2021 APS Fellow: Studies of hadronic resonances in heavy ion collisions and how it resonates with my life.

Christina Markert

The University of Texas at Austin

APS 10th workshop GHP, April 12-14, 2023, Minneapolis MS

Remarks

I am very honored to be elected a Fellow of the American Physical Society in 2021 which changed my feelings of belonging and confidence in Physics

It brought "happy" tears to my eyes when I was reading the 2021 APS Fellowship Notification (GHP)

Being now acknowledged for my work within the APS community is amazing

And thinking about all my obstacles and self-doubt (women) in my physics life

At the beginning being the only women in the Frankfurt University group. My confidence was very low.

I am so happy about this award and I will give a talk about my personal journey a reflection on my feelings during my Physics career.

This talk is dedicated to all the young scientist

Heavy Ion Experiments

Center of Mass Energy range: ~17 GeV to ~ 5 (13) TeV Collision systems size: pp, pA (dA), AA

Duration of a Heavy Ion Collision

Where Resonances play a role

Hard scattering

Quark Gluon Plasma:

- Deconfinement
- Chiral Symmetry Restoration (CSR)

Probing the CSR (with Resonances)

- Mass shift
- Width broadenings

Hadronic Interactions:

- Resonances and decay and Regeneration
- Re-scattering of decay daughters

Chemical Freeze-out

Statistical model T, m

Kinetic Freeze-out

APS 10th workshop GHP, April 12-14, 2023, Minneapolis MS Christina Markert, UT Austin

Resonances in search for CSR

- Initial idea: Measure mass shift and width broadening as signatures of Chiral Symmetry Restoration (CSR) at phase transition.
- Later results: Understanding of hadronic phase interactions, lifetime of hadronic phase

Suggested resonance: measurable width of ~10-20 MeV, hadronic decay (PID of charged hadrons TPC, TOF)

–> Lambda(1520) is a good candidate for CSR

	Λ (uds)	Λ(1520) (<i>uds</i>)
Spin Parity:	1/2 +	3/2 -
Mass m :	1115.7 MeV/c ²	1519.5 MeV/c ²
Width Γ :	$< 1 \text{ MeV/c}^2$	15.6 MeV/c^2
Lifetime t :	7.9 cm/c	12.8 fm/c
	weak dacay	strong decay

Decay channel A(1520):
$p + K^2$: 22.5 %
$N + K^0$: 22.5 %
$\Lambda + \gamma$: 0.8 %
$\Sigma + \pi$: 42.0 %
$\Lambda + \pi + \pi : 0.9 \%$
$\Lambda + \pi + \pi : 0.9 \%$

Λ(1520) in pp collisions at the SPS

First check: Signal in elementary pp collisions

All looks good! Reconstruction of $\Lambda(1520)$ is in agreement with PDG and yield fits into trend of previously measured data

Search for the A(1520) in Pb-Pb

My first problem signal is not present and upper limit lower than expected ($\Lambda(1520)/\Lambda$ scaled from pp)

-> Problem with analysis? (many checks has been done)

—> Thinking about the reason of signal suppression/loss —> Talk to theorists UrQMD (Frankfurt) (S. Soff and M. Bleicher)

Remark: I was able to ask the theorists questions without feeling bad about myself. —> Normal respect (human) for each other, being positive, working together is very important

UrQMD - Hadronic Interactions

J. Phys. G 27 (2001) 449–458

UrQMD is a microscopic model

Figure 6: Rapidity distribuof reconstructable tion dN/dy $\Lambda^{*}(1520)$'s, i.e. $\Lambda^{*}(1520)$'s whose decay products do not rescatter, in central $(b < 3 \,\mathrm{fm})$ Pb(158 A GeV)Pbcollisions aspredicted by the UrQMD model. The total number of $\Lambda^*(1520)$ decays is about twice the number of reconstructable $\Lambda^*(1520)$'s.

