Andrea Simonelli

10th workshop of the APS Topical Group on Hadronic Physics

In collaboration with M. Boglione

TMD Fragmentations from thrust dependent observables

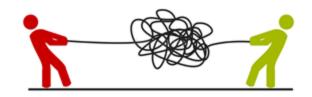
Extraction of TMD Fragmentation Functions

Access to the 3D-dynamics of confinement



 $_{ extsf{o}}$ SIDIS $d\sigma \sim H_{ ext{SIDIS}} \, F \, D$

DIA $d\sigma \sim H_{\rm DIA} \frac{D_1}{D_2}$



Always two TMDs that have to be extracted *simultaneously*

A process with a single hadron may offer a cleaner access to TMD FFs

$$d\sigma \stackrel{??}{\propto} D$$

Single-Inclusive Hadroproduction (SIA)

$$e^+e^- \rightarrow hX$$

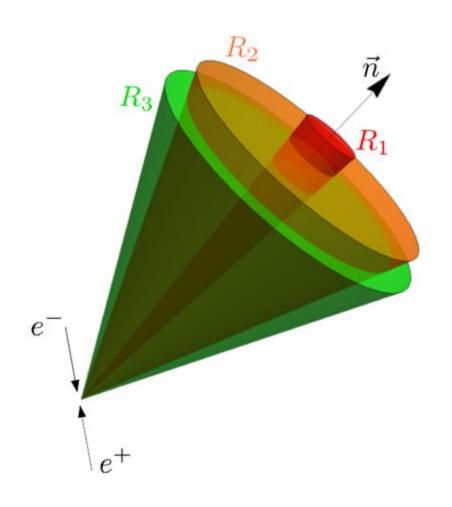
The transverse momentum of the detected hadron is measured w.r.t. the thrust axis

$$z_h = \frac{E}{Q/2}, \quad T = \frac{\sum_i |\vec{P}_{(\text{c.m.}),i} \cdot \hat{n}|}{\sum_i |\vec{P}_{(\text{c.m.}),i}|}, \quad P_T \text{ w.r.t } \vec{n}$$

BELLE collab., Phys.Rev.D 99 (2019)

Three kinematic regions

Depending on where the hadron is located within the jet the underlying kinematics can be remarkably different, resulting in different factorization theorems



The hadron is detected very close to the axis of the jet.

- \square Extremely small $\underline{P_T}$
- ☐ Soft radiation affects significantly the transverse deflection of the hadron from the thrust axis

The hadron is detected in the **central region** of the jet.

- Most common scenario
- ☐ Majority of experimental data expected to fall into this case

The hadron is detected near the **boundary** of the jet.

- ☐ Moderately small
- ☐ The hadron transverse momentum affects the topology of the final state directly

The three regions are uniquely determined by the specific role of **soft** and **soft-collinear** radiation:

$u \rightarrow 1-T$
$b_T \rightarrow P_T/z$

	soft	soft-collinear	collinear
R_1	TMD-relevant	TMD-relevant	TMD-relevant
R_2	TMD-irrelevant	TMD-relevant	TMD-relevant
R_3	TMD-irrelevant	TMD-irrelevant	TMD-relevant

TMD FF +

The hadron is detected very close to the axis of the jet.

- \square Extremely small $\underline{P_T}$
 - ☐ Soft radiation affects significantly the transverse deflection of the hadron from the thrust axis

