Project is supported in part by DOE grant Grant No. DE-FG05-92ER40712

Financial support from The Gordon and Betty Moore Foundation and the American Physical Society to present this work at the GHP 2023 workshop

Identifying Quenching Effect in Heavy-ion Collisions with Machine Learning*

GHP 2023 WORKSHOP

Vanderbilt University

GHP Minneapolis, 04/13/23

* Paper available on: <u>https://arxiv.org/abs/2206.01628</u> Author: Lihan Liu, Julia Velkovska, Marta Verweij, Yilun Wu

Yilun Wu

Background: Jet Quenching Phenomenon

Heavy ion collision

- ▲ Jets traveling in opposite direction with equal initial transverse momentum pT
- ◀ Final state pT is not equal

Background: Jet Quenching Phenomenon

Vacuum jet

Quenched jet

Motivation

Jet Substructures

Plenary talk "Jet Substructure and its utility in small and large systems" --Raghav Kunnawalkam Elayavalli

Can the quenching effect be studied on a jet-by-

Can neural networks learn to identify quenched jets based on the jet internal structures?

- 1. How to do feature engineering?
- 2. Which Neural Network? How to do training?
- 3. How does a trained network behave?

How to do feature engineering?

It is necessary to introduce the thermal background effect to the feature engineering.

JEWEL simulation for dijet events:

Non-quenched jets (vacuum class) **Quenched** jets (medium class)

Embedding the simulated event with a thermal background: Also presents in the experiment

0-10% Centrality

dijet hard event

Background subtraction algorithm: Event-wide Constituent Subtraction

We use the jets reconstructed from the bkg-subtracted events for next step

mixed event

bkg-sub event

+ Most central background

How to do feature engineering?

Jet observable that represents the internal structure of a jet:

• Jet substructure

Input

Long Short-Term Memory Neural Network

- learning from sequential data
- Improved RNN (Recurrent Neural Network)

Image source: colah.github.io

How to do training?

Yilun Wu

How does a trained network behave?

Binary class labeling: Jewel(PbPb) jets: 1; Jewel-vac(pp) jets: 0 Histogram: Distributions of discriminators (predictions from a trained neural network).

Medium jets is separated from vacuum jets. But there are similarities between the two classes.

GHP Minneapolis, 04/13/23

Calibration process: using the whole vacuum jets as reference, the quenching amount of each medium jet is determined—"Quenchness"

How does a trained network behave?

Jet Quenchness Identification Results: — Jet Substructures

GHP Minneapolis, 04/13/23

10

What is Lund Jet Plane?

Yilun Wu

Jet Quenchness Identification Results: — Lund Plane

Top 40% "quenchness" jet & Bottom 60% "quenchness" jet predicted by LSTM

Quenchness: The LSTM output for each medium jet. If the value is closer to 1, then the jet is more quenched. And vice versa.

What is Jet Fragmentation Function (JFF) ξ ?

suppression of high p_T particles in central PbPb collisions, compared to pp collisions.

CMS Collaboration, Phys. Rev. C 90, 024908

For the most central collisions, a significant enhancement on high ξ values (p_T^{track} < 3GeV) is observed, with depletion in the intermediate region as compensation. The result shows an enhancement of soft particle contribution to the jet energy and a

Yilun Wu

Jewel-vac jets

GHP Minneapolis, 04/13/23

• For **0-20% quenchness** jets, the <u>large ξ is **most** enhanced with a</u> depletion of intermediate ξ .

Yilun Wu

GHP Minneapolis, 04/13/23

Jewel-vac jets

- For **0-20% quenchness** jets, the large ξ is **most** enhanced with a depletion of intermediate ξ .
- For 20-40% quenchness jets, the **most** enhanced region is of <u>small</u> <u>ξ</u>;

A bias towards jets that are less fragmented than the average quenched jets

GHP Minneapolis, 04/13/23

Jewel-vac jets

- For **0-20% quenchness** jets, the large ξ is **most** enhanced with a depletion of intermediate ξ .
- For 20-40% quenchness jets, the **most** enhanced region is of <u>small</u> ξ ; Same for **40-60% quenchness** jets.

A bias towards jets that are less fragmented than the average quenched jets

JEWEL jets predicted by the LSTM

Yilun Wu

GHP Minneapolis, 04/13/23

classes of JEWEL jets divided by the Jewel-vac jets

- For **0-20% quenchness** jets, the large ξ is **most** enhanced with a depletion of intermediate ξ .
- For 20-40% quenchness jets, the **most** enhanced region is of small ξ ; Same for **40-60% quenchness** jets.
- For 80-100% quenchness jets, the ratio between the them and vacuum still deviates from unity.