Explanation: Hadronic scattering of resonance decay hadrons causes signal loss of reconstructable resonances in invariant mass spectrum
> 50% loss of Lambda(1520) signal

Resonance Re-scattering and Regeneration

Life-time [fm/c] :		
ρ	= 1.3	
Δ^{++}	= 1.7	
K(892)	= 4.0	
Σ(1385)	= 5.7	
Λ(1520)	= 13	
\$ (1020)	= 45	

New Data: Found A(1520) signal (better PID)

V. Friese/Nuclear Physics A698 (2002) 487c-490c

QM2001 - Poster CM Talk V. Friese (proceedings)

Figure 3. (left) pK⁻ background subtracted invariant mass spectrum in central Pb+Pb; (right) $\Lambda(1520)$ yield, normalised to the pion yield in p+p, p+Pb and central Pb+Pb

Better detector calibration (PID) in new data set: I found the Lambda(1520) signal!!!! Juhuuu!!!

490c

-> ~50% loss of signal in invariant mass spectrum (consistent with theory) Result of many discussions with theorists while having a coffee together and brainstorming ideas!

A(1520) results NA49

Sad part: NA49 results never got published besides the proceedings. There was still some doubt about the results since it did not show expected yield as predicted by a statistical model

Λ(1520) yield in Pb-Pb lower than expected

Remarks: Takeaway: If results don't show expected values just continue investigating the system in all directions. You will always learn something. It is hard to believe in yourself if you are a young scientist.

RHIC

-> higher collision energy (Au+Au 200 GeV)

Question: Do we see same suppression?

Measure more Resonances

Christina Markert, UT Austin APS 10th workshop GHP, April 12-14, 2023, Minneapolis MS

RHIC STAR Resonances

STAR Collaboration B.I. Abelev et al. (CM, S.Salur) Phys. Rev. Lett. 97 (2006) 132301

- Hadronic Phase Matters! (Publication in PRL)
- UrQMD includes re-scattering and regeneration of Resonances Largest signal loss due to re-scattering in low pT region
- Hadronic Phase can change single particles spectra and correlations, leptonic decay

LHC - ALICE Even higher energy (Pb+Pb 2.76 TeV)

Lambda(1520)

Same suppression with increasing interaction volume at all energies

Lifetime and expansion velocity is different

ALICE - Resonances and EPOS(+UrQMD) Model

Good understanding of hadronic interactions throughout the evolution of the collisions from small to large system size (central Pb-Pb: hadronic lifetime ~ 10 fm/c)

Christina Markert, UT Austin APS 10th workshop GHP, April 12-14, 2023, Minneapolis MS

Thinking about Alternative explanations

PYTHIA with color reconnection

Describing resonance suppression in small systems (p+p) via color reconnection mechanism which breaks up larger strings more often —> more low mass hadrons are produced

R. Acconcia, D.D. Chinellato, R. Derradi de Souza, J. Takahashi, G. Torrieri, C. Markert "Resonance suppression from color reconnection." Phys.Rev. D97 (2018) no.3, 036010

Color reconnection shows smaller resonance/non-resonance ratio, (but effect is very small)

Remarks: Always asking questions Find alternative explanations

Understanding Medium modifications

Investigate CSR with Resonances from Jets

- C. Markert, R. Bellwied, I. Vitev, "Formation and decay of hadronic resonances in the QGP"
- Phys.Lett.B 669 (2008) 92-97, 0807.1509 [nucl-th]

New idea of measuring resonances in jets: Not useful for CSR because of large background but useful to study strangeness enhancement in jets and medium

Christina Markert, UT Austin APS 10th workshop GHP, April 12-14, 2023, Minneapolis MS

Investigate CSR with PHSD

Parton-Hadron-String Dynamics (PHSD) is a microscopic off-shell transport model

Study chiral symmetry restoration via mass shifts and width broadenings

Observed mass shift (large errors) of K*(892) can be explained by change of spectral function from regenerated resonances in hadronic medium

Christina Markert, UT Austin APS 10th workshop GHP, April 12-14, 2023, Minneapolis MS

Remarks

This was a great journey Trying to find signature of CSR Found the lifetime of hadronic phase and its impact I am so thankful for this award It changed my life and my confidence believing in myself

Thanks!