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Heavy ion collision

C | CMS Experiment at LHC, CERN

‘| Data recorded: Sun Nov 14 19:31:39 2010 CEST
Run/Event: 151076 / 1328520
Lumi section: 249
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Incoming (Beam Axis)

Proton f Proton

Outgoing Partons (quarks or gluons)

Final hadrons after showering

A Jets traveling in opposite direction with
equal initial transverse momentum pT

4 Final state pT is not equal



Background: Jet Quenching Phenomenon

QGP signature: Jet quenching phenomenon

C CMS Experiment at LHC, CERN . . .
Data recorded: Sun Nov 14 19:31:39 2010 CEST
C | Rumfvent 1510781 1328520 . Jets interact with the QGP medium and lose energy.
a,‘\ l Lumi section: 249

Jet 1, pt: 70.0 GeV

« Back-to-back jets traverse different path length of
Wil . Jets are quenched(modified) in different levels
N 1 °
?"\"’é‘%"f"‘j‘g when traversing the QGP.
N
A\ ‘/1

the QGP medium.
i
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Jet 0, pt: 205.1 GeV

Jet quenching
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Motivation

Parton Splitting }  Jet Substructures
.A 3 Internal structures of | Plenary talk “Jet Substructure and its

, ; I jetsare modified | utility in small and large systems”
Medium Response... / —-Raghav Kunnawalkam Elayavalli

lllllll
....
“ .Q

................. Jet Cone

; Medium induced Radiation,
| @™ Medium (QGP)} e

&
»
.

|V Research Idea: .’
. Can the quenching effect be studied on a jet-by- |
jet basis?
Can neural networks learn to identify quenched
i jets based on the jet internal structures?
|V Strategy:
. 1. How to do feature engineering?

2. Which Neural Network? How to do training?
| 3. How does a trained network behave? |

Vacuum jet Quenched jet
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How to do feature engineering?

JEWEL simulation for dijet events: Embedding the simulated event Background subtraction algorithm:
with a thermal background: Event-wide Constituent Subtraction

Non-quenched jets (vacuum class) | |
Also presents in the experiment

Quenched jets (medium class)

We use the jets reconstructed from the

| bkg-subtracted events for next step
0-10% Centrality + Most central background

pt

phi phi 5 -3

dijet hard event mixed event bkg-sub event
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Jet observable that represents
the internal structure of a jet:

* Jet substructure

' Input

Long Short-Term Memory
Neural Network

* learning from sequential
data

* Improved RNN (Recurrent
Neural Network)

Yilun Wu

How to do feature engineering?

¢ Image source:

' Sequential data
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Jet substructures

Shared momentum ratio

m = inv_mass(jl,jz)

Angular separation

Perpendicular momentum |

Invariant mass

h
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How to do training?

Binary classification problem |

Classification finds a function separating classes in a high

. v Start from the binary classification problem
dim space.

» Separating medium (quenched) jets from vacuum jets

B HW Medium Jets | » Four dimension space spanned from the jet substructures:
H B i X, =[z, AR, k,,m
Vacuum JetS . . ;} t . [Z9 ’ J._a 9 ¢ o o ]
0" ® . = ¥ Supervised learning

» Calculating the loss between truth labels and predictions

» Keeping training until the loss 1s minimized

Image source: Quenched class: 1 Supeersed learnmg

Vacuum class: O

T -
Truth Labels .
l A ] — Learning

Minimizing Loss
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How does a trained network behave?

Binary class labeling: Jewel(PbPb) jets: 1; Jewel-vac(pp) jets: O
Histogram: Distributions of discriminators (predictions from a trained neural network).

] e L L L 3
f PrjeS[200,400] GeV, anti-k R=04 | — jewel Vaccum - 7. Bl |ewel-vac + Most-central BG
— zg>0.1,Rg>0.1 7] | |
- Event-wide, Soft Dropz =0.1p=0. | — Jewel Mediun - 6 . Jewel + Most-central BG
6__ cut J —] -
51 = >
2 T . = Less quenched
175) u = v 4- £
) ~ . Q
3 = 03
3 o LLLERLERLR LR ER R RR R
E o~ E O_I::ﬁ::ii::: AAAAAAAAAAAAAA
0 0.2 0.4 0.6 08 I1 0.0 0.2 0.4 0.6 0.8 1.0
LSTM Calibrated LSTM
Medium jets is separated from vacuum Calibration process: using the whole vacuum jets as
jets. But there are similarities between reference, the quenching amount of each medium
the two classes. jet is determined—"“Quenchness”
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How does a trained network behave?
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Jet Quenchness Identification Results: — Jet Substructures
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|Quenchness: The LSTM output for each min(py, Pro)
‘medium jet. If the value is closer to 1, then 2o =

