Moments of nucleon GPDs from the leading-twist expansion of the quasi-GPD matrix element

Xiang Gao

Δ Argonne National Laboratory
in collaboration with: S. Bhattacharya, M. Constantinou, K. Cichy, J. Dodson, X. Gao, A. Metz, J. Miller, A. Scapellato, F. Steffens, S. Mukherjee, Y. Zhao

GHP2023, Apr 12-14

Generalized parton distributions

The gauge-invariant off-forward matrix elements,

$$
F^{\mu}(z, P, \Delta)=\left\langle p_{f}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma^{\mu} \mathscr{N}\left(-\frac{z}{2}, \frac{z}{2}\right) q\left(\frac{z}{2}\right)\left|p_{i}\right\rangle
$$

Light-cone GPDs,

$$
F(x, \xi, \Delta, \mu)=\int \frac{d z^{-}}{4 \pi} e^{-i x P^{+} z^{-}} F^{\mu}(z, P, \Delta)
$$

- $\gamma^{\mu}=\gamma^{+}$
- $z=\ln _{-}, z^{2}=0$
- $\mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right)=\mathscr{P} \exp \left(i \int_{-l_{-} / 2}^{\ln / 2} d l^{\prime} A^{+}\right)$

Generalized parton distributions

The gauge-invariant off-forward matrix elements,

$$
F^{\mu}(z, P, \Delta)=\left\langle p_{f}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma^{\mu} \mathscr{N}\left(-\frac{z}{2}, \frac{z}{2}\right) q\left(\frac{z}{2}\right)\left|p_{i}\right\rangle
$$

Light-cone GPDs,

$$
F(x, \xi, \Delta, \mu)=\int \frac{d z^{-}}{4 \pi} e^{-i x P^{+} z^{-}} F^{\mu}(z, P, \Delta)
$$

- $\gamma^{\mu}=\gamma^{+}$
- $z=\ln _{-}, z^{2}=0$
- $\mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right)=\mathscr{P} \exp \left(i \int_{-l_{-} / 2}^{\ln / 2} d l^{\prime} A^{+}\right)$

Depends on x and Lorentz invariant products
of the vectors p_{f}, p_{i} (or $P=\left(p_{f}+p_{i}\right) / 2$,
$\Delta=p_{f}-p_{i}$) and n_{-}, conventionally to be

- skewness $\xi=-\left(\Delta \cdot n_{-}\right) /\left(2 P \cdot n_{-}\right)$
- momentum transfer $t=\Delta^{2}$

Generalized parton distributions

GPDs goes far beyond the 1D PDFs and the transverse structure encoded in the form factors,

- Offer insights into the 3D image of hadrons.
- Give access to the orbital motion and spin of partons.
- Have a relation to pressure and shear forces inside hadrons.

$$
\underset{\substack{ \\\xi=0}}{\Delta(x, \Delta, \mu)} \stackrel{\text { F.T. }}{\longleftrightarrow} \underset{\substack{\text { Impact parameter } \\ \text { distribution }}}{F \leftrightarrow b_{T}}
$$

Generalized parton distributions

DVCS

Challenging:

- observables appear at the amplitude level
- multi-dimensionality (x, ξ, t)
- the momentum fraction x is integrated over (Compton Form Factors)

$$
\mathcal{F}\left(\xi, t ; Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x\left[\frac{1}{\xi-x-i \epsilon} \pm \frac{1}{\xi+x-i \epsilon}\right] F\left(x, \xi, t ; Q^{2}\right)
$$

The golden process to study the quark GPDs is DVCS

Generalized parton distributions

DVCS

Challenging:

- observables appear at the amplitude level
- multi-dimensionality (x, ξ, t)
- the momentum fraction x is integrated over (Compton Form Factors)

$$
\begin{aligned}
& \mathcal{F}\left(\xi, t ; Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x\left[\frac{1}{\xi-x-i \epsilon} \pm\right. \\
& \text { tice QCD is essential. }
\end{aligned}
$$

Generalized parton distributions

$$
z_{3}+c t=0, \quad z_{3}-c t \neq 0
$$

- Mellin or Gegenbauer Moments from leading-twist local operators.

$$
\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D} \alpha^{\alpha} \ldots \stackrel{\leftrightarrow}{D}^{\alpha} \alpha_{n} \quad \begin{aligned}
& \text { ETMC, PRD 101 (2022) } \\
& \text { ETMC, PRD } 83 \text { (2011) }
\end{aligned}
$$

Focusing on lowest moments, while high moments from high-dimensional operators are impossible from discretized lattice.

