $C_2(OS)$ and $C_2(SS)$ Plots

