Baryon Stopping and Associated Production of Mesons in Au+Au Collisions at $\sqrt{s_{NN}} = 3.0$ GeV at STAR 10th workshop of the APS Topical Group on Hadron Physics

Benjamin Kimelman for the STAR Collaboration

NSP

Vanderbilt University University of California - Davis

April 12th, 2023

APS GHP 2023 - Minneapolis, MN

Office of Science

Benjamin Kimelman

April 12, 2023 1 / 20

1 Introduction

- 2 Charged Hadron Yields
- 3 Particle Production
- 4 Conclusions

Motivation

- Models indicate maximum baryon density $\sim \sqrt{s_{NN}} = 7.7$ GeV¹, suggesting changing dynamics of system
- π^{\pm} , K^{\pm} , and $p \ dN/dy$ in central collisions have been measured at the AGS^{2,3,4}, SPS^{5,6}, and SIS⁷
- High statistics data sets collected by STAR extend these measurements to investigate centrality dependence
 - Observed Coulomb potential as a function of centrality is non-spherical
 - Baryon stopping measurements across centrality indicate constant rapidity loss

- ² J. L. Klay *et al.* (E895 Collaboration), Phys. Rev. C **68**, 054905 (2003)
- ³J. L. Klay *et al.* (E895 Collaboration), Phys. Rev. Lett. **88**, 102301 (2002)
- ⁴L. Ahle *et al.* (E866 and E917 Collaborations), Phys. Lett. **B490**, 53 (2000)
- ⁵C. Alt *et al.* (NA49 Collaboration), Phys. Rev. C **77**, 024903 (2008)
- ⁶_S. Afanasiev *et al.* (NA49 Collaboration), Phys. Rev. C **66**, 054902 (2002)
- ⁷A. Forster et al. (KaoS Collaboration), J. Phys. G **28**, 2011 (2002)

STAR Fixed-Target Acceptance

Introduction

2 Charged Hadron Yields

3 Particle Production

Conclusions

Particle Identification

- Slices of dE/dx and m^2 are made in rapidity, $m_T m_0$, and centrality bins
- Each slice is fit with one or more Gaussians to determine yield of particle of interest, accounting for contamination from other particle species

STAR 🕁

Charged Pion Spectra

- Pion yields extracted from fitting dE/dx from TPC and $1/\beta$ from barrel ToF
- Pion spectrum described well by double thermal function¹, which describes thermal production at high $m_T m_0$ and production from Δ resonance at low

 $m_{T} - m_{0}$

• Dashed red line shows where leading production mechanism changes

^LJ. Klay et al. (E895 Collaboration), Phys. Rev. C 68, 054905 (2003)

Benjamin Kimelman

APS GHP 2023 - Minneapolis, MN

Charged Kaon Spectra

- Kaon yields extracted from fitting dE/dx from TPC and $1/\beta$ from barrel ToF
- ToF identification required at all p, which limits low $m_T m_0$ reach
- Kaon spectrum fit with m_T exponential function since Bose-Einstein enhancement and radial flow effects mostly cancel

April 12, 2023 8 / 20

- Proton spectra extracted from fitting dE/dx from TPC and m² from barrel ToF
- Proton spectra near midrapidity described well using blast-wave function assuming cylindrical expansion of fireball

Surface velocity with linear profile (n = 1) from Blast-wave fit with constant temperature for each centrality and assuming Bjorken model System is not boost-invariant as there is no plateau around midrapidity and Blast-Wave only used for extrapolation to low m_T - m₀

 Non-boost invariant model will be implemented in the future to extract freeze-out parameters

Charged Meson Rapidity Density Distributions

- Yields obtained from spectrum and integration of fits to extrapolate to $m_T - m_0 = 0$
- Kaon yields follow the energy dependence when compared to E866/E917², while pion yields are surprisingly close to E895¹ measurements at 3.3 GeV

¹ J. Klay et al. (E895 Collaboration), Phys. Rev. C 68, 054905 (2003) ² L. Ahle et al. (E866 and E917 Collaborations), Phys. Lett. B490, 53 (2000)

N 4 E

- Yields obtained
 - from spectrum and integration of fits to extrapolate to $m_T - m_0 = 0$
- Centrality dependence shows participant proton peak shifting away from midrapidity for more peripheral collisions, indicating less baryon stopping

rar 🕁

Introduction

- Charged Hadron Yields
- 3 Particle Production

4 Conclusions

Benjamin Kimelman

April 12, 2023 13 / 20

Coulomb Potential in Central Collisions

- Pions are susceptible to the Coulomb potential of stopped baryons due to their small mass^{1,2}
- Model includes Bose-Einstein nature of pions and an effective potential to account for momentum distribution of stopped protons

STAR 🕁

¹D. Cebra *et al.* [arXiv:1408.1369 [nucl-ex]]

