Measurements of the Cos ϕ and $\operatorname{Cos} 2 \phi$ Moments of the Unpolarized SIDIS π^{+} Cross-section at CLAS12

Richard Capobianco

University of Connecticut

Motivation

- Semi-Inclusive Deep Inelastic Scattering (SIDIS) experiments allow us to address questions about the 3D structure of nucleons
- Azimuthal modulations in unpolarized SIDIS cross-section for charged pion electroproduction can give access to the Cahn and Boer-Mulders effects
- Boer-Mulders Effect: Sensitive to the correlation between the quark's transverse momentum and intrinsic transverse spin in an unpolarized nucleon
- Cahn Effect: Sensitive to the transverse motion of quarks inside the nucleon
- A non-zero Boer-Mulders requires quark orbital angular momentum contributions to the proton spin (aspect of the proton missing spin puzzle)

SIDIS Cross-Section and Boer-Mulders

The lepton-hadron Unpolarized SIDIS Cross-Section:

The Boer-Mulders and Cahn effects are present in the Structure Functions:

Reaction Studied: $\mathrm{ep} \rightarrow \mathrm{e} \pi^{+}(\mathrm{X})$

Data Collection

CLAS12 Detector

- CLAS12 detector in Hall B at Jefferson Lab
- Upgrade from the CLAS detector
- Enabled the higher energy and statistics for our experiments, not previously accessible
- Data from the Fall 2018 RG-A experiment
- Used a 10.6 GeV polarized electron beam and unpolarized liquid hydrogen target
- Data presented uses forward tracking only

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^{+}) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity (ß) and momentum

π^{+}Pion PID - $ß$ vs p

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^{+}) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity ((β) and momentum

Analysis Cuts:

- sIDIS Cuts:
- W > 2 GeV
- $\mathrm{Q}^{2}>2 \mathrm{GeV}^{2}$

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^{+}) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity (ß) and momentum

Analysis Cuts:

- SIDIS Cuts:
- $W>2 \mathrm{GeV}$
- $Q^{2}>2 \mathrm{GeV}^{2}$
- Other Analysis Cuts:
- $\mathrm{p}_{\pi^{+}}$Cut: $1.25 \mathrm{GeV}<\mathrm{p}_{\pi^{+}}<5 \mathrm{GeV}$
- θ-angle Cut: $5^{\circ}<\theta_{\text {particle }}<35^{\circ}$

CLAS12 RG-A Experimental Data
Electron Polar Angle

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^{+}) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity ((β) and momentum

Analysis Cuts:

- SIDIS Cuts:
- $W>2 \mathrm{GeV}$
- $Q^{2}>2 \mathrm{GeV}^{2}$
- Other Analysis Cuts:
- $\mathrm{p}_{\pi^{+}}$Cut: $1.25 \mathrm{GeV}<\mathrm{p}_{\pi^{+}}<5 \mathrm{GeV}$
- θ-angle Cut: $5^{\circ}<\theta_{\text {particle }}<35^{\circ}$
- $\mathrm{y}<0.75$ (minimize other background processes)

- $x_{F}>0$ (minimize contributions from target fragmentations)
- Missing Mass Cut: $\mathrm{M}_{\mathrm{x}}>1.5 \mathrm{GeV}$ (limits contributions from exclusive events)

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^{+}) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity ((β) and momentum

Analysis Cuts:

- SIDIS Cuts:

- $W>2 \mathrm{GeV}$
- $Q^{2}>2 \mathrm{GeV}^{2}$
- Other Analysis Cuts:
- $\mathrm{p}_{\pi^{+}}$Cut: $1.25 \mathrm{GeV}<\mathrm{p}_{\pi^{+}}<5 \mathrm{GeV}$
- θ-angle Cut: $5^{\circ}<\theta_{\text {particle }}<35^{\circ}$
- $\mathrm{y}<0.75$ (minimize other background processes)
- $x_{F}>0$ (minimize contributions from target fragmentations)

- Missing Mass Cut: $\mathrm{M}_{\mathrm{x}}>1.5 \mathrm{GeV}$ (limits contributions from exclusive events)
- Fiducial Cuts (e.g., accounts for bad channels present in data)

