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Background: Jet Quenching Phenomenon
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Incoming (Beam Axis) 
Outgoing Partons (quarks or gluons)

Final hadrons after showering

Jet

Jet2 −→ 2 process

▲ Jets traveling in opposite direction with 
equal initial transverse momentum pT 

◀  Final state pT is not equal 

Proton Proton

Heavy ion collision
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Background: Jet Quenching Phenomenon
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Dijet Momentum Asymmetry

Jet quenching

QGP signature: Jet quenching phenomenon 

• Jets interact with the QGP medium and lose energy.  
• Back-to-back jets traverse different path length of 

the QGP medium.  
• Jets are quenched(modified) in different levels 

when traversing the QGP. 

Jet

Jet
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Motivation
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Jet Cone 
Medium (QGP)

Parton Splitting, 
Medium induced Radiation, 

Medium Response…

Internal structures of 
jets are modified

Quenched jetVacuum jet

✓Research Idea: 
Can the quenching effect be studied on a jet-by-
jet basis? 
Can neural networks learn to identify quenched 
jets based on the jet internal structures? 

✓Strategy:
1. How to do feature engineering?
2. Which Neural Network? How to do training? 
3. How does a trained network behave? 

Jet Substructures

Plenary talk “Jet Substructure and its 
utility in small and large systems” 

 —-Raghav Kunnawalkam Elayavalli
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How to do feature engineering?
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dijet hard event mixed event bkg-sub event 

JEWEL simulation for dijet events:  

Non-quenched jets (vacuum class) 
Quenched jets (medium class) 

Embedding the simulated event 
with a thermal background:  
Also presents in the experiment 

Background subtraction algorithm:  
Event-wide Constituent Subtraction 

0-10% Centrality + Most central background

It is necessary to introduce the thermal background effect to the feature engineering. 

We use the jets reconstructed from the 
bkg-subtracted events for next step
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How to do feature engineering?
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xt = [z, ΔR, k⊥, m, . . . ]

pT,1pT,2

  

𝑧 =
min(𝑝𝑇,1,  𝑝𝑇,2)

𝑝𝑇,1 + 𝑝𝑇,2
 

∆ 𝑅 = (𝜑1 − 𝜑2)
2 + (𝜂1 − 𝜂2)

2

𝑘⊥ = 𝑝𝑇,2 ∗ ∆ R

𝑚 = 𝑖𝑛𝑣_𝑚𝑎𝑠𝑠(𝑗1, 𝑗2)

Shared momentum ratio 

Angular separation 

Perpendicular momentum 

Invariant mass

Sequential data Jet substructures

Jet observable that represents 
the internal structure of a jet:  
• Jet substructure

Long Short-Term Memory 
Neural Network

• learning from sequential 
data 

• Improved RNN (Recurrent 
Neural Network) 

Ct-1

ht-1

Ct

ht

xt = [z, ΔR, k⊥, m, . . . ]

Output

Input

Input

Image source: colah.github.io LSTM cell

http://colah.github.io
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How to do training?
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Quenched class: 1
Vacuum class: 0

✓ Start from the binary classification problem
‣ Separating medium (quenched) jets from vacuum jets
‣ Four dimension space spanned from the jet substructures: 

✓ Supervised learning
‣ Calculating the loss between truth labels and predictions
‣ Keeping training until the loss is minimized

xt = [z, ΔR, k⊥, m, . . . ]

Binary classification problem

Vacuum Jets

Medium Jets

Supervised learningImage source: colah.github.io

http://colah.github.io
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How does a trained network behave? 
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Binary class labeling: Jewel(PbPb) jets: 1; Jewel-vac(pp) jets: 0 
Histogram: Distributions of discriminators (predictions from a trained neural network).

Medium jets is separated from vacuum 
jets. But there are similarities between 
the two classes.

Calibration process: using the whole vacuum jets as 
reference, the quenching amount of each medium 
jet is determined—“Quenchness”

More quenchedLess quenched
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How does a trained network behave? 

Q: How do we know that the LSTM indeed predicts the “quenchness” on a jet-by-jet basis? 

A: Using the LSTM outputs (“quenchness” predictions) to analyze jet observables 

✓ Jet substructures 

✓ Lund plane 

✓ Jet fragmentation function 

✓ Jet shape

9
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Jet Quenchness Identification Results: — Jet Substructures
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More quenchedLess quenched

Quenchness: The LSTM output for each 
medium jet. If the value is closer to 1, then 
the jet is more quenched. And vice versa.
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Lund plane

What is Lund Jet Plane?
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Simulated Vacuum Jet

Simulated Medium Jet

Figures are from: https://arxiv.org/abs/2206.01628

x0 = [z, ΔR, k⊥, m, . . . ]

pT,1pT,2

z: energy sharing fraction

θ: splitting angle

z =
min(pT,1, pT,2)

pT,1 + pT,2

Map the jet to the 
Lund plane

(  is  here!)Rg θ

Lund plane

Lund plane

Lund jet plane characterizes the relative 
energy and angle of the first jet splitting 
(or  emission). It contains all radiation 
pattern at the first splitting point. 