Pr1+ Dr2

the jet is more quenched. And vice versa. f
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Whatis Lund Jet Plane?

lllIlllllllllllllllIllllllllllllllllllll_

-1 Jewel-Med + Most-central BG 1 —3
: anti-k; R = 0.4, p,__e[200,400] GeV -
Xo= [z, AR,k ,m,...] Lund jet plane characterizes the relative | o Soft Drop 2,,-01p=0. R,>01 4 |
e energy and angle Of the fIrSt et Spllttlng , _2;_
A (or emission). 1t contains all radiation |  _.
Piai \Pry pattern at the first splitting point. | ,;5 S .
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/ / 3.5 =
e Lurgld lane 1
In z6 1 Lund plane - Lundp
_45
, - < : MRS 0-5
- CII) ||. Cu) \QI
o, C; 1 SE o 4 -3
dP = 2— ’dlnz@dlng 06 06 112 14 16 18 2 52 54 26
| In(1/R ) ,
Map the jet to the : * (RyisOherel)
Lund plane .g _IlllIIllllllllllllllIIIIIIIIIIIIIIIIIIIII_
o -1 Jewel-Vac + Most-central BG - 3
_ _ e - anti-k; R = 0.4, p, e [200,400] GeV -
z: energy sharing fraction B 151 Soft Drop z_ =0.1B=0., R >0.1  —
(4] — i [—
min(pr 1, Pro) 2 “F Simulated Vacuum Jet
7= " 25
| Pr,1 T Prp 5 N ~
¥ Ce -
\ 0: splitting angle £ o
S f oF Lun%nd plane 1
1n 1/0 "; a5
] | -3 o — 0.5
Figures are from: https:/arxiv.org/abs/2206.01628 S5 o og"’ g
_Illllllilllllllllllll:lllllllll | 0
06 O

N/ Yiunw GHP Minneapolis, 04/13/23 $08 T e T


https://arxiv.org/abs/2206.01628

Density
N W~ U1 o N

\
\l
"

0

Jet Quenchness Identification Results: — Lund Plane

mm Jewel (Top 40%)
B Jewel (Bot 60%)

Less quenched More quenched
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ac

Top 40% “guenchness" jet & Bottom 60% “quenchness” jet predicted by LSTM

Quenchness: The LSTM output for each medium jet.

If the value is closer to 1, then the jet is more quenched. And vice versa.
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Whatis Jet Fragmentation Function (JFF) £?

» For quantifying the partition of the jet energy into - Low & values correspond to high pr particles within the jet cone, vice

k
e versa. It provides information about the probability of finding one
hadron inside jet cone containing certain a longitudinal energy

1
its constituent particles: z = H. , ¢ = In(—)
pJCt Z

- fraction of the whole jet.
pJ Jet cone
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CMS Collaboration, Phys. Rev. C 90, 024908

« For the most central collisions, a significant enhancement on high & values (p}fa°k< 3GeV) is observed, with depletion in the
intermediate region as compensation. The result shows an enhancement of soft particle contribution to the jet energy and a
suppression of high p; particles in central PbPb collisions, compared to pp collisions.
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Jet Quenchness Identification Results: JFF ratio

*Work in progress

41— .
/| Jeweél (Q 0‘109%) - PbPb (Q 0-20%)/ pp —l— PbPb (Q 0-100%) /pp
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= i | ¢ i
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Q. 21— : : _—
5 -
: : : : e - o ﬁ Less .
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Calibrated LSTM < &=1In(1/2) >

Five “guenchness” classes of

classes of JEWEL jets divided by the
Jewel-vac jets

JEWEL jets predicted by the LSTM
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The JFF ratios from five “guenchness”

 For 0-20% quenchness jets, the
large £ is most enhanced with a

depletion of intermediate £.
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Jet Quenchness Identification Results: JFF ratio

*Work in progress

| l | | | | | | | | |
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Five “guenchness” classes of

classes of JEWEL jets divided by the

JEWEL jets predicted by the LSTM :
Jewel-vac jets
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The JFF ratios from five “guenchness”

 For 0-20% quenchness jets, the
large £ is most enhanced with a

depletion of intermediate £.

