

Status of the Muon proton Scattering Experiment (MUSE)

(On behalf of the MUSE Collaboration)

"10th workshop of APS Topical Group on Hadronic Physics" Minneapolis, Minnesota April 12-14, 2023

Ievgen Lavrukhin

This material is based upon work supported by the National Science Foundation under NSF grant PHY-2110229. The MUSE experiment is supported by the Department of Energy, NSF, PSI, and the US-Israel Binational Science Foundation.

The Proton Radius Puzzle in 2010/2013

The Proton Radius Puzzle : Discrepancy between muonic hydrogen spectroscopy results and electron measurements. (First released \rightarrow 2010)

MUSE Motivation:

- direct comparison of ep and µp scattering results at sub-percent level precision;
- test the two-photon exchange contribution by comparing measurements of both polarities

Many hydrogen results over past several years - new experiments and re-analyses:

Dr. I. Lavrukhin – ievgen@umich.edu

Many hydrogen results over past several years - new experiments and re-analyses:

Inconsistency in the recent hydrogen spectroscopy results!

Dr. I. Lavrukhin – ievgen@umich.edu

Many hydrogen results over past several years - new experiments and re-analyses:

Inconsistency in the recent ep scattering results!

Many hydrogen results over past several years - new experiments and re-analyses:

Many hydrogen results over past several years - new experiments and re-analyses:

Inconsistency in the analysis results!

The Proton Radius Puzzle Summary

PRP in 2013:

r _p [fm]	electrons	muons	
spectroscopy	0.8758 (77)	0.8409 (4)	
scattering	0.8770 (60)	N/A	

PRP in 2023:

r _p [fm]	electrons	muons
spectroscopy	Inconsistent	0.8409 (4)
scattering	Inconsistent	N/A

- Proton Radius Puzzle (PRP) is still unresolved!
- No measurements from μ*p* scattering (AMBER and MUSE are coming).

What MUSE can do:

Simultaneous measurement of $e^{\pm}p$ and $\mu^{\pm}p$ elastic scattering reactions:

- Simultaneous determination of the proton radius in both e[±] p and μ[±] p scatterings.
- Directly compare of ep and µp scatterings at sub-percent level precision.
- Extract **TPE effects** from the $e^-p / e^+ p$ and $\mu^- p / \mu^+ p$ ratios.
- Lepton universality test.

MUSE @ Paul Scherer Institute (PSI)

PiM1 Secondary Beam Line:

100-500 MeV/c beam momentum;

- 3.3 MHz beam flux (MUSE):
 - ≈ 2–15% μ[±] ≈ 10–98% e[±] ≈ 0–80% π[±]

MUSE apparatus installed at PiM1 beam line:

PiM1 Beam Line @ PSI

PiM1: 100-500 MeV/c RF+TOF sep. π , μ , e

 Secondary beams of π, μ, e produced at M-target with 2 mA protons (590 MeV):
 ⇒ π – Production:

$p + p \rightarrow p$	$+ n + \pi^{+}$	$p + n \rightarrow p + n + \pi^0$	$p+n \to d+\pi^0$
$p + p \rightarrow p$	$+ p + \pi^0$ if	$p + n \rightarrow p + p + \pi^-$	
$p + p \rightarrow d$	$+\pi^+$	$p + n ightarrow n + n + \pi^+$	
$\Rightarrow \mu - Product$	tion:		
$\pi^+ \rightarrow \mu^+$	$+ \nu_{\mu}$	$\pi^- ightarrow \mu^- + \bar{ u}_\mu$	
\Rightarrow e – Produc	tion:		
$\pi^{\pm} ightarrow e^{\pm}$ -	$+ \nu_e$		
$\pi^0 \rightarrow^{\approx 98.8}$	$^{\%} 2\gamma \longrightarrow$	$\gamma + A \rightarrow e^+ + e^- + e^$	A'
$\pi^0 \rightarrow^{\approx 1.2\%}$	$\sqrt[6]{e^+ + e^- + \sqrt{2}}$	γ	

- Particle flux varies with beam momentum.
- Particle types are separated in time.

Detailed simulation was done! Beam is well understood!

[E. Cline et al., Phys. Rev. C 105, 055201]

Dr. I. Lavrukhin - ievgen@umich.edu

PiM1 Beam Line @ PSI

Comparison of the PiM1 beam profile from G4beamline simulations data at the MUSE target:

=> PiM1 beam profile for +160 MeV/c beam momentum.