J. Adamczewski-Musch et al. (HADES Collaboration), [arXiv:2202.12750 [nucl-ex]]

Coulomb Potential Correlation with Proton Yield

- Across centrality, the extracted Coulomb potential tracks monotonically with proton dN/dy
- Indication of less charge deposited in interaction region for peripheral collisions, matching expectations about geometry and baryon stopping
- Power law fit indicates that protons are not acting as a spherical source¹

April 12, 2023 15 / 20

'AR 🛧

J. Adamczewski-Musch et al. (HADES Collaboration), [arXiv:2202.12750 [nucl-ex]]

Kaon Production in Central Collisions

¹A. Forster *et al.* (KaoS Collaboration), J. Phys. G **28**, 2011 (2002)
 ²L. Ahle *et al.* (E866 and E917 Collaborations), Phys. Lett. **B490**, 53 (2000)
 ³C. Alt *et al.* (NA49 Collaboration), Phys. Rev. C **77**, 024903 (2008)
 ⁴S. Afanasiev *et al.* (NA49 Collaboration), Phys. Rev. C **66**, 054902 (2002)
 ⁵L. Adamczyk *et al.* (STAR Collaboration), Phys. Rev. C **96**, 044904 (2017)

- Results at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$ follow trend seen in SIS, AGS, SPS, and STAR BES-I data
- K⁻/K⁺ ratio at midrapidity is affected by baryon stopping
 - Production of K^+ in association with Λ baryon
 - Changes in μ_B and μ_S could suppress K⁻/K⁺ ratio at low collision energy

Benjamin Kimelman

April 12, 2023 16 / 20

Baryon Stopping

- Proton rapidity density is fit with shape determined by counting the number of collisions each participating nucleon takes part in a Monte-Carlo Glauber model, smoothed using a Gaussian kernel
- The stopping, δy, is defined as the shift of the participant proton peak from beam rapidity

Baryon Stopping Trends

- Stopping at $\sqrt{s_{NN}} = 3.0$ GeV is consistent with measurements at similar energies
- Average loss of 0.19 ± 0.01 units of rapidity per nucleon-nucleon collision⁶

¹W. Reisdorf *et al.* (FOPI Collaboration), Nucl. Phys. A **848**, 366 (2010)

- ²J. Klay *et al.* (E895 Collaboration), Phys. Rev. Lett. **88**, 102301 (2002)
- ³B. Back *et al.* (E917 Collaboration), Phys. Rev. Lett. **86**, 1970 (2001)
- ⁴L. Ahle *et al.* (E802 Collaboration), Phys. Rev. C **60** , 064901 (1999)
- ⁵C. Blume. (NA49 Collaboration) J. Phys. G **34**, S951 (2007)
- ⁶F.Videbæk and O. Hansen, Phys. Rev. C **52**, 2684 (1995)

Benjamin Kimelman

April 12, 2023 18 / 20

STAR 🛧

Introduction

- Charged Hadron Yields
- 3 Particle Production

- Rapidity density distributions have been presented at $\sqrt{s_{NN}} = 3.0$ GeV for π^{\pm} , K^{\pm} , and p
- The Coulomb potential from stopped protons has a noticeable effect on the charged pion spectra that correlates with the proton yields and indicates a non-spherical source
- K^-/K^+ ratio at midrapidity is affected by baryon stopping
- $\bullet\,$ Baryon stopping can be modeled as an average rapidity loss of 0.19 ± 0.01 for each binary collision by observing trends in centrality
- Future studies of other STAR Fixed-Target data will identify energy trends in these observables, which will provide a more complete picture of the transition from a baryonic to a mesonic regime

Backup

Benjamin Kimelman

APS GHP 2023 - Minneapolis, MN

April 12, 2023 21 / 20

The STAR Fixed-Target

- Target located at z = 200 cm
- Target is 0.25 mm thick 1% interaction probability
- Target is held 2 cm below center of beam axis
- Collider filled with 12 bunches

$\sqrt{s_{NN}} = 3.0$ GeV Vertex Position

April 12, 2023 23 / 20

Event and Track Selection Cuts

- Event selection
 - Select on minimum-bias events (using mixture of EPD, BBC, and VPD triggers)
 - $198 < V_z < 202 \ {
 m cm}$
- Track selection
 - Track projects back to the primary vertex (at target location)
 - Distance of Closest Approach (DCA) \leq 3

April 12, 2023 24 / 20

- Coulomb correction applied to Bose-Einstein distribution to account for change in energy of pion
- Change in shape of spectra and fits at low m_T - m₀ indicate correction is necessary to describe spectra properly

- Glauber Model is used to obtain distribution of *N_{coll}* for each participant
- Gaussian Kernel Estimator implemented to smooth out discrete distribution and obtain shape of N_{coll}
- Shape is then shifted, stretched horizontally, and scaled vertically to fit proton dN/dy