$$d\sigma \sim HJ(u)\Sigma(u,b_T)D(z,b_T)$$

 $d\sigma \sim HJ(u)S(u)D(z,b_T)$

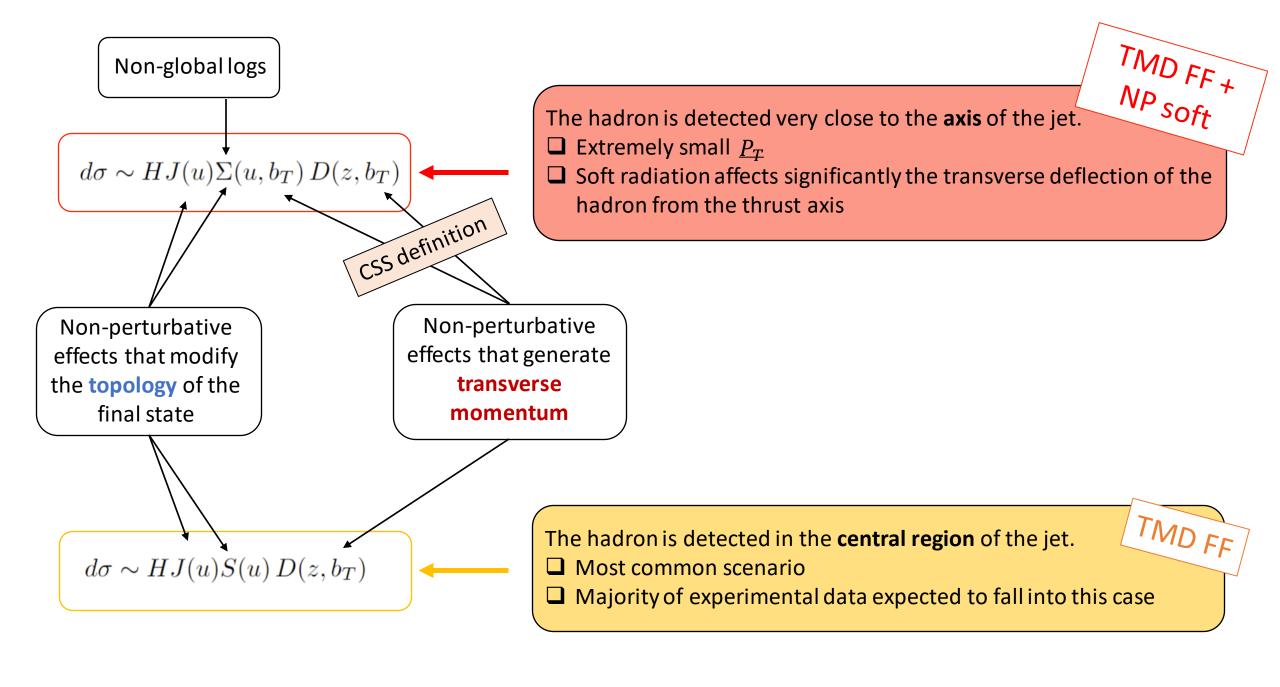
The hadron is detected in the **central region** of the jet.

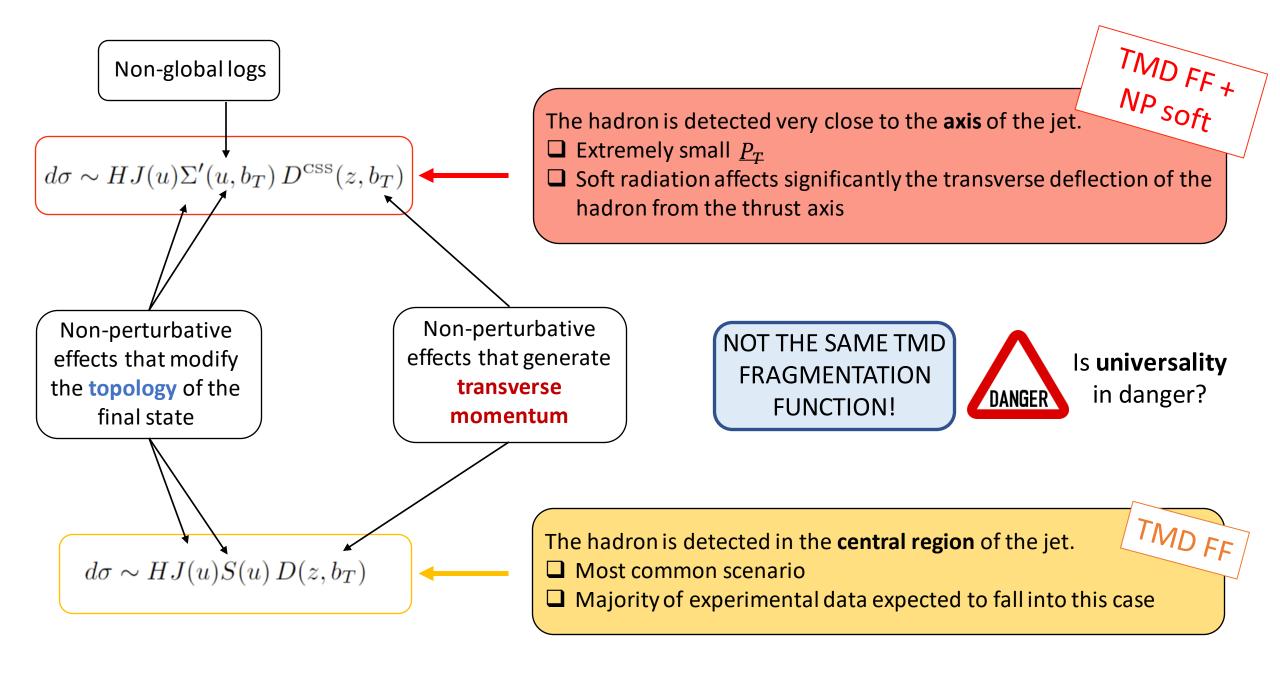
- Most common scenario
- ☐ Majority of experimental data expected to fall into this case