Light-cone correlation: Cannot be calculated on the lattice

Generalized parton distributions

$$
\begin{aligned}
& \mathscr{F}^{\mu}(z, P, \Delta) \\
& =\left\langle p_{f}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma^{\mu} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) q\left(\frac{z}{2}\right)\left|p_{i}\right\rangle \\
& z=\left(0,0,0, z_{3}\right), z^{2}=z_{3}^{2}
\end{aligned}
$$

- Mellin or Gegenbauer Moments from leading-twist local operators.

$$
\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{2}} \alpha_{1} \ldots D^{2} \alpha_{n} \quad \begin{aligned}
& \text { ETMC, PRD } 101 \text { (2022) } \\
& \text { ETMC, PRD } 83(2011)
\end{aligned}
$$

- Large-momentum effective theory: x -space matching of quasi-PDF.
X. Ji, PRL 2013
X. Ji, et al, RevModPhys 2021
- Short distance factorization of the quasi-PDF matrix elements in position space or the pseudo-PDF approach.
- A. Radyushkin, PRD 100 (2019)

Short distance factorization

$$
\begin{aligned}
& \mathscr{F}^{\mu}(z, P, \Delta) \\
& =\left\langle p_{f}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma^{\mu} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) q\left(\frac{z}{2}\right)\left|p_{i}\right\rangle \\
& z=\left(0,0,0, z_{3}\right), z^{2}=z_{3}^{2}
\end{aligned}
$$

SDF of the zero skewness GPD matrix elements:

- V. Braun et al., EPJC 55 (2008)
- A. V. Radyushkin et al., PRD 96 (2017)
$\mathscr{F}^{R}(z, P, \Delta)$
- Y. Ma et al., PRL 120 (2018)
- T. Izubuchi et al., PRD 98 (2018)
$=\int_{-1}^{1} d \alpha \mathscr{C}\left(\alpha, \mu^{2} z^{2}\right) \int_{-1}^{1} d y e^{-i y \alpha \lambda} F(x, \xi, \Delta, \mu)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right)$
$=\sum_{n=0}^{\infty} \frac{(-i z P)^{n}}{n!C_{n}\left(z^{2} \mu^{2}\right)\left\langle x^{n}\right\rangle(t ; \mu)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)}$ $\lambda=z P$

$$
\begin{aligned}
& \int_{-1}^{1} d x x^{n} H^{q}(x, \xi=0, t)=A_{n+1,0}^{q}(t) \\
& \int_{-1}^{1} d x x^{n} E^{q}(x, \xi=0, t)=B_{n+1,0}^{q}(t)
\end{aligned}
$$

Short distance factorization

$$
\begin{aligned}
& \mathscr{F}^{\mu}(z, P, \Delta) \\
& =\left\langle p_{f}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma^{\mu} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) q\left(\frac{z}{2}\right)\left|p_{i}\right\rangle \\
& z=\left(0,0,0, z_{3}\right), z^{2}=z_{3}^{2}
\end{aligned}
$$

SDF of the zero skewness GPD matrix elements:

- V. Braun et al., EPJC 55 (2008)
- A. V. Radyushkin et al., PRD 96 (2017)
$\mathscr{F}^{R}(z, P, \Delta)$
- Y. Ma et al., PRL 120 (2018)
- T. Izubuchi et al., PRD 98 (2018)
$=\int_{-1}^{1} d \alpha \mathscr{C}\left(\alpha, \mu^{2} z^{2}\right) \int_{-1}^{1} d y e^{-i y \alpha \lambda} F(x, \xi, \Delta, \mu)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right)$
$=\sum_{n=0}^{\infty} \frac{(-i z P)^{n}}{n!} C_{n}\left(z^{2} \mu^{2}\right)\left\langle x^{n}\right\rangle(t ; \mu)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)$

$$
\lambda=z P
$$

- The perturbative matching is valid in short range of z_{3}.
- The information that lattice data contains is limited by the range of finite $\lambda=z P$.