https://arxiv.org/abs/2206.01628
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Jet Quenchness Identification Results: — Lund Plane
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Top 40% “quenchness" jet & Bottom 60% “quenchness” jet predicted by LSTM

More quenchedLess quenched

Quenchness: The LSTM output for each medium jet.  
If the value is closer to 1, then the jet is more quenched. And vice versa.
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• Low  values correspond to high  particles within the jet cone, vice 
versa. It provides information about the probability of finding one 
hadron inside jet cone containing certain a longitudinal energy 
fraction of the whole jet.

ξ pT

What is Jet Fragmentation Function (JFF) ?ξ
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α
pTrack

pjet

pTrack
||

• For the most central collisions, a significant enhancement on high  values ( < 3GeV) is observed, with depletion in the 
intermediate region as compensation. The result shows an enhancement of soft particle contribution to the jet energy and a 
suppression of high  particles in central PbPb collisions, compared to pp collisions. 

ξ ptrack
T

pT

• For quantifying the partition of the jet energy into 

its constituent particles: , z =
ptrack

||

pjet
ξ = ln(

1
z

)

Jet cone

Constituent

CMS Collaboration, Phys. Rev. C 90, 024908
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Jet Quenchness Identification Results: JFF ratio
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*Work in progress

Less 
quenched

More 
quenched

Softer particlesHarder particles

Q 0-
20%

Q 20-
40%

Q 40-
60%Q 60-80%Q 80-100%

• For 0-20% quenchness jets, the 
large  is most enhanced with a 
depletion of intermediate .  

ξ
ξ

The JFF ratios from five “quenchness” 
classes of JEWEL jets divided by the 

Jewel-vac jets 

Five “quenchness” classes of 
JEWEL jets predicted by the LSTM

More quenchedLess quenched
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Jet Quenchness Identification Results: JFF ratio
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Q 0-
20%

Q 20-
40%

Q 40-
60%Q 60-80%Q 80-100%

Five “quenchness” classes of 
JEWEL jets predicted by the LSTM

The JFF ratios from five “quenchness” 
classes of JEWEL jets divided by the 

Jewel-vac jets 

• For 0-20% quenchness jets, the 
large  is most enhanced with a 
depletion of intermediate .   

• For 20-40% quenchness jets, the 
most enhanced region is of small 

; 

ξ
ξ

ξ

*Work in progress

Less 
quenched

More 
quenched

Softer particlesHarder particles

A bias towards jets that are 
less fragmented than the 
average quenched jets
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Jet Quenchness Identification Results: JFF ratio
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Q 0-
20%

Q 20-
40%

Q 40-
60%Q 60-80%Q 80-100%

Five “quenchness” classes of 
JEWEL jets predicted by the LSTM

The JFF ratios from five “quenchness” 
classes of JEWEL jets divided by the 

Jewel-vac jets 

• For 0-20% quenchness jets, the 
large  is most enhanced with a 
depletion of intermediate .   

• For 20-40% quenchness jets, the 
most enhanced region is of small 

; Same for 40-60% quenchness 
jets. 

ξ
ξ

ξ

*Work in progress

Less 
quenched

More 
quenched

Softer particlesHarder particles

A bias towards jets that are 
less fragmented than the 
average quenched jets



Yilun Wu   
    

GHP Minneapolis,  04/13/23

Jet Quenchness Identification Results: JFF ratio
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Q 0-
20%

Q 20-
40%

Q 40-
60%Q 60-80%Q 80-100%

Five “quenchness” classes of 
JEWEL jets predicted by the LSTM

*Work in progress

Less 
quenched

More 
quenched

Softer particlesHarder particles

• For 0-20% quenchness jets, the 
large  is most enhanced with a 
depletion of intermediate .  

• For 20-40% quenchness jets, the 
most enhanced region is of small 

; Same for 40-60% quenchness 
jets. 

• For 80-100% quenchness jets, the 
ratio between the them and 
vacuum still deviates from unity.

ξ
ξ

ξ

The JFF ratios from five “quenchness” 
classes of JEWEL jets divided by the 

Jewel-vac jets 

"they tends to be narrower and less 
fragmented than the average jet 
population in vacuum” — J. High 
Energ. Phys. 2021, 206 (2021)

They behave like biased vacuum jets 
(with small LSTM values) in the 
small  region.  ξ
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What is Jet Shape Function ?ρ(r)
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• The jet shape ratios between PbPb and pp show a redistribution 
of jet energy to softer particles extending to large angles away 
from the jet axis.  

• The energy lost due to parton propagation in QGP is observed to 
be recovered by soft hadrons at large angles with respect to the 
jet axis. 

• The jet shape function,  

， 

provides information about the radial distribution of the 
momentum carried by the jet constituents (fragments). 