 $d\sigma \sim HJ(u)S(u)G(z,u,b_T)$

The hadron is detected near the **boundary** of the jet.

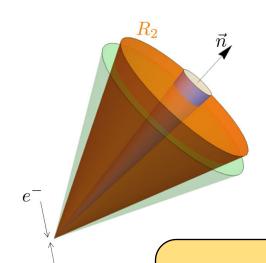
- ☐ Moderately small
- ☐ The hadron transverse momentum affects the topology of the final state directly





Standard TMD factorization can be extended beyond the standard processes (DY, SIDIS, DIA) at the cost of including a new, independent, non-perturbative function (the **soft model**).

$$D^{\text{\tiny CSS}}(z,b_T) = D(z,b_T) \sqrt{M_S(b_T)}$$
 ——— Universality is saved!



 $d\sigma \sim HJ(u)S(u)D(z,b_T)$

The hadron is detected in the **central region** of the jet.

- Most common scenario
- ☐ Majority of experimental data expected to fall into this case

Rapidity divergences in the central region

$$\frac{\partial}{\partial y_1} \dots \mathcal{S}(\tau, y_1, \dots) D(z, b_T, y_1) \neq 0$$

SIA^{thr} has a **double nature**:

Thrust dependent observable

TMD observable

The thrust τ naturally regularizes the rapidity divergences.

The 2-jet limit $\tau \to 0$ corresponds to removing the regulator and to exposing the rapidity divergences in fixed order calculations.

So the final result depends on a regulator? Yes, but...

- 1) The thrust is *measured*.
- 2) When the regulator is removed the (factorized) cross section vanishes, as showed by resummation.

The rapidity cut-offs $y_{1,2}$ artificially regularize the rapidity divergences.

The limits $y_{1,2} \to \pm \infty$ correspond to removing the regulator and to exposing the rapidity divergences in fixed order calculations.

So the final result depends on a regulator? Yes (in principle), but...

- 1) The rapidity cut-offs are just mathematical tools.
- 2) In standard TMD factorization they cancel among themselves before the limit $y_{1,2} \to \pm \infty$ is taken and the final cross section is rapidity cut-offs independent.

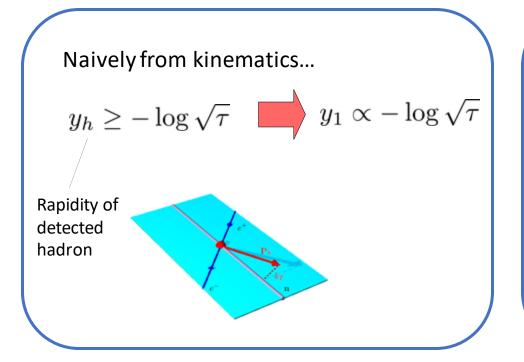
Both kind of regularization coexists in SIA^{thr}.

Therefore, it should not be surprising that the two mechanisms intertwine themselves and hence that thrust and rapidity regulators are strictly related.

