## Moments of nucleon GPDs from the leading-twist expansion of the quasi-GPD matrix element

### GHP2023, Apr 12 – 14

- Xiang Gao
- **Argonne National Laboratory**

in collaboration with: S. Bhattacharya, M. Constantinou, K. Cichy, J. Dodson, X. Gao, A. Metz, J. Miller, A. Scapellato, F. Steffens, S. Mukherjee, Y. Zhao



## Generalized parton distributions

The gauge-invariant off-forward matrix elements,

 $F^{\mu}(z, P, \Delta) = \langle p_f | \bar{q}(-\frac{z}{2}) \gamma^{\mu} \mathscr{M}(-\frac{z}{2}, \frac{z}{2}) q(\frac{z}{2}) | p_i \rangle$ 

Light-cone GPDs,

 $F(x,\xi,\Delta,\mu) = \left[\frac{dz}{4\pi}e^{-ixP^+z}F^\mu(z,P,\Delta)\right]$ 

•  $\gamma^{\mu} = \gamma^{+}$ •  $z = ln_{-}, z^{2} = 0$  $\mathcal{W}(-\frac{z}{2},\frac{z}{2}) = \mathscr{P}\exp(i\int$ **f** *ln\_*/2  $dl'A^+$ )  $J = ln_{2}$ 







### Generalized parton distributions 3

The gauge-invariant off-forward matrix elements,

Light-cone GPDs,

 $F(x,\xi,\Delta,\mu) = \left[\frac{dz}{4\pi}e^{-ixP^+z}F^\mu(z,P,\Delta)\right]$ 

•  $\gamma^{\mu} = \gamma^+$ •  $z = ln_{, z^2} = 0$  $\mathcal{M}(-\frac{z}{2},\frac{z}{2}) = \mathcal{P}\exp(i)$  $dl'A^+$ )



 $F^{\mu}(z, P, \Delta) = \langle p_f | \bar{q}(-\frac{z}{2}) \gamma^{\mu} \mathscr{M}(-\frac{z}{2}, \frac{z}{2}) q(\frac{z}{2}) | p_i \rangle$ 

Depends on *x* and Lorentz invariant products of the vectors  $p_f, p_i$  (or  $P = (p_f + p_i)/2$ ,  $\Delta = p_f - p_i$ ) and  $n_i$ , conventionally to be

- skewness  $\xi = -(\Delta \cdot n_{-})/(2P \cdot n_{-})$
- momentum transfer  $t = \Delta^2$



## Generalized parton distributions



 $\begin{array}{ll} (x, \Delta, \mu) & \longleftarrow & F(x, b_T, \mu) \\ \xi = 0 & \Delta \leftrightarrow b_T & \\ & \text{Impact parameter} \end{array} \end{array}$  $F(x, \Delta, \mu)$ 



distribution

- GPDs goes far beyond the 1D PDFs and the transverse structure encoded in the form factors,
  - Offer insights into the 3D image of hadrons.
  - Give access to the orbital motion and spin of partons.
  - Have a relation to pressure and shear forces inside hadrons.





quark GPDs is DVCS

### **Challenging:**

- observables appear at the amplitude level
- multi-dimensionality  $(x, \xi, t)$
- the momentum fraction x is integrated over (Compton Form Factors)

$$\mathcal{F}(\xi,t;Q^2) = \int_{-1}^{1} \mathrm{d}x \left[ \frac{1}{\xi - x - i\epsilon} \pm \frac{1}{\xi + x - i\epsilon} \right] F(x,\xi,t;$$





### **Challenging:**

- observables appear at the amplitude level
- multi-dimensionality  $(x, \xi, t)$
- the momentum fraction *x* is integrated over (Compton Form Factors)

$$\mathcal{F}(\xi,t;Q^2) = \int_{-1}^{1} \mathrm{d}x \left[ \frac{1}{\xi - x - i\epsilon} \pm \right]$$
  
**tice QCD is essential.**







Light-cone correlation: Cannot be calculated on the lattice

 Mellin or Gegenbauer Moments from leading-twist local operators.

$$\bar{q}\gamma^{\sigma} \overleftrightarrow{D}^{\alpha_1} \dots \overleftrightarrow{D}^{\alpha_n} q$$

ETMC, PRD 101 (2022) ETMC, PRD 83 (2011)

Focusing on lowest moments, while high moments from high-dimensional operators are impossible from discretized lattice.