quasi-GPD matrix elements

The matrix elements can be parametrized in terms of linearly-independent Dirac structures:

$$
\begin{array}{r}
F^{\mu}(z, P, \Delta)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{m} A_{1}+m z^{\mu} A_{2}+\frac{\Delta^{\mu}}{m} A_{3}+i m \sigma^{\mu z} A_{4}+\frac{i \sigma^{\mu \Delta}}{m} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{m} A_{6}+m z^{\mu} i \sigma^{z \Delta} A_{7}+\frac{\Delta^{\mu} i \sigma^{z^{\prime}}}{m} A_{8}\right] u\left(p_{i}, \lambda\right) \\
A_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)
\end{array}
$$

light-cone GPDs H and E

$$
F^{+}(z, P, \Delta)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{+} H(z, P, \Delta)+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 m} E(z, P, \Delta)\right] u\left(p_{i}, \lambda\right)
$$

$$
H(z, P, \Delta)=A_{1}+\frac{\Delta^{+}}{P^{+}} A_{3}
$$

$$
E(z, P, \Delta)=-A_{1}-\frac{\Delta^{+}}{P^{+}} A_{3}+2 A_{5}+2 P^{+} z^{-} A_{6}+2 \Delta^{+} z^{-} A_{8}
$$

- Lorentz invariant, frame independent
- $\frac{\Delta^{+}}{P^{+}}=\frac{\Delta \cdot z}{P \cdot z}, z^{2}=0$

Commonly used quasi-GPD matrix elements

$$
\begin{aligned}
& \mathscr{F}^{0}(z, P, \Delta)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{0} \mathscr{H}_{0}(z, P, \Delta)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 m} \mathscr{E}_{0}(z, P, \Delta)\right] u\left(p_{i}, \lambda\right) \\
& \mathscr{H}_{0}^{s}\left(z, P^{s}, \Delta^{s}\right)=A_{1}+\frac{\Delta^{0, s}}{P^{0, s}} A_{3}-\frac{m^{2} \Delta^{0, s} z^{3}}{2 P^{0, s} P^{3, s}} A_{4}+\left[\frac{\left(\Delta^{0, s}\right)^{2} z^{3}}{2 P^{3, s}}-\frac{\Delta^{0, s} \Delta^{3, s} z^{3} P^{0, s}}{2\left(P^{3, s}\right)^{2}}-\frac{z^{3}\left(\Delta_{\perp}^{s}\right)^{2}}{2 P^{3, s}}\right] A_{6} \\
&+\left[\frac{\left(\Delta^{0, s}\right)^{3} z^{3}}{2 P^{0, s} P^{3, s}}-\frac{\left(\Delta^{0, s}\right)^{2} \Delta^{3, s} z^{3}}{2\left(P^{3, s}\right)^{2}}-\frac{\Delta^{0, s} z^{3}\left(\Delta_{\perp}^{s}\right)^{2}}{2 P^{0, s} P^{3, s}}\right] A_{8}
\end{aligned}
$$

- Frame dependent
- Computational expensive for multiple Q^{2}
- Encouraging results were reported

quasi-GPD matrix elements

light-cone GPDs H and E
$H(z, P, \Delta)=A_{1}+\frac{\Delta^{+}}{P^{+}} A_{3}$
$E(z, P, \Delta)=-A_{1}-\frac{\Delta^{+}}{P^{+}} A_{3}+2 A_{5}+2 P^{+} z^{-} A_{6}+2 \Delta^{+} z^{-} A_{8} \mathscr{E}(z, P, \Delta)=-A_{1}-\frac{\Delta \cdot z}{P \cdot z} A_{3}+2 A_{5}+2 P \cdot z A_{6}+2 \Delta \cdot z A_{8}$

- Lorentz invariant, frame independent
- $\frac{\Delta^{+}}{P^{+}}=\frac{\Delta \cdot z}{P \cdot z}, A_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right), z^{2}=0$

Lorentz invariant quasi-GPD matrix elements
$\mathscr{H}(z, P, \Delta)=A_{1}+\frac{\Delta \cdot z}{P \cdot z} A_{3}$