Dr. I. Lavrukhin - ievgen@umich.edu

MUSE Detector Setup and Kinematics

Beam line detectors:

- Beam Hodoscope (beam particle ID);
- **GEM Detectors** (beam particle trajectory);
- Veto Scintillator (reject scattering and decay events);
- Beam Monitor (beam current and beam momentum).
- Calorimeter (hard photons suppression).
 Scattered particle detectors:
- Straw-Tube Tracker (scattering particle track)
- Scattered Particle Scintillator (scattered particle ID)

Parameter	Value	
Beam momentum, GeV/c	0.115, 0.160, 0.210	
Scattering angle rage	20 ⁰ – 100 ⁰	
Q ² range for electrons, GeV ²	0.0016 – 0.0820	
Q ² range for muons, GeV ²	0.0016 - 0.0799	

MUSE Event Selection

UNIVERSITY OF

MICHIGAN

MUSE Target and Vacuum Chamber

LH₂ Target Operation in 2022:

- Target operated with LH₂ for 9 weeks (100% uptime)
 1450 hours (60 days w/o cool down and warmup)
 - 1450 hours (60 days w/o cool down and warmup)
- Target Temperature (bottom end cap):
 - stable at 0.008 K level over entire beam time
- Across full operating time:
 - Temperature = 20.69 ± 0.008 K
- [P. Roy, et al., NIM A A949 (2020) 162874]

Dr. I. Lavrukhin - ievgen@umich.edu

MUSE Vacuum Chamber (Upgrade 2022)

- GEM-STT vertex reconstruction shows many triggers from scattering from target chamber support posts
- A new **Target Post Veto** detector was developed and installed.
 - => 10% reduction of trigger rate

Target Posts

Fiber readout _____(production)

SiPM readout (calibration)

Scattering windows

Beam Hodoscope (BH)

- 2x BH-Planes : 16 & 13 paddles per plane;
- 2 (3) mm thick x 4&8 mm wide x 100 mm long BC404 + Hamamatsu S13360-3075PE;
- $\sigma_{\tau} < 100 \text{ ps}; \epsilon \ge 99 \%.$
- The beam hodoscope counts the total incident beam flux and provides precise timing and position information for beam particles:

=> beam RF time to hodoscope: beam-particle ID.

[T. Rostomyan, et al., Nucl.185 Instrum. Methods Phys. Res., Sect. A 986, 164801 (2021) .]

GEM detector

- Set of 3x (10cm x 10cm) GEM detectors (from OLYMPUS);
- measure trajectories into the target to reconstruct the scattering angle;
- $\sigma_s \approx 70 \ \mu m$, $\epsilon = 97 99 \%$.

MUSE@PSI

Projected beam-particle distribution at the target (p = 210 MeV/c)

Veto Scintillator

- Angular 4-element **VETO** detector, surrounding target entrance window;
- Reduces trigger rate from background events (upstream scattering and beam decays) by ~ 25%;
- $\sigma_{\tau} \le 200 \text{ ps}, \epsilon > 99 \%$.

Dr. I. Lavrukhin - ievgen@umich.edu

Beam Monitor (BM)

- 3 mm x 12 mm x 300 mm **BC404** + **S13360-3075PE**
- 6 mm shifted 2 planes:
 - =>16 paddles per plane($\sigma_T < 100 \text{ ps}; \epsilon \ge 99 \%$)
 - => + 4 front scintillator bars ($\sigma_T \approx 50 \text{ ps}$; ε ≥ 99%)
- determines particle flux downstream of the target
- monitors beam stability
- Acts as Veto for Møller / Bhabha scattering background
- **BH** to **BM** \rightarrow independent beam-particle ID & muon and pion beam momenta ($dp/p \leq 0.2\%$)

[T. Rostomyan, et al., Nucl. 185 Instrum. Methods Phys. Res., Sect. A 986, 164801 (2021) .]

Dr. I. Lavrukhin – <u>ievgen@umich.edu</u>

MUSE@PSI

Beam distribution in BM hodoscope

Calorimeter

- 64x (4 cm x 4 cm x 30 cm) Lead-Glass crystals
- Removes events with high-energy γ in beam direction

 $ep \rightarrow e'p\gamma$ Cross section in MUSE kinematics

CAL veto on downstream photons reduces radiative corrections and p'_{min} dependence, reducing uncertainty.