"they tends to be narrower and less fragmented than the average jet population in vacuum" — J. High Energ. Phys. 2021, 206 (2021)

They behave like biased vacuum jets (with small LSTM values) in the small ξ region.

What is Jet Shape Function $\rho(r)$?

The jet shape function, \bullet

$$\rho(r) = \frac{1}{\delta r} \frac{1}{N_{\text{jet}}} \sum_{\text{jets}} \frac{\sum_{\text{tracks} \in [r_a, r_b)} p_T^{\text{track}}}{p_T^{\text{jet}}},$$

provides information about the radial distribution of the momentum carried by the jet constituents (fragments).

- The jet shape ratios between PbPb and pp show a redistribution \bullet of jet energy to softer particles extending to large angles away from the jet axis.
- The energy lost due to parton propagation in QGP is observed to be recovered by soft hadrons at large angles with respect to the jet axis.

Jet Quenchness Identification Results: Jet Shape(JS) ratio

Five "quenchness" classes of JEWEL jets predicted by the LSTM

The JS ratios from five "quenchness" classes of JEWEL jets divided by the Jewel-vac jets

Yilun Wu

GHP Minneapolis, 04/13/23

The JS ratios from five quenchness classes divided by the vacuum jets also show various jet quenching modes, consistent with the JFF ratio results.

Conclusions and Next Step

- A well trained neural network is capable to identify different quenching levels, on a jet-by-jet base.
 - ✓ From the jet substructure perspective, there is similarity between vacuum jets and quenched jets.
 - ✓ If we are able to prove the correlation between the "jet quenchness" predicted by the LSTM output and the energy loss, it may be a better way to study the medium-induced modification than the averaging jet observables.
- We are working on training the neural network(NN) with experimental data, in order to make sure the NN doesn't learn from the algorithm differences between event generators.

Biased Vacuum Jets

GHP Minneapolis, 04/13/23

22

Measurable Observables: Jet Substructures

Jets are the collimated bunches of hadrons measured in our detectors

GHP Minneapolis, 04/13/23

 $\min(p_{T,1}, p_{T,2})$

 $p_{T,1} + p_{T,2}$

Measurable Observables: Jet Substructures

GHP Minneapolis, 04/13/23

Hardest branch of the jet

 $\min(\mathbf{p}_{\mathrm{T},1},\mathbf{p}_{\mathrm{T},2})$

 $p_{T,1} + p_{T,2}$

Jet substructure variables are defined at the splitting points of the jet. They are sensitive to jet-induced medium response. Thus, they are good tools to study the jet energy loss in medium

Neural Network and Feature Engineering

```
space = hp.choice('hyper_parameters',[
'size_batch': hp.quniform('size_batch', 2000, 10000, 1000),
'num_epochs': hp.quniform('num_epochs', 30, 50, 5),
'num_layers': hp.quniform('num_layers', 2, 4, 1),
'Hidden_size 0': hp.quniform('hidden_size0', 8, 20, 2),
'hidden_size1': hp.quniform('hidden_size1', 4, 8, 2),
'learning_rate': hp.uniform('learning_rate', 0.01, 0.05),
'decay_factor': hp.uniform('decay_factor', 0.9, 0.99),
'loss_func' : hp.choice('loss_func', ['mse']),
               Hyper parameter space
```

Stacked LSTM layers + 2 full-connect layers. Output of the last step from the top LSTM layer is directed to two full-connect layers.

Both the input and output dimensions of the first full-connect layer are the hyper-parameters defining the architecture of the neural network.

* <u>https://arxiv.org/abs/2206.01628</u>

Yilun Wu

Select jets from dataset to form batches: Non-quenched jets from Jewel-vacuum Quenched jets (Medium jets) from Jewel

Mean square error (MSE) batch loss

$$L = \frac{\sum_{batch} \omega_i * (x_i - y_i)^2}{\sum_{batch} \omega_i}$$

 ω_{i} : event weight x_i : predictive label y_i : truth label

 $(\omega_i = 1 \text{ for real experimental samples})$

Yilun Wu

GHP Minneapolis, 04/13/23

Training+Validation

Input dataset:		200k events	200k events
	No. of Jets	Training Set (w/wo cuts)	Validation Set (w/wo cuts
	Non-quenched jets	42535 /310332	42272 /31027
	Medium jets	52954 /298675	52967/ 29887

Example of batch loss decreasing in the training

Calibration