- Lorentz invariant, frame independent
- $A_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right), z^{2} \neq 0$
- A_{i} can be solved from matrix elements of $\mathscr{F}^{0}, \mathscr{F}^{1}, \mathscr{F}^{2}$

Bare matrix elements and renormalization

Bare matrix elements of quasi-GPD E

- $\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement.
- $m_{\pi}=260 \mathrm{MeV}, a=0.093 \mathrm{fm}, 32^{3} \times 64$
- iso-vector (u-d) and iso-scalar (u+d), connected diagrams only.

The operator can be multiplicatively renormalized • x. Ji, J.H. Zhang and Y. Zhao, PRL120.112001

- J. Green, K. Jansen and F. Steffens, PRL.121.022004

$$
\begin{aligned}
& {\left[\bar{q}\left(-\frac{z}{2}\right) \gamma^{\mu} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) q\left(\frac{z}{2}\right)\right]_{B} \quad \delta m=m_{-1} / a+m_{0}} \\
& =e^{-\delta m(a)|z|} Z(a)\left[\bar{q}\left(-\frac{z}{2}\right) \gamma^{\mu} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) q\left(\frac{z}{2}\right)\right]_{R}
\end{aligned}
$$

- Ratio scheme renormalization
- A. V. Radyushkin et al., PRD 96 (2017)
- BNL, PRD 102 (2020)
$\mathscr{M}\left(z^{2}, z P, \Delta^{2}\right)=\frac{F^{R}(z, P, \Delta ; \mu)}{F^{R}(z, P=0, \Delta=0 ; \mu)}=\frac{F^{B}(z, P, \Delta ; a)}{F^{B}(z, P=0, \Delta=0 ; a)}$

$$
=\sum_{n=0}^{\infty} \frac{(-i z P)^{n}}{n!} \frac{C_{n}\left(z^{2} \mu^{2}\right)}{C_{n}\left(z^{2} \mu^{2}\right)}\left\langle x^{n}\right\rangle\left(\Delta^{2} ; \mu\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

Reduce to the standard loffe-time pseudo-distribution when $\Delta=0$

Ratio scheme renormalization

Ratio-scheme matrix elements for H

- At tree level $\left(\alpha_{s}=0, C_{n}\left(\mu^{2} z^{2}\right)=1\right)$ approximation, simply a polynomial function of $z P$.
- Beyond LO, the perturbative kernels $C_{n}\left(z^{2} \mu^{2}\right) / C_{0}\left(z^{2} \mu^{2}\right)$ are supposed to compensate the z-dependent evolution.
- Wilson-coefficients available up to NNLO for iso-vector case, while NLO for iso-scalar case.

$$
\mathscr{M}\left(z^{2}, z P, \Delta^{2}\right)=\sum_{n=0}^{\infty} \frac{(-i z P)^{n}}{n!} \frac{C_{n}\left(z^{2} \mu^{2}\right)}{C_{n}\left(z^{2} \mu^{2}\right)}\left\langle x^{n}\right\rangle(t ; \mu)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

Mellin moments of GPDs

$$
\mathscr{M}\left(z^{2}, z P, \Delta^{2}\right)=\sum_{n=0}^{\infty} \frac{(-i z P)^{n}}{n!} \frac{C_{n}\left(z^{2} \mu^{2}\right)}{C_{n}\left(z^{2} \mu^{2}\right)}\left\langle x^{n}\right\rangle+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

- We vary $z_{\min }$ and $z_{\max }$ to estimate the systematic errors.
- Reasonable signal up to $\left\langle x^{2}\right\rangle\left(A_{30}\right.$ and B_{30}) is observed, higher momentum and statistics are needed to constrain higher moments.

Mellin moments of GPDs

- LI: Lorentz invariant definition.
- $\mathscr{H}_{0}^{s / a}$ and $\mathscr{E}_{0}^{s / a}$ are γ_{0} definition.