 For 20-40% quenchness jets, the
most enhanced region is of small

¢

A bias towards jets that are
less fragmented than the
average gquenched jets

15



Jet Quenchness Identification Results: JFF ratio

*Work in progress
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\/ Yilun Wu GHP Minneapolis, 04/13/23 16



Jet Quenchness Identification Results: JFF ratio

*Work in progress
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 For 0-20% quenchness jets, the

large £ is most enhanced with a

depletion of intermediate £.

For 20-40% quenchness jets, the
most enhanced region is of small

E; Same for 40-60% quenchness
jets.
For 80-100% quenchness jets, the

ratio between the them and
vacuum still deviates from unity.

"they tends to be narrower and less
fragmented than the average jet

population in vacuum” — J. High
Energ. Phys. 2021, 206 (2021)

They behave like biased vacuum jets
(with small LSTM values) in the

small & region.
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Whatis Jet Shape Function p(7)?

» The jet shape function, * The jet shape ratios between PbPb and pp show a redistribution
¥ track of jet energy to softer particles extending to large angles away
1 1 trackse[ra,rb)p T : :
p(r) = - 2 - , from the jet axis.
4 Njet jets Pr  The energy lost due to parton propagation in QGP is observed to
provides information about the radial distribution of the be recovered by soft hadrons at large angles with respect to the
momentum carried by the jet constituents (fragments). jet axis.

CMS Collaboration, J. High Energ. Phys. 2021, 116 (2021)
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Jet Quenchness Identification Results: Jet Shape(JS) ratio

) JEN
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Calibrated LSTM

Five “guenchness” classes of

JEWEL jets predicted by the LSTM

Yilun Wu

P(A") pppr/ P(AT) 5,

*Work in progress
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Conclusions and Next Step

N/

< A well trained neural network is capable to identify different quenching levels, on a jet-by-jet base.

v From the jet substructure perspective, there is similarity between vacuum jets and quenched jets.

v It we are able to prove the correlation between the “jet qguenchness” predicted by the LSTM output and
the energy loss, it may be a better way to study the medium-induced modification than the averaging jet
observables.

< We are working on training the neural network(NN) with experimental data, in order to make sure the NN
doesn’t learn from the algorithm differences between event generators.
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Biased Vacuum Jets

8
7| . Jewel-vac + Most-central BG
6 m  Jewel + Most-central BG
l l | | | ! | | | | | 5 -
4= —4— PbPb (Q 0-20%) pp PbPb (Q 60-80%)/pp - 2
= . . . 1.1— —— o 2 4 -
i —&— PbPb (Q 20-40%)/ pp PbPb (Q 80-100%)/ pp - . S
o FT PbPb (Q 40-60%)/ pp —%— PbPb (Q 0-100%) /pp 1E ) 0 3-
s B | = —— e | _
é 3 Mixed with Most-Central BG —— 0 9: 2
SIS . N =
% _ antik; R=04,p__e[200,400] GeV . - 1- l
- | p'"* 5 1GeV/c, Tracks incone AR < 0.4 i - 5% 88 A i
= T 0.8 O ------------------------------------
< _ . . e _ - c.0 0.8 1.0
z L ‘ . 0 73_ Callbrated LSTM
Q 5 s Yin
Q2 5 s = - ——
te) ¥ i - 8:'I"'I"'I"'I"'I"'I":
% _ ‘ —— —$ i 0'6:_ - p,E[200,400] GeV, anti-k R=04 | — jowel Vaccun -
o i . . | - 4= z,>0.1, R > 0.1 .
IS —o— | } 0.5 op (Q 0-20%) / pp Minimum bias 6: Event-wide, Soft Drop z_=0.1p=0. — Jewel Medium -
.9 = 7 : = (0] :— J _:
5 1 } — = . - : :
——] : 0.4— S T
oS B —@— — :.I— g N Z + 2 r :
— —$§— 9 o | — . 2] — =
B | E N :lIIIIIIIllIIII|IIII|IIIIllIII|IIII|IIII|IIII|IIII 3:_ .: _:
| | i | | | | | | — " ]
OO 5 4 5 0O 0.5 1 15 2 25 3 35 4 45 5 2;_ _;
£ = In(1/2) § = In(1/2) R -
- | | “l A | . -
0 0.2 0%