This signals a *redundancy* of regulators: one can be expressed in terms of the other. In particular, the rapidity cut-off y_1 should be a function of thrust, such that when it is removed, also τ is removed. In other words:

$$\tau \to 0 \Longleftrightarrow y_1 \to +\infty$$

Peculiar and very unique feature of the central region!



...but also formally:

The double counting due to the overlap between soft and collinear (forward) radiation is cancelled only if the rapidity cut-off is fixed to a function of thrust and transverse momentum

SOFT-COLLINEAR

...but also formally:

The double counting due to the overlap between soft and collinear (forward) radiation is cancelled only if the rapidity cut-off is fixed to a function of thrust and transverse momentum

SOFT-COLLINEAR

SOFT $\longrightarrow k_T \lesssim Q e^{y_1}/u_E$

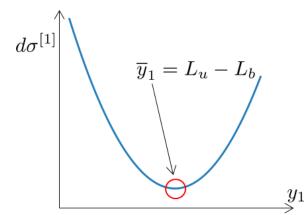
$$y_1 = L_u - L_b$$

This is also the **minimum** of the factorized cross section as a function of y_1

$$u_E = u e^{\gamma_E}; \ c_1 = 2e^{-\gamma_E}$$

$$L_u = \log u_E$$

$$L_b = \log \left(b_T Q / c_1 \right)$$



It is the (unique) solution of the Collins-Soper evolution equation!

$$\frac{\partial}{\partial y_1} d\sigma_{R_2} = 0$$

$$\overline{y}_1 = L_u - L_b^\star \left(1 + \frac{1 - e^{-\frac{2\beta_0}{\gamma_K^{[1]}} \left(g_K - \widetilde{K}^\star \right)}}{\lambda_b^\star} \right) \quad \Box \text{ Large and positive}$$

$$\Box \text{ Consistent with pert. solution: } \overline{y}_1 = L_u - L_b \quad \text{ as } b_T \to 0$$

- \Box Consistent with kinematics: $\widehat{y}_1 = -\log \sqrt{\tau} + b_T$ -logs

Factorization theorem in the central region

$$d\sigma_{R_2} \sim H J(u) \frac{\mathcal{S}(u, \overline{y}_1, y_2)}{\mathcal{Y}_L(u, y_2)} \widetilde{D}_{h/j}(z, b_T, \overline{y}_1)$$

Genuinely thrust. Exponent is *half* of standard thrust distributionin e+e- annihilation

$$= H J \frac{\mathcal{S}}{\mathcal{Y}_L} \bigg|_{\text{ref. scale}} \exp \left\{ \int_{\mu_J}^{Q} \frac{d\mu'}{\mu'} \gamma_J + \frac{1}{2} \int_{\mu_S}^{Q} \frac{d\mu'}{\mu'} \gamma_S \right\} \times \left. \widetilde{D}_{h/j}(z, b_T) \right|_{y_1 = 0}$$

$$\times \exp \left\{ \frac{1}{2} \int_{\mu_S}^{\mu_S e^{\overline{y}_1}} \frac{d\mu'}{\mu'} \left[\widehat{g} - \gamma_K \log \left(\frac{\mu'}{\mu_S} \right) \right] - \overline{y}_1 \ \widetilde{K} \Big|_{\mu_S} \right\}$$

Genuinely TMD. Reference scales as* in standard TMD factorization

Correlation part. It encodes the correlations between the measured variables

The function g_K does not only appear into the TMD FF!

$$\frac{d\sigma_{R_2}}{dz\,dT\,dP_T} \stackrel{\mathrm{LL}}{=} -\frac{\sigma_B}{1-T} N_C \int \frac{d^2\vec{b}_T}{(2\pi)^2} \left. \widetilde{D}_{h/j}^{\mathrm{LL}}(z,b_T) \right|_{y_1=0} \times \exp\left\{-\log\left(1-T\right)f_1(\bullet)\right\} \gamma(\bullet)$$

$$\bullet = \{ -a_S \,\beta_0 \, \log (1 - T), 2 \, a_S \, \beta_0 \, L_b^{\star}, g_K(b_T) \}$$