 $= \langle p_f | \bar{q}(-\frac{z}{2}) \gamma^{\mu} \mathcal{W}(-\frac{z}{2},\frac{z}{2}) q(\frac{z}{2}) | p_i \rangle$ 

 $z = (0, 0, 0, z_3), z^2 = z_3^2$ 

 Mellin or Gegenbauer Moments from leading-twist local operators.

$$\bar{q}\gamma^{\sigma}\overleftrightarrow{D}^{lpha_{1}}\ldots\overleftrightarrow{D}^{lpha_{n}}q$$

ETMC, PRD 101 (2022) ETMC, PRD 83 (2011)

### • Large-momentum effective theory: x

-space matching of quasi-PDF.

X. Ji, PRL 2013 X. Ji, et al, RevModPhys 2021

• Short distance factorization of the quasi-PDF matrix elements in position space or the pseudo-PDF approach.

• A. Radyushkin, PRD 100 (2019)

• A. Radyushkin, Int.J.Mod.Phys.A 2020





 $\mathcal{F}^{\mu}(z, P, \Delta)$  $= \langle p_f | \bar{q}(-\frac{z}{2}) \gamma^{\mu} \mathcal{W}(-\frac{z}{2},\frac{z}{2}) q(\frac{z}{2}) | p_i \rangle$  $z = (0,0,0,z_3), z^2 = z_3^2$ 

### **SDF** of the zero skewness **GPD** matrix elements: • V. Braun et al., EPJC 55 (2008)

$$\mathscr{F}^{R}(z, P, \Delta)$$

$$= \int_{-1}^{1} d\alpha \mathscr{C}(\alpha, \mu^{2}z^{2}) \int_{-1}^{1} dy e^{-iy\alpha\lambda} F(x, \xi, \Delta, \mu) + \mathscr{O}(z^{2}\Lambda_{QC}^{2})$$

$$= \sum_{n=0}^{\infty} \frac{(-izP)^{n}}{n!} C_{n}(z^{2}\mu^{2}) \langle x^{n} \rangle(t; \mu) + \mathscr{O}(z^{2}\Lambda_{QCD}^{2})$$

$$Perturbative matching$$

$$\lambda = zP$$

$$\int_{-1}^{1} dx x^{n} H^{q}(x, \xi = 0, t) = A_{n+1,0}^{q}(t)$$

$$\int_{-1}^{1} dx x^{n} E^{q}(x, \xi = 0, t) = B_{n+1,0}^{q}(t)$$







 $\mathcal{F}^{\mu}(z, P, \Delta)$  $= \langle p_f | \bar{q}(-\frac{z}{2}) \gamma^{\mu} \mathcal{W}(-\frac{z}{2},\frac{z}{2}) q(\frac{z}{2}) | p_i \rangle$  $z = (0, 0, 0, z_3), z^2 = z_3^2$ 

### **SDF** of the zero skewness **GPD** matrix elements: • V. Braun et al., EPJC 55 (2008)



- The perturbative matching is valid in short range of  $z_3$ .
- The information that lattice data contains is limited by the range of finite  $\lambda = zP$ .



### quasi-GPD matrix elements 11

The matrix elements can be parametrized in terms of linearly-independent Dirac structures:

$$F^{\mu}(z,P,\Delta) = \bar{u}(p_{f},\lambda') \left[ \frac{P^{\mu}}{m} A_{1} + mz^{\mu}A_{2} + \frac{\Delta^{\mu}}{m} A_{3} + im\sigma^{\mu z}A_{4} + \frac{i\sigma^{\mu \Delta}}{m} A_{5} + \frac{P^{\mu}i\sigma^{z\Delta}}{m} A_{6} + mz^{\mu}i\sigma^{z\Delta}A_{7} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{m} A_{8} \right] u(p_{i},\lambda)$$