Analysis Procedure

Experimental extraction of cross-section

$d^{5} \sigma$	1	$N \quad 1$
$\overline{d Q^{2} d x_{B} d P_{T} d z d \varphi_{h}}$	$\overline{\left(\Delta Q^{2} \Delta x_{B} \Delta P_{T} \Delta z \Delta \varphi_{h}\right)}$	$\overline{R \cdot B C \cdot \eta \cdot N_{0}} \overline{\left(N_{A} \cdot \rho \cdot t / A_{w}\right)}$
Where:	Bin Volume	Target Number Density

- $\mathrm{R}=$ Radiative Correction
- $\eta=$ Acceptance Correction \rightarrow Requires Monte Carlo (MC) Simulation
- $\mathbf{N}=$ Bin Yields
- $N_{0}=$ Life-time corrected incident electron flux
- $B C=$ factor which evolves bin-averaged differential cross-section

SIDIS MC are generated with LEPTO event generator

Data and Monte Carlo Comparison

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (5 Dimensions)

$8 \mathrm{Q}^{2}-\mathrm{x}_{\mathrm{B}}$ Bins Total - 20-49 z- P_{T} Bins (per $\mathrm{Q}^{2}-\mathrm{x}_{\mathrm{B}}$ bin) ϕ_{h} distribution for the $\mathrm{Q}^{2}-\mathrm{x}_{\mathrm{B}}-\mathrm{z}-\mathrm{P}_{\mathrm{T}}$ bin shown in red

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (5 Dimensions)

Acceptance Corrections and Bin Migration Study

- Acceptance Matrix: $\mathrm{A}_{(i, j)}$ describes both Acceptance (including geometric acceptance and detector efficiency) and Bin Migration
- $A_{(i, j)}=\frac{\text { Number of Events Generated in bin } j \text { but Reconstructed in bin } i}{\text { Total Number of Events Generated in the } j \text { th bin }}$
- Acceptance Unfolding: $Y_{i}=A_{(i, j)} X_{j} \Leftrightarrow X_{j}=A_{(i, j)}^{-1} Y_{i}$ where:
- $Y_{i}=$ Number of events experimentally measured in the i-th bin
- $\quad X_{j}=$ Number of acceptance-corrected events in the j-th bin

Example of Unfolding Procedure

Using the Multidimensional Kinematic Bin from prior example

Parameters shown are from the fits previously described
Argonne

Multiple Examples of the Unfolding Procedure

Response Matrices

 in each $z-P_{T}$ bin for the highlighted $Q^{2}-x_{B}$ binArrows point to the distribution used in prior examples

UCDNN| $\begin{gathered}\text { UNIVERSITYOF } \\ \text { CONNECTICUT }\end{gathered}$ Argonne
© Offico of
Science
J efferson Lab closo

Multiple Examples of the Unfolding Procedure

Bayesian Unfolding in each $z-P_{T}$ bin for the highlighted $\mathrm{Q}^{2}-\mathrm{X}_{\mathrm{B}}$ bin

Arrows point to the distribution used in prior examples

Outlook

- Working on Multidimensional Acceptance Corrections for the simultaneous unfolding of $\mathrm{Q}^{2}, \mathrm{x}_{\mathrm{B}}, \mathrm{z}, \mathrm{P}_{\mathrm{T}}$, and ϕ_{h} variables
- Efforts towards more realistic MC simulations, both on the detector response description and physics process
- Include Radiative and BC Corrections to analysis
- Long-term goals:
- Extraction of multiplicity $\left(F_{U U, T}+\varepsilon F_{U U, L}\right), F_{U U}^{\cos \varphi_{h}}$, and $F_{U U}^{\cos 2 \varphi_{h}}$ in terms of in $\mathrm{Q}^{2}, \mathrm{X}_{B}, \mathrm{z}$, and P_{T} for the π^{+}for all CLAS12 RG-A data

Thank you

Questions?