Factorization theorem in the central region

$$d\sigma_{R_2} \sim H \; J(u) \; rac{\mathcal{S}(u,\overline{y}_1,y_2)}{\mathcal{Y}_L(u,y_2)} \; \widetilde{D}_{h/j}(z,b_T,\overline{y}_1)$$
 Genuinely thrust. Exponent is half of statement of the following density of the statement of the stat

Genuinely thrust. Exponent is *half* of standard

$$= H J \frac{\mathcal{S}}{\mathcal{Y}_L} \bigg|_{\text{ref. scale}} \exp \left\{ \int_{\mu_J}^{Q} \frac{d\mu'}{\mu'} \gamma_J + \frac{1}{2} \int_{\mu_S}^{Q} \frac{d\mu'}{\mu'} \gamma_S \right\} \times \left. \widetilde{D}_{h/j}(z, b_T) \right|_{y_1 = 0}$$

$$\times \exp \left\{ \frac{1}{2} \int_{\mu_S}^{\mu_S e^{\overline{y}_1}} \frac{d\mu'}{\mu'} \left[\widehat{g} - \gamma_K \log \left(\frac{\mu'}{\mu_S} \right) \right] - \overline{y}_1 \ \widetilde{K} \Big|_{\mu_S} \right\}$$

Genuinely TMD. Reference scales as* in standard TMD factorization

Correlation part. It encodes the correlations between the measured variables

The function g_K does not only appear into the TMD FF!

$$\frac{d\sigma_{R_2}}{dz \, dT \, dP_T} \stackrel{\text{NLL}}{=} -\frac{\sigma_B}{1-T} N_C \int \frac{d^2 \vec{b}_T}{(2\pi)^2} \left. \widetilde{D}_{h/j}^{\text{NLL}}(z, b_T) \right|_{y_1=0} \times \exp\left\{ -\log\left(1-T\right) f_1(\bullet) + f_2(\bullet) \right\} \gamma(\bullet)$$

$$\bullet = \{-a_S \,\beta_0 \, \log (1 - T), 2 \, a_S \, \beta_0 \, L_b^{\star}, g_K(b_T)\}$$

Factorization theorem in the central region

$$d\sigma_{R_2} \sim H \; J(u) \; rac{\mathcal{S}(u,\overline{y}_1,y_2)}{\mathcal{Y}_L(u,y_2)} \; \widetilde{D}_{h/j}(z,b_T,\overline{y}_1)$$
 Genuinely thrust. Exponent is half of statement of the following density of the statement of the stat

Genuinely thrust. Exponent is *half* of standard

$$= H J \frac{\mathcal{S}}{\mathcal{Y}_L} \bigg|_{\text{ref. scale}} \exp \left\{ \int_{\mu_J}^{Q} \frac{d\mu'}{\mu'} \gamma_J + \frac{1}{2} \int_{\mu_S}^{Q} \frac{d\mu'}{\mu'} \gamma_S \right\} \times \left. \widetilde{D}_{h/j}(z, b_T) \right|_{y_1 = 0}$$

$$\times \exp \left\{ \frac{1}{2} \int_{\mu_S}^{\mu_S e^{\overline{y}_1}} \frac{d\mu'}{\mu'} \left[\widehat{g} - \gamma_K \log \left(\frac{\mu'}{\mu_S} \right) \right] - \overline{y}_1 \ \widetilde{K} \Big|_{\mu_S} \right\}$$

Genuinely TMD. Reference scales as* in standard TMD factorization

Correlation part. It encodes the correlations between the measured variables

The function g_K does not only appear into the TMD FF!

$$\frac{d\sigma_{R_2}}{dz \, dT \, dP_T} \stackrel{\text{NNLL}}{=} - \frac{\sigma_B}{1 - T} N_C \int \frac{d^2 \vec{b}_T}{(2\pi)^2} \left. \widetilde{D}_{h/j}^{\text{NNLL}}(z, b_T) \right|_{y_1 = 0} \left. (1 + a_S \, C_1(b_T)) \right. \\
\times \exp \left\{ -\log \left(1 - T \right) f_1(\bullet) + f_2(\bullet) - \frac{1}{\log \left(1 - T \right)} f_3(\bullet) \right\} \left. \left(\gamma(\bullet) - \frac{1}{\log \left(1 - T \right)} \rho(\bullet) \right) \right. \\$$

$$\bullet = \{ -a_S \,\beta_0 \, \log (1 - T), 2 \, a_S \, \beta_0 \, L_b^{\star}, g_K(b_T) \}$$