ρ(r) =
1
δr

1
Njet ∑

jets

Σtracks∈[ra,rb)p
track
T

pjet
T

Jet cone

ra

rb

δr pjet

 CMS Collaboration, J. High Energ. Phys. 2021, 116 (2021)
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 Jet Quenchness Identification Results: Jet Shape(JS) ratio
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Q 0-
20%

Q 20-
40%

Q 40-
60%Q 60-80%Q 80-100%

*Work in progress

Less 
quenched

More 
quenched

The JS ratios from five “quenchness” 
classes of JEWEL jets divided by the 

Jewel-vac jets 

Five “quenchness” classes of 
JEWEL jets predicted by the LSTM

The JS ratios from five quenchness 
classes divided by the vacuum jets 
also show various jet quenching 
modes, consistent with the JFF ratio 
results. 
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Conclusions and Next Step
❖ A well trained neural network is capable to identify different quenching levels, on a jet-by-jet base.  

✓ From the jet substructure perspective, there is similarity between vacuum jets and quenched jets.  

✓ If we are able to prove the correlation between the “jet quenchness” predicted by the LSTM output and 
the energy loss, it may be a better way to study the medium-induced modification than the averaging jet 
observables.  

❖ We are working on training the neural network(NN) with experimental data, in order to make sure the NN 
doesn’t learn from the algorithm differences between event generators. 

20
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Backups

21
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Biased Vacuum Jets 
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pp (Q 0-20%) / pp Minimum bias
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Measurable Observables: Jet Substructures
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Jets in detectors Jet in a binary tree structure

C
/A

  A
lg

or
ith

m

pT,1pT,2

z =
min(pT,1, pT,2)

pT,1 + pT,21st step:  each time cluster the two closest items; 
eventually get the binary tree structure 

2nd step:  use the soft drop to discard the softer 
splitting of the two branches

Jets are the collimated bunches of hadrons measured in our detectors
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Measurable Observables: Jet Substructures
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Jets in detectors Jet in a binary tree structure

C
/A

  A
lg

or
ith

m

pT,1pT,2

z =
min(pT,1, pT,2)

pT,1 + pT,21st step:  each time cluster the two closest items; 
eventually get the binary tree structure 

2nd step:  use the soft drop to discard the softer 
splitting of the two branches

𝑥𝑡 = [𝑧,  ΔR, 𝑘⊥,  𝑚,  …]

ΔR

Hardest branch of the jet

Jet substructure variables are defined at the 
splitting points of the jet. They are sensitive to 
jet-induced medium response. Thus, they are 
good tools to study the jet energy loss in 
medium
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Neural Network and Feature Engineering

25

y1y0 yL yL

yi yi

Layer 1 Layer 2

space = hp.choice('hyper_parameters',[ 
    { 
        'size_batch': hp.quniform(‘size_batch', 2000, 10000, 1000), 
        'num_epochs': hp.quniform('num_epochs', 30, 50, 5), 
        'num_layers': hp.quniform('num_layers', 2, 4, 1), 
        'Hidden_size 0': hp.quniform('hidden_size0', 8, 20, 2), 
        'hidden_size1': hp.quniform('hidden_size1', 4, 8, 2), 
        'learning_rate': hp.uniform('learning_rate', 0.01, 0.05), 
        'decay_factor': hp.uniform('decay_factor', 0.9, 0.99), 
        'loss_func' : hp.choice('loss_func', ['mse']), 
    } 
]) Fully Connected layers

Stacked LSTM layers + 2 full-connect layers. 
Output of the last step from the top LSTM layer 
is directed to two full-connect layers. 
Both the input and output dimensions of the 
first full-connect layer are the hyper-parameters 
defining the architecture of the neural network. 

Hyper parameter space

Ct-1

ht-1

Ct

ht

* https://arxiv.org/abs/2206.01628

https://arxiv.org/abs/2206.01628
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Training+Validation
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Select jets from dataset to form batches:  
Non-quenched jets from Jewel-vacuum 
Quenched jets (Medium jets) from Jewel 

Mean square error (MSE) batch loss 

: event weight 
: predictive label 
: truth label 

(  for real experimental samples)

𝐿 =
∑𝑏𝑎𝑡𝑐h 𝜔𝑖 ∗ (𝑥𝑖 − 𝑦𝑖)2

∑𝑏𝑎𝑡𝑐h 𝜔𝑖

𝜔i
𝑥𝑖
𝑦𝑖

𝜔i = 1 Example of batch loss decreasing in the training

No. of Jets Training Set (w/wo cuts) Validation Set (w/wo cuts)
Non-quenched jets 42535/310332 42272/310276

Medium jets 52954/298675 52967/298876

200k events 200k events
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Calibration
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Jewel-vac + Most-central BG One complete training loops epochs first. And 
each epoch loops over all the jet batches, but 
the order of jets in each batch is shuffled