5
'y
v

Yilun Wu GHP Minneapolis, 04/13/23 29




Measurable Observables: Jet Substructures

Jets in detectors Jet in a binary tree structure

[ ¢
?’Had.cal. "B‘LJ' L—lﬁf

Calorimeter jet lﬂ

=
=
E
o® <
<
O
pT,2 pT,1
A\ 4

1st step: each time cluster the two closest items;
eventually get the binary tree structure

2nd step: use the soft drop to discard the softer

splitting of the two branches
Jets are the collimated bunches of hadrons measured in our detectors
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Jets in detectors

Measurable Observables: Jet Substructures

Calorimeter jet

———

1st step:

2nd step:

each time cluster the two closest items;
eventually get the binary tree structure

use the soft drop to discard the softer
splitting of the two branches

M Yilun Wu

3 Had. cal. ‘B‘LI T—I‘ﬁz

pT,2 | pT,1
A\ 4

Jet in a binary tree structure Hardest branch of the jet

%

C/A Algorithm

P11+ Pro Jet substructure variables are defined at the
splitting points of the jet. They are sensitive to
jet-induced medium response. Thus, they are

good tools to study the jet energy loss 1In
medium
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Neural Network and Feature Engmeermg

space hp ch0|ce( hyper parameters [ S fl - . b,

{
'size_batch': hp.quniform(‘size_batch', 2000, 10000, 1000),

'num_epochs': hp.quniform('num_epochs', 30, 50, 5), /
'num_layers': hp.quniform('num_layers', 2, 4, 1), O yi = f(z) Zi=w;*yi1 +b,
'Hidden_size 0': hp.quniform('hidden_size0', 8, 20, 2), X. = Model Input

'hidden_sizel': hp.quniform('hidden_sizel', 4, 8, 2),

'learning_rate': hp.uniform('learning_rate', 0.01, 0.05),

'decay_factor': hp.uniform('decay factor’, 0.9, 0.99), 1

'loss_func' : hp.choice('loss func’, ['mse’]), Layer 1 Layer 2

NN parameters — weights and biases
Unit pre-activation

Unit activation
X, = Model output

C(x,) = Error in output (SSE, Cross entropy, etc)

1) Hyper parameter space ' Fully Connected layers

Stacked LSTM layers + 2 full-connect layers.
Output of the last step from the top LSTM layer
1s directed to two full-connect layers.

Both the input and output dimensions of the L> _] T
first full-connect layer are the hyper-parameters — A >

A A |
defining the architecture of the neural network. é ‘
x) .

* https://arxiv.org/abs/2206.01628

M Yilun Wu GHP Minneapolis, 04/13/23
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Training+Validation

Select jets from dataset to form batches:
Non-quenched jets from Jewel-vacuum
from Jewel

Mean square error (MSE) batch loss

zbatch W; * (xi - yi)2

Z batch @i

L. =

w;: event weight
x;: predictive label
y;: truth label

(w; = 1 for real experimental samples)

Input dataset: 200k events 200k events
No. of Jets Training Set (w/wo cuts) | Validation Set (w/wo cuts)
Non-quenched jets 42535/310332 42272/310276
Medium jets 52954/298675 52967/298876
0.60
0.55 -
0.50 A

0.45 -

Loss

0.40 -

0.35 -

0.30

0 100 200 300 400
Step Index

Example of batch loss decreasing in the training
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Density

Density

P jet6[200,400] GeV, anti-kT R=04
z,>0.1, Rg > 0.1
Event-wide, Soft Drop zcut=0,1 B=0.

I l | I I | I I

— Jewel Vaccum

— Jewel Medium

l 1 A 1

0 0.2 0.4 0.6

LSTM

0.8 1

p. jet6[200,400] GeV, anti-kT R=04
z,>0.1, Rg> 0.1
Event-wide, Soft Drop zcut=0.1 B=0.
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Yilun Wu
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Calibration

| W Jewel-vac + Most-central BG
1 B Jewel + Most-central BG
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Calibrated LSTM
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Calibrated LSTM
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One complete training loops epochs first. And
each epoch loops over all the jet batches, but
the order of jets in each batch is shuffled

& ,,,/
— 0.8
0) ,,/
T OA. el
2 0.6
@
>04y /
=
350.2
o ’ ROC Curve (AUC=0.757)
$0.0{ " . TPR=0.40, FPR=0.09
=
0.0 0.2 04 006 08 1.0
False Positive Rate (FPR)
Y=0 Y=1
AN Y 1 0
p(X=x|Y=0) p(X=x|Y=1) Y