$$A_{i}(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2})$$

ight-cone GPDs 
$$H$$
 and  $E$   

$$F^{+}(z, P, \Delta) = \bar{u}(p_{f}, \lambda') \left[ \gamma^{+}H(z, P, \Delta) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2m} E(z, P, \Delta) \right] u(p_{i}, \lambda)$$

$$H(z, P, \Delta) = A_{1} + \frac{\Delta^{+}}{P^{+}}A_{3}$$

$$E(z, P, \Delta) = -A_{1} - \frac{\Delta^{+}}{P^{+}}A_{3} + 2A_{5} + 2P^{+}z^{-}A_{6} + 2\Delta^{+}z^{-}A_{8}$$

$$Commonly used quasi-GPD matrix elements$$

$$\mathcal{F}^{0}(z, P, \Delta) = \bar{u}(p_{f}, \lambda') \left[ \gamma^{0}\mathcal{H}_{0}(z, P, \Delta) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2m} \mathcal{E}_{0}(z, P, \Delta) \right] u(p_{i}, \lambda)$$

$$\mathcal{F}^{0}(z, P, \Delta) = \bar{u}(p_{f}, \lambda') \left[ \gamma^{0}\mathcal{H}_{0}(z, P, \Delta) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2m} \mathcal{E}_{0}(z, P, \Delta) \right] u(p_{i}, \lambda)$$

$$\mathcal{F}^{0}(z, P, \Delta) = \bar{u}(p_{f}, \lambda') \left[ \gamma^{0}\mathcal{H}_{0}(z, P, \Delta) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2m} \mathcal{E}_{0}(z, P, \Delta) \right] u(p_{i}, \lambda)$$

$$\mathcal{F}^{0}(z, P, \Delta) = \bar{u}(p_{f}, \lambda') \left[ \gamma^{0}\mathcal{H}_{0}(z, P, \Delta) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2m} \mathcal{E}_{0}(z, P, \Delta) \right] u(p_{i}, \lambda)$$

$$\mathcal{F}^{0}(z, P, \Delta) = \bar{u}(p_{f}, \lambda') \left[ \gamma^{0}\mathcal{H}_{0}(z, P, \Delta) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2m} \mathcal{E}_{0}(z, P, \Delta) \right] u(p_{i}, \lambda)$$

$$\mathcal{F}^{0}(z, P, \Delta) = A_{1} + \frac{\Delta^{0}}{P^{+}}A_{3}$$

$$\mathcal{F}^{0}(z, P, \Delta) = A_{1} + \frac{\Delta^{0}}{P^{+}}A_{3} + 2A_{5} + 2P^{+}z^{-}A_{6} + 2\Delta^{+}z^{-}A_{8}$$

$$\mathcal{F}^{0}(z, P, \Delta) = -A_{1} - \frac{\Delta^{+}}{P^{+}}A_{3} + 2A_{5} + 2P^{+}z^{-}A_{6} + 2\Delta^{+}z^{-}A_{8}$$

Lorentz invariant, frame independent

• 
$$\frac{\Delta^+}{P^+} = \frac{\Delta \cdot z}{P \cdot z}, \ z^2 = 0$$

- Frame dependent
- Computational expensive for multiple  $Q^2$
- Encouraging results were reported



quasi-GPD matrix elements

light-cone GPDs H and E

$$H(z, P, \Delta) = A_1 + \frac{\Delta^+}{P^+}A_3$$

 $E(z, P, \Delta) = -A_1 - \frac{\Delta^+}{P^+} A_3 + 2A_5 + 2P^+ z^- A_6 + 2\Delta^+ z^- A_8 \qquad \mathscr{E}(z, P, \Delta) = -A_1 - \frac{\Delta \cdot z}{P \cdot z} A_3 + 2A_5 + 2P \cdot zA_6 + 2\Delta \cdot zA_8$ 

• Lorentz invariant, frame independent •  $\frac{\Delta^+}{P^+} = \frac{\Delta \cdot z}{P \cdot z}, A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2), z^2 = 0$ 

Lorentz invariant quasi-GPD matrix elements

$$\mathcal{H}(z, P, \Delta) = A_1 + \frac{\Delta \cdot z}{P \cdot z} A_3$$

- Lorentz invariant, frame independent
- $A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2), z^2 \neq 0$
- $A_i$  can be solved from matrix elements of  $\mathcal{F}^0, \mathcal{F}^1, \mathcal{F}^2$ S. Bhattacharya, et al., PRD 106 (2022)



## 13 Bare matrix elements and renormalization

### Bare matrix elements of quasi-GPD ${\cal E}$



Nf=2+1+1 twisted mass (TM) fermions & clover improvement.