Acknowledgements

- Financial support from The Gordon and Betty Moore Foundation and the American

Physical Society to present this work at the GHP 2023 workshop

- Contributions made by other members of the CLAS Collaboration
- This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-ACO2-06CH11357

Backup Slides

Multiple Examples of the Unfolding Procedure

https://userweb.jlab.org/~richcap/Interactive Webpage SIDIS richcap/Interactive Unfolding Page.html

Bin-by-bin Correction in each $z-P_{T}$ bin for the highlighted $\mathrm{Q}^{2}-\mathrm{X}_{\mathrm{B}}$ bin

Arrows point to the distribution used in prior examples

These images are also available at the web address linked above

UNIV
CONNECTICUT AI GUIIIIE

Multiple Examples of the Unfolding Procedure

https://userweb.jlab.org/~richcap/Interactive Webpage SIDIS richcap/Interactive Unfolding Page.html

SVD Unfolding in each $z-P_{T}$ bin for the highlighted $\mathrm{Q}^{2}-\mathrm{X}_{\mathrm{B}}$ bin

Arrows point to the distribution used in prior examples

These images are also available at the web address linked above

UNIV
CONNECTICUT AI GUIIIIE E

Multiple Examples of the Unfolding Procedure

https://userweb.jlab.org/~richcap/Interactive Webpage SIDIS richcap/Interactive Unfolding Page.html

Bayesian Unfolding in each $z-P_{T}$ bin for the highlighted $\mathrm{Q}^{2}-\mathrm{X}_{\mathrm{B}}$ bin

Arrows point to the distribution used in prior examples

DUPLICATE SLIDE

These images are also available at the web address linked above

UNIV

Example of Unfolding (\mathbf{Q}^{2})

Response Matrix of Q^{2}

Acceptance Correction of Q^{2}

Reconstructed Distrubution of $Q{ }^{2}$

Unfolded Distrubution of Q^{2}

Example of Unfolding (ϕ_{h})

ULDNN $\begin{aligned} & \text { UNIVERSITYOF } \\ & \text { CONNECTICUT }\end{aligned}$

Reconstructed Distrubution of ϕ_{h}

Kinematic Binning and Data-MC Comparison

Other Comparisons

All Events

Kinematic Binning and Data-MC Comparison

Other Comparisons

All Events

z Comparison

P_{T} Comparison

URDNN| UNIVERSITYOF $\begin{aligned} & \text { UNAR } \\ & \text { CONNECTICUT }\end{aligned}$

Kinematic Binning and Data-MC Comparison

Other Comparisons

UCDNN| UNIVERSITYOF Argonne

${ }^{28}$ O) Eevercy

Kinematic Binning and Data-MC Comparison

Other Comparisons

All Events

URDNN| UNIVERSITYOF $\begin{aligned} & \text { UNANECTICUT } \\ & \text { CONNET }\end{aligned}$

${ }^{29}$ O ${ }^{\text {uedeanew }}$

Kinematic Binning and Data-MC Comparison

Other Comparison

All Events

- Some differences between the ϕ_{h} distributions are expected
- Reason: The Monte Carlo Simulation is not initialized with any ϕ_{h} modulations yet
- i.e., the ϕ_{h} distribution is completely flat before reconstruction
- Initial calculations of the $\cos \phi$ and $\cos 2 \phi$ moments will be used to 'update' the simulation in an iterative fashion

ϕ_{h} Comparison

Event Selection (Full PID)

The RG-A Analysis Overview and Procedures note goes into detail about the common particle identification scheme used for RG-A
(See: https://clas12-docdb.jlab.org/DocDB/0009/000949/001/RGA Analysis Overview and Procedures-08172020.pdf)

Electron PID Criteria:

- Detected in Forward Detector
- >2 photoelectrons detected in the HTCC
- $\quad>0.07 \mathrm{GeV}$ energy deposited in the PCAL
- Sector dependent sampling fraction cut
- "Diagonal cut" for electrons above 4.5 GeV (HTCC threshold)
- $\mathrm{y}<0.75$, not strictly an "electron cut", but sets the min electron energy approximately $>2.4 \mathrm{GeV}$

Argonne

- $\quad \mathrm{p}>1.25 \mathrm{GeV}$
- Refined chi2pid cuts

Pion PID Criteria:

- Detected in Forward Detector

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (5 Dimensions)

$8 Q^{2}-x_{B}$ Bins Total - 20-49 z-P P_{T} Bins (per $Q^{2}-x_{B}$ bin) ϕ_{h} distribution for the $Q^{2}-x_{B}-z-P_{T}$ bin shown in red

