Measurements of the Cos φ and Cos2 φ Moments of the Unpolarized SIDIS π^+ **Cross-section at CLAS12**

Motivation

- Semi-Inclusive Deep Inelastic Scattering (SIDIS) experiments allow us to address questions about the 3D structure of nucleons
- Azimuthal modulations in unpolarized SIDIS cross-section for charged pion electroproduction can give access to the Cahn and Boer-Mulders effects
 - **Boer-Mulders Effect:** Sensitive to the correlation between the quark's transverse momentum and intrinsic transverse spin in an unpolarized nucleon
 - Cahn Effect: Sensitive to the transverse motion of quarks inside the nucleon
- A non-zero Boer-Mulders requires quark orbital angular momentum contributions to the proton spin (aspect of the proton missing spin puzzle)

SIDIS Cross-Section and Boer-Mulders

The lepton-hadron Unpolarized SIDIS Cross-Section:

The Boer-Mulders and Cahn effects are present in the Structure Functions:

Reaction Studied: $ep \rightarrow e\pi^+(X)$

Data Collection

UCONN UNIVERSITY OF Argonne

- CLAS12 detector in Hall B at Jefferson Lab
 - Upgrade from the CLAS detector Ο
 - Enabled the higher energy and statistics for Ο our experiments, not previously accessible
- Data from the Fall 2018 RG-A experiment
 - Used a 10.6 GeV polarized electron beam Ο and unpolarized liquid hydrogen target
- Data presented uses forward tracking only

Particle ID (PID):

- **Electron ID:** Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^+) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity (β) and momentum

Office of Science Jefferson Lab C

Office of

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^+) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity (ß) and momentum

Particle ID (PID):

- **Electron ID:** Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- **Hadron** (π^+) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity (β) and momentum ٠

Analysis Cuts:

- **SIDIS Cuts:**
 - W > 2 GeV
 - $Q^2 > 2 \text{ GeV}^2$ Ο
- **Other Analysis Cuts:**
 - $p_{\pi+}$ Cut: 1.25 GeV < $p_{\pi+}$ < 5 GeV
 - \circ θ-angle Cut: 5° < θ_{particle} < 35°

Office of

Office of Jefferson Lab

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^+) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity (β) and momentum

Analysis Cuts:

- SIDIS Cuts:
 - W > 2 GeV
 - $\circ \quad Q^2 > 2 \text{ GeV}^2$
- Other Analysis Cuts:
 - $\circ~~p_{\pi^+}$ Cut: 1.25 GeV < p_{π^+} < 5 GeV

UCONN UNIVERSITY OF Argonne

- \circ θ-angle Cut: 5° < θ_{particle} < 35°
- y < 0.75 (minimize other background processes)
- \circ x_F > 0 (minimize contributions from target fragmentations)
- \circ Missing Mass Cut: M_x > 1.5 GeV (limits contributions from exclusive events)

Office of Jefferson Lab

Particle ID (PID):

- **Electron ID:** Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- **Hadron** (π^+) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity (β) and momentum

Analysis Cuts:

- **SIDIS Cuts**:
 - W > 2 GeV
 - $Q^2 > 2 GeV^2$ Ο
- **Other Analysis Cuts:**
 - $p_{\pi+}$ Cut: 1.25 GeV < $p_{\pi+}$ < 5 GeV Ο

UCONN UNIVERSITY OF Argonne

- θ -angle Cut: 5° < $\theta_{particle}$ < 35° Ο
- y < 0.75 (minimize other background processes) Ο
- $x_F > 0$ (minimize contributions from target fragmentations) Ο
- Missing Mass Cut: $M_x > 1.5$ GeV (limits contributions from exclusive events) Ο
- Fiducial Cuts (e.g., accounts for bad channels present in data) Ο