►  $m_{\pi} = 260 \text{ MeV}, a = 0.093 \text{ fm}, 32^3 \times 64$ 

iso-vector (u-d) and iso-scalar (u+d), connected diagrams only.

## The operator can be multiplicativelyrenormalized• X. Ji, J. H. Zhang and Y. Zhao, PRL120.112001

• J. Green, K. Jansen and F. Steffens, PRL.121.022004

$$\begin{bmatrix} \bar{q}(-\frac{z}{2})\gamma^{\mu} \mathscr{W}(-\frac{z}{2},\frac{z}{2})q(\frac{z}{2}) \end{bmatrix}_{B} \delta m = m_{-1}/a + m_{0}$$
  
=  $e^{-\delta m(a)|z|} Z(a) \begin{bmatrix} \bar{q}(-\frac{z}{2})\gamma^{\mu} \mathscr{W}(-\frac{z}{2},\frac{z}{2})q(\frac{z}{2}) \end{bmatrix}$ 

- Ratio scheme renormalization
  - A. V. Radyushkin et al., PRD 96 (2017)
  - BNL, PRD 102 (2020)

$$\mathcal{M}(z^2, zP, \Delta^2) = \frac{F^R(z, P, \Delta; \mu)}{F^R(z, P = 0, \Delta = 0; \mu)} = \frac{F^B(z, P, \Delta; a)}{F^B(z, P = 0, \Delta = 0; a)}$$

$$= \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n(z^2\mu^2)}{C_n(z^2\mu^2)} \langle x^n \rangle (\Delta^2; \mu) + \mathcal{O}(z^2\Lambda_{\text{QCD}}^2)$$

Reduce to the standard loffe-time pseudo-distribution when  $\Delta=0$ 



## 14 Ratio scheme renormalization

### Ratio-scheme matrix elements for H



 $\mathscr{M}(z^{2}, zP, \Delta^{2}) = \sum_{n=0}^{\infty} \frac{(-izP)^{n}}{n!} \frac{C_{n}(z^{2}\mu^{2})}{C_{n}(z^{2}\mu^{2})} \langle x^{n} \rangle(t; \mu) + \mathscr{O}(z^{2}\Lambda_{\text{QCD}}^{2})$ n=0

- At tree level ( $\alpha_s = 0$ ,  $C_n(\mu^2 z^2) = 1$ ) approximation, simply a polynomial function of zP.
- Beyond LO, the perturbative kernels  $C_n(z^2\mu^2)/C_0(z^2\mu^2)$  are supposed to compensate the *z*-dependent evolution.
- Wilson-coefficients available up to NNLO for iso-vector case, while NLO for iso-scalar case.



### Mellin moments of GPDs 15

$$\mathcal{M}(z^2, zP, \Delta^2) = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n(z^2\mu^2)}{C_n(z^2\mu^2)} \langle x^n \rangle + \mathcal{O}(z^2\Lambda_Q^2)$$





16

# Mellin moments of GPDs



• Results from different definitions are inconsistent especially for  $B_{20}$ . • The Lorentz invariant (LI) definition have better agreement with the

traditional moments calculation.

- LI: Lorentz invariant definition. -  $\mathscr{H}_0^{s/a}$  and  $\mathscr{E}_0^{s/a}$  are  $\gamma_0$  definition.