Scattered Particle Scintillators (SPS)

- 2 sides x 2 planes of scintillators: Front wall: 18 bars (6 cm x 3 cm x 120 cm) Rear wall: 28 bars (6 cm x 6 cm x 220 cm)
- CLAS12 design;
- High precision timing and efficiency:
 - $\sigma_T^{(Front)} < 50 \text{ ps}, \sigma_T^{(Rear)} < 60 \text{ ps};$
 - ε ≥ 98%.

UNIVERSITY OF MICHIGAN

Straw Tube Tracker (STT)

- Based on PANDA STT design
- 4 chambers x 5 planes x 2 orientations (x and y)
- In total 2850 Straws.
- **STT** provides high-resolution and high-efficiency tracking of the particles scattered from the target.

• MC studies confirmed that STT tracking efficiency is nearly angle independent and close to 99%!

Muse Tracking and Vertex Reconstruction

GEM and STT together determine:

- interaction vertex;
- quality of the reconstructed vertex;
- scattering and azimuthal angles;
- path length between BH and SPS

=> Reaction ID (using timing information).

Example of the Top-Down view of the Vertex reconstruction for Carbon and LH_2 data for 160 (+) MeV/c beam momentum:

Dr. I. Lavrukhin - ievgen@umich.edu

LH₂ Scattering in MUSE

Carbon Scattering in MUSE

- An example of the scattering angle distribution for electron and position scattering for 160 MeV/c beam momentum compared to simulation.
 - => All data are blinded!
 - => **Cuts:** |xl < 25 mm, |yl < 25 mm, |zl < 80 mm

Counts vs. scattering angle

Dr. I. Lavrukhin - ievgen@umich.edu

MUSE Projection on Proton Radius Extraction

- Sensitivity to the **absolute values** of extracted e/μ radii: $\sigma(r_e)$, $\sigma(r_\mu) \approx 0.008$ fm
- Sensitivity to **differences** in extracted e/μ radii: $\sigma(r_e-r_\mu) \approx 0.005$ fm

Systematic uncertainties are cancelled out in comparison of **e to µ** or **positive to negative** charges of leptons!

Dr. I. Lavrukhin - ievgen@umich.edu

MUSE Projection on G_E Extraction

MUSE can help clarify the tension between the Mainz and PRad data!

MUSE Projection on TPE

Projected relative uncertainty in the ratio of μ^+p to μ^-p elastic cross sections.

Systematics:

- 0.2% in the cross section ratio;
- 0.1% in $\delta_{2\gamma}$.

TPE Calculations for MUSE kinematics:

TPE correction ($\delta_{2\gamma}$) at leading order:

$$\sigma^{\pm} = \sigma_{1\gamma}(1 \pm \delta_{2\gamma})$$
$$\frac{\sigma^{+}}{\sigma^{-}} \approx 1 + 2\delta_{2\gamma}$$

[O. Tomalak, Few-Body Systems, 59, 87 (2018)]

MUSE Progress and Plans

- 2011: Ron Gilman & Michael Kohl proposed MUSE
- 2012-2017: MUSE experiment was built up
- 2018-2020: Beam studies, technical refinements, fine tuning
- 2020-2021: COVID-19 delay
- 2021: Obtained **first** high statistics scattering data set at ±115 MeV/c.
- 2022: One month of scattering data taken.
- 2023: MUSE has been approved for 5 month of beam time.
- 2024-2025: Plan to continue production data taking: 6 months/year
- 2023-2026: Data analysis and physics publications.

We are here!

MUSE Publications

- R. Gilman et al., "Technical Design Report for the Paul Scherrer Institute Experiment R-12-01.1: Studying the Proton "Radius" Puzzle with μp Elastic Scattering", arXiv:1709.09753v1 [https://arxiv.org/abs/1709.09753]
- P. Roy et al., A Liquid Hydrogen Target for the MUSE Experiment at PSI, NIM A [https://doi.org/10.1016/j.nima.2020.164801]
- T. Rostomyan et al., Timing Detectors with SiPM read-out for the MUSE Experiment at PSI, NIM A [https://doi.org/10.1016/j.nima.2019.162874]
- E.Cline, J. Bernauer, E.J. Downie, R. Gilman, MUSE: The MUon Scattering Experiment, Review of Particle Physics at PSI [https://doi.org/10.21468/SciPostPhysProc.5]
- E. Cline *et al.*, *Characterization of Muon and Electron Beams in the Paul Scherrer Institute PiM1 Channel for the MUSE Experiment* PRC 105, 055201 (2022); arXiv: 2109.09508 [https://doi.org/10.1103/PhysRevC.105.055201]
- More is coming soon....

Thank you!