Office of

Office of Jefferson Lab

Analysis Procedure

Experimental extraction of cross-section

- R = Radiative Correction
- $\eta = Acceptance Correction$

Requires Monte Carlo (MC) Simulation

- N = Bin Yields
- *N*₀ = Life-time corrected incident electron flux
- BC = factor which evolves bin-averaged differential cross-section

SIDIS MC are generated with LEPTO event generator

Data and Monte Carlo Comparison

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (5 Dimensions)

Office of Science Jefferson Lab C

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (5 Dimensions)

Office of Science Jefferson Lab C

Acceptance Corrections and Bin Migration Study

<u>Acceptance Matrix</u>: A_(i, j) describes both Acceptance (including geometric acceptance and detector efficiency) and Bin Migration

• $A_{(i, j)} = \frac{\text{Number of Events Generated in bin } j \text{ but Reconstructed in bin } i}{\text{Total Number of Events Generated in the } j \text{th bin}}$

• Acceptance Unfolding: $Y_i = A_{(i,j)}X_j \Leftrightarrow X_j = A_{(i,j)}^{-1}Y_i$

where:

UCONN | UNIVERSITY OF CONNECTICUT Argonne

- Y_i = Number of events experimentally measured in the *i*-th bin
- X_j = Number of acceptance-corrected events in the *j*-th bin

Example of Unfolding Procedure

Using the Multidimensional Kinematic Bin from prior example

UCONN | UNIVERSITY OF Argonne

17

<u>Outlook</u>

- Working on Multidimensional Acceptance Corrections for the simultaneous unfolding of Q², x_B , z, P_T , and ϕ_h variables
- Efforts towards more realistic MC simulations, both on the detector response description and physics process
- Include Radiative and BC Corrections to analysis
- Long-term goals:
 - Extraction of multiplicity ($F_{UU,T} + \varepsilon F_{UU,L}$), $F_{UU}^{\cos \varphi_h}$, and $F_{UU}^{\cos 2\varphi_h}$ in terms of in Q², x_B, z, and P_T for the π^+ for all CLAS12 RG-A data

Questions?

Acknowledgements

- Financial support from The Gordon and Betty Moore Foundation and the American Physical Society to present this work at the GHP 2023 workshop
- Contributions made by other members of the CLAS Collaboration
- This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-AC02-06CH11357

Backup Slides

Example of Unfolding (Q²)

Example of Unfolding (ϕ_h)

Other Comparisons

All Events

26

U.S. DEPARTMENT OF

Office of Jefferson Lab C

Other Comparisons

Other Comparisons

28

U.S. DEPARTMENT OF

Office of Science Jefferson Lab C

Other Comparisons

All Events

Other Comparison

All Events

UCONN UNIVERSITY OF Argonne

- Some differences between the ϕ_h distributions are expected
- Reason: The Monte Carlo Simulation is not initialized with any φ_h modulations yet
 - $\circ~$ i.e., the φ_h distribution is completely flat before reconstruction
- Initial calculations of the cosφ and cos2φ moments will be used to 'update' the simulation in an iterative fashion

Event Selection (Full PID)

The RG-A Analysis Overview and Procedures note goes into detail about the common particle identification scheme used for RG-A

(See: <u>https://clas12-docdb.jlab.org/DocDB/0009/000949/001/RGA_Analysis_Overview_and_Procedures-08172020.pdf</u>)

Electron PID Criteria:

- Detected in Forward Detector
- > 2 photoelectrons detected in the HTCC
- > 0.07 GeV energy deposited in the PCAL
- Sector dependent sampling fraction cut

UCONN | UNIVERSITY OF CONNECTICUT Argonne

- "Diagonal cut" for electrons above 4.5 GeV (HTCC threshold)
- y < 0.75, not strictly an "electron cut", but sets the min electron energy approximately > 2.4 GeV

Pion PID Criteria:

- Detected in Forward Detector
- p > 1.25 GeV
- Refined chi2pid cuts

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (5 Dimensions)

UCONN | UNIVERSITY OF CONNECTICUT Argonne