Phenomenology $e^+e^- \rightarrow \pi^{\pm} X$

BELLE data for charged **pions**

•
$$T = 0.825$$
: $0.275 \le z \le 0.675$, $P_T/z \le 0.16Q$

•
$$T = 0.875$$
: $0.325 \le z \le 0.725$, $P_T/z \le 0.15Q$

•
$$T = 0.925$$
: $0.375 \le z \le 0.775$, $P_T/z \le 0.14Q$

•
$$T = 0.975$$
: $0.425 \le z \le 0.775$, $P_T/z \le 0.13Q$

In total we select 230 data points.

BELLE collaboration Phys.Rev.D 99 (2019) 11, 112006

Phenomenology $e^+e^- \rightarrow \pi^{\pm} X$

points

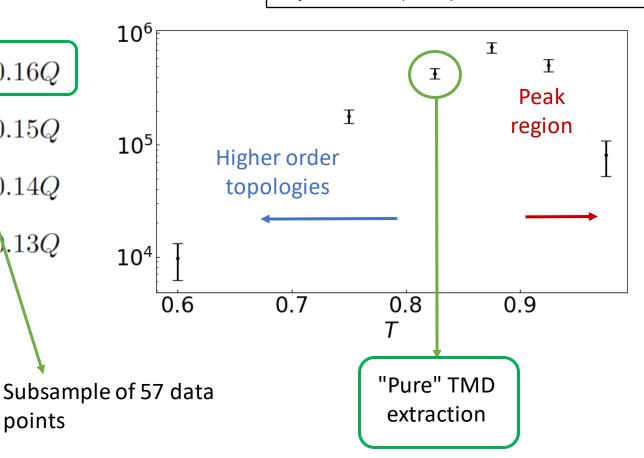
BELLE data for charged **pions**

BELLE collaboration Phys.Rev.D 99 (2019) 11, 112006

- T = 0.825: $0.275 \le z \le 0.675$, $P_T/z \le 0.16Q$
- T = 0.875: $0.325 \le z \le 0.725$, $P_T/z \le 0.15Q$
- T = 0.925: $0.375 \le z \le 0.775$, $P_T/z \le 0.14Q$
- T = 0.975: $0.425 \le z \le 0.775$, $P_T/z \le 0.13Q$

In total we select 230 data points.

A preliminary fit in the subsample fixes the functional form of the nonperturbative content of the TMD FF



Non-perturbative content of the TMD FF

- 1. g_K function, describing the long-distance behavior of the Collins-Soper kernel.
 - Even function of b_T
 - Parabolic behavior at small $\,b_T\,-g_K\sim g_2b_T^2+\dots\,$ for $\,b_T o 0.$
 - Constant behavior at large b_T $g_K \to g_0 \text{ for } b_T \to \infty$.

$$g_k = g_0 \tanh\left(\beta^2 \frac{b_T^2}{b_{MAX}^2}\right)$$

2. M_D model for the (unpolarized) TMD FF, describing its characteristic long-distance behavior.

- Even function of b_T
- Gaussian behavior at small b_T $M_D \sim e^{-cb_T^2} \times \dots$ for $b_T \to 0$.
- Exponential decay at large b_T $M_D \sim e^{-db_T} \times \dots$ for $b_T \to \infty$.

$$M_D(z_h, P_T, M, p) = \frac{\Gamma(p)}{\pi \Gamma(p-1)} M^{2(p-1)} \left(M^2 + \frac{P_T^2}{z_h^2} \right)^{-p}$$