# t-dependence of moments: $A_{10}$ & $B_{10}$



17

Di-pole fit:

$$\langle x^n \rangle(Q^2) = \frac{\langle x^n \rangle(0)}{(1 + \frac{Q^2}{M^2})^2}$$

*z*-expension fit:

$$\langle x^{n} \rangle (Q^{2}) = \sum_{k=0}^{k_{\text{max}}} a_{k} z (Q^{2})^{k}$$
$$z(Q^{2}) = \frac{\sqrt{t_{\text{cut}} + Q^{2}} - \sqrt{t_{\text{cut}} - t_{0}}}{\sqrt{t_{\text{cut}} + Q^{2}} + \sqrt{t_{\text{cut}} - t_{0}}} - t$$

| $-t \rightarrow 0$ | Di-pole  | z-expension | ETMC'11  |
|--------------------|----------|-------------|----------|
| $A_{10}^{u-d}$     | 0.97(04) | 1.05(06)    | 1        |
| $A_{10}^{u+d}$     | 2.87(07) | 2.80(08)    | _        |
| $B_{10}^{u-d}$     | 2.68(18) | 2.56(27)    | 2.61(23) |
| $B_{10}^{u+d}$     | 0.38(38) | 0.19(36)    | _        |
|                    |          |             |          |

• The  $A_{10}$  and  $B_{10}$  are Dirac and Pauli form factors.



18



## t-dependence of moments: $A_{20}$ & $B_{20}$

| $-t \rightarrow 0$ | Di-pole   | z-expension | ETMC'11    |
|--------------------|-----------|-------------|------------|
| $A_{20}^{u-d}$     | 0.263(10) | 0.270(21)   | 0.264(13)  |
| $A_{20}^{u+d}$     | 0.547(16) | 0.557(21)   | 0.613(14)  |
| $B^{u-d}_{20}$     | 0.346(28) | 0.267(47)   | 0.301(47)  |
| $B^{u+d}_{20}$     | 0.065(29) | 0.050(22)   | -0.046(43) |

### **Quark total angular momentum:**

$$J^q = \frac{1}{2} (A^q_{20}(0) + B^q_{20}(0))$$

$$J^{u-d} = 0.267(27)(39)$$

$$J^{u+d} = 0.301(14)(02)$$

• The  $A_{20}$  and  $B_{20}$  are gravitational form factors.



## • t-dependence of moments: $A_{30}$ & $B_{30}$



19

•  $A_{30}$  and  $B_{30}$  show reasonable signal and smooth *t* dependence.

| $-t \rightarrow 0$ | Di-pole   | z-expension |
|--------------------|-----------|-------------|
| $A^{u-d}_{30}$     | 0.093(05) | 0.096(08)   |
| $A^{u+d}_{30}$     | 0.181(08) | 0.186(07)   |
| $B^{u-d}_{30}$     | 0.130(21) | 0.130(23)   |
| $B^{u+d}_{30}$     | 0.018(10) | 0.015(10)   |



# Summary and outlook

- proton using the Lorentz invariant definition.
- twist short distance factorization frame work.
- GPDs.
- needed to address the lattice artifacts.

We carried out lattice calculation of the quasi-GPD matrix elements of

• The matrix elements are renormalized in ratio scheme and the first few Mellin moments up to  $A_{30}$  and  $B_{30}$  were extracted using the leading-

 Higher moments can be constrained with higher momentum and statistics, and the methods can be extended to non-zero skewness

Calculations with physical quark masses and smaller lattice spacings are





### I acknowledge financial support from The Gordon and Betty Moore Foundation and the American Physical Society to present this work at the GHP 2023 workshop.

## Thanks for your attention



22

# Back up



## t-dependence of moments



23

- The  $A_{10}$  and  $B_{10}$  are Dirac and Pauli form factors.
- No difference between different definition.
- Good agreement with literatures using similar lattice setup.







Odd moments  $\langle x \rangle$  and  $\langle x^3 \rangle$  (or  $A_{20}$  and  $A_{40}$ ) extracted from imaginary part of matrix element at each z by fitting P dependence.

- The tree-level ( $\alpha_s = 0$ ) result show mild z dependence.
- Beyond LO, the z dependence is compensated by the Wilson coefficients and produce the *z*-independent plateau.
- NNLO produce similar results with NLO within current statistical errors.
- Signal for higher moments is weak: requiring higher momentum and statistics.