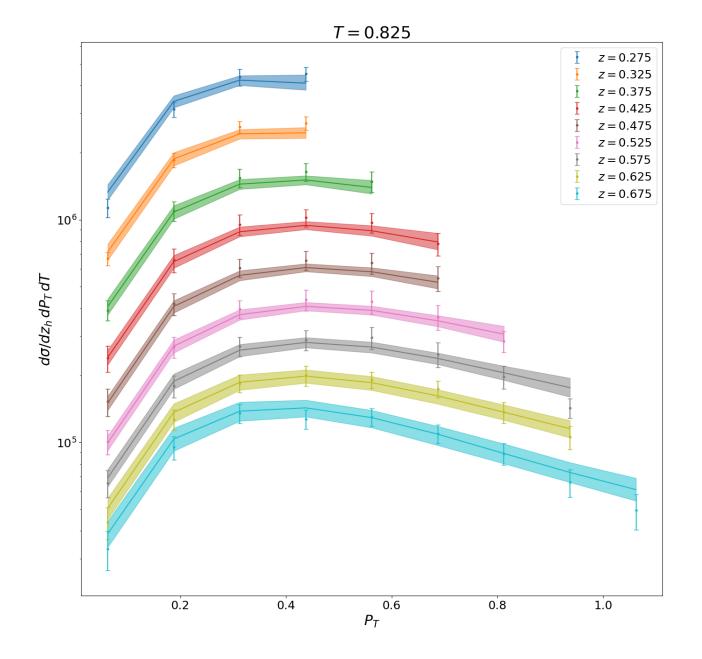
Where
$$p=p(R,W)$$
 and $M=M(R,W)$
$$R(z)=1-\alpha\frac{f(z)}{f(z_0)} \text{ with } f(z)=z\left(1-z\right)^{\frac{1-z_0}{z_0}},$$

$$W(z)=\frac{m_\pi}{R(z)^2}.$$

Preliminary step

- 57 data points
- 4 free parameters

$\chi^2/\text{d.o.f.}$	0.618	
z_0 α	$\begin{array}{c} 0.5521^{+0.0414}_{-0.0397} \\ 0.3644^{+0.0250}_{-0.0282} \end{array}$	M_D
$egin{array}{c} g_0 \ eta \end{array}$	$\begin{array}{c} 0.2943^{+0.0328}_{-0.0261} \\ 4.7100^{+1.985}_{-1.985} \end{array}$	g_K



Non-perturbative effects of thrust

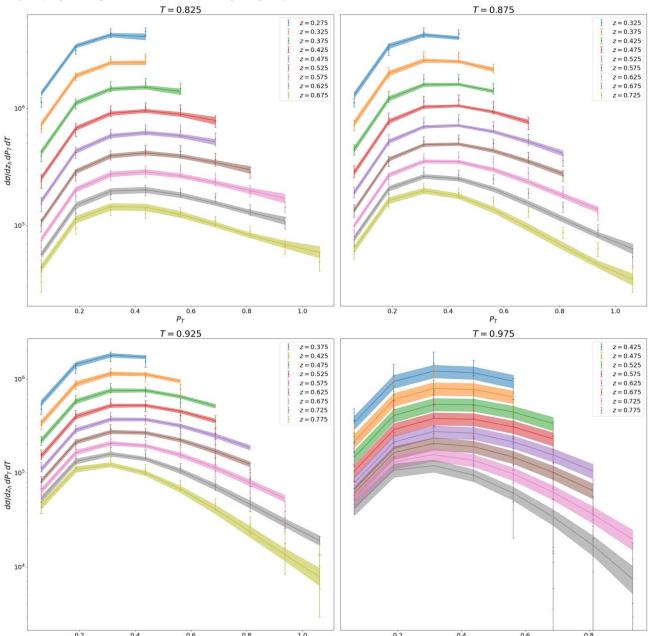
- 230 data points
- 6 free parameters

Minimal approach:

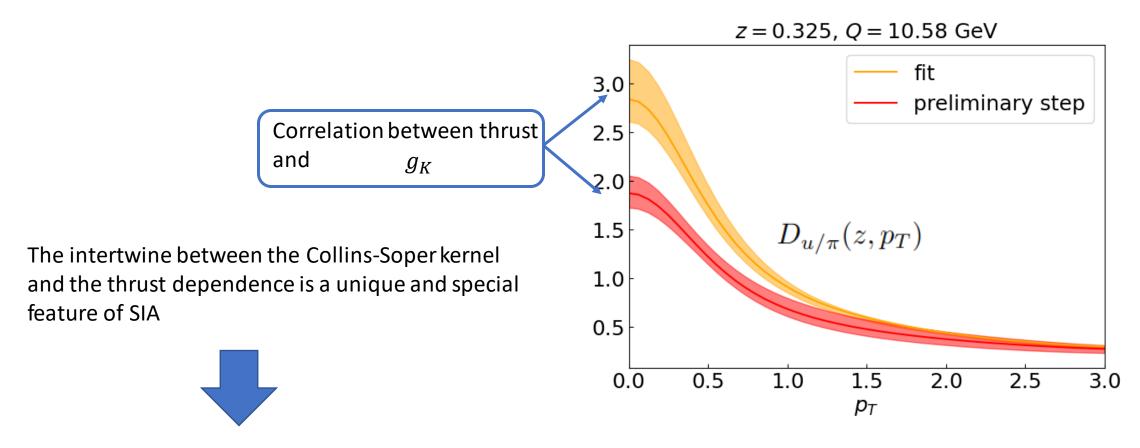
$$\frac{d\sigma}{dz\,dT\,d^2\vec{P}_T} = \left. \frac{d\sigma^{\rm pert.}}{dz\,dT\,d^2\vec{P}_T} \right|_{T-T_0} f_{\rm NP}(T)$$

With:
$$f_{\text{NP}} = \tanh \left(\rho^2 (1 - T)^2 \right)$$

$\chi^2/\text{d.o.f.}$	1.074
z_0	$0.5335^{+0.01938}_{-0.01802}$
α	$0.34029^{+0.01137}_{-0.0122}$
g_0	$0.1043^{+0.0445}_{-0.07419}$
β	$1.6765^{+0.8150}_{-0.8150}$
T_0	$0.0617^{+0.0294}_{-0.0133}$
$\parallel \hspace{0.5cm} ho$	$7.7204_{-0.2098}^{+0.2833}$



TMD Fragmentation Function



Beyond the sole extraction of TMD FFs (soft physics, QCD vacuum etc...)

Universality and comparison with SIDIS

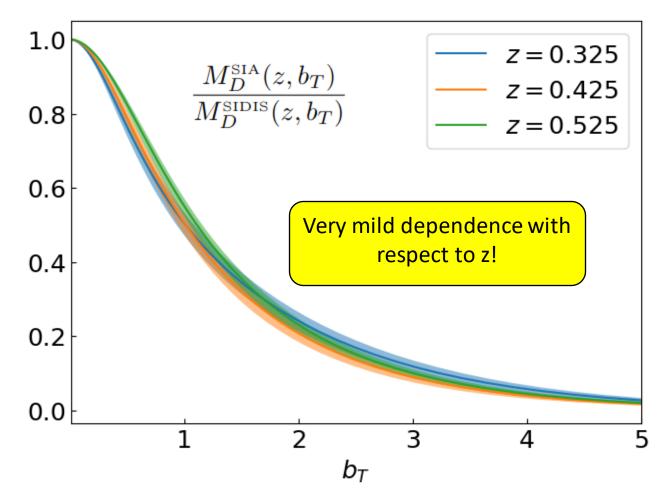
The comparison is relevant for the (indirect) extraction of the **soft model**

$$D^{\text{\tiny CSS}}(z,b_T) = D(z,b_T) \sqrt{M_S(b_T)}$$

$$M_D^{\text{\tiny CSS}}(z,b_T) = M_D(z,b_T) \sqrt{M_S(b_T)}$$

The model extracted from SIDIS is taken from SV19

$$D_{NP}(x,b) = \exp\left(-\frac{\eta_1 z + \eta_2 (1-z)}{\sqrt{1 + \eta_3 (b/z)^2}} \frac{b^2}{z^2}\right) \left(1 + \eta_4 \frac{b^2}{z^2}\right),$$



Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum I.Scimemi, A.Vladimirov, *JHEP* 06 (2020) 137

In	the	futur	e

- ☐ Addressing more precisely the non-perturbative effects associated with thrust
- ☐ Comparison with standard TMD factorization (especially DIA!)
- ☐ Extension to other processes (EIC)
- ☐ Direct access to the soft sector

And much more!