- Results from different definitions are inconsistent especially for B_{20}
- The Lorentz invariant (LI) definition have better agreement with the traditional moments calculation.

t-dependence of moments: $A_{10} \& B_{10}$

Di-pole fit: $\quad\left\langle x^{n}\right\rangle\left(Q^{2}\right)=\frac{\left\langle x^{n}\right\rangle(0)}{\left(1+\frac{Q^{2}}{M^{2}}\right)^{2}}$
z-expension fit:

$$
\begin{aligned}
& \left\langle x^{n}\right\rangle\left(Q^{2}\right)=\sum_{k=0}^{k_{\max }} a_{k} z\left(Q^{2}\right)^{k} \\
& z\left(Q^{2}\right)=\frac{\sqrt{t_{\mathrm{cut}}+Q^{2}}-\sqrt{t_{\mathrm{cut}}-t_{0}}}{\sqrt{t_{\mathrm{cut}}+Q^{2}}+\sqrt{t_{\mathrm{cut}}-t_{0}}} \quad-t=Q^{2}
\end{aligned}
$$

$-t \rightarrow 0$	Di-pole	z-expension	ETMC'11
A_{10}^{u-d}	$0.97(04)$	$1.05(06)$	1
A_{10}^{u+d}	$2.87(07)$	$2.80(08)$	-
B_{10}^{u-d}	$2.68(18)$	$2.56(27)$	$2.61(23)$
B_{10}^{u+d}	$0.38(38)$	$0.19(36)$	-

- The A_{10} and B_{10} are Dirac and Pauli form factors.

$-t \rightarrow 0$	Di-pole	z-expension	ETMC'11
A_{20}^{u-d}	$0.263(10)$	$0.270(21)$	$0.264(13)$
A_{20}^{u+d}	$0.547(16)$	$0.557(21)$	$0.613(14)$
B_{20}^{u-d}	$0.346(28)$	$0.267(47)$	$0.301(47)$
B_{20}^{u+d}	$0.065(29)$	$0.050(22)$	$-0.046(43)$

Quark total angular momentum:

$$
\begin{gathered}
J^{q}=\frac{1}{2}\left(A_{20}^{q}(0)+B_{20}^{q}(0)\right) \\
J^{u-d}=0.267(27)(39) \\
J^{u+d}=0.301(14)(02)
\end{gathered}
$$

- The A_{20} and B_{20} are gravitational form factors.

t-dependence of moments: $A_{30} \& B_{30}$

- A_{30} and B_{30} show reasonable signal and smooth t dependence.

$-t \rightarrow 0$	Di-pole	z-expension
A_{30}^{u-d}	$0.093(05)$	$0.096(08)$
A_{30}^{u+d}	$0.181(08)$	$0.186(07)$
B_{30}^{u-d}	$0.130(21)$	$0.130(23)$
B_{30}^{u+d}	$0.018(10)$	$0.015(10)$

Summary and outlook

- We carried out lattice calculation of the quasi-GPD matrix elements of proton using the Lorentz invariant definition.
- The matrix elements are renormalized in ratio scheme and the first few Mellin moments up to A_{30} and B_{30} were extracted using the leadingtwist short distance factorization frame work.
- Higher moments can be constrained with higher momentum and statistics, and the methods can be extended to non-zero skewness GPDs.
- Calculations with physical quark masses and smaller lattice spacings are needed to address the lattice artifacts.

I acknowledge financial support from The Gordon and Betty Moore Foundation and the American Physical Society to present this work at the GHP 2023 workshop.

Thanks for your attention

Back up

t-dependence of moments

- The A_{10} and B_{10} are Dirac and Pauli form factors.
- No difference between different definition.
- Good agreement with literatures using similar lattice setup.

24
 Mellin moments of GPDs

$$
\mathscr{M}\left(z^{2}, z P, \Delta^{2}\right)=\sum_{n=0}^{\infty} \frac{(-i z P)^{n}}{n!} \frac{C_{n}\left(z^{2} \mu^{2}\right)}{C_{n}\left(z^{2} \mu^{2}\right)}\left\langle x^{n}\right\rangle+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

- The tree-level $\left(\alpha_{s}=0\right)$ result show mild z dependence.
- Beyond LO, the z dependence is compensated by the Wilson coefficients and produce the z-independent plateau.
- NNLO produce similar results with NLO within current statistical errors.
- Signal for higher moments is weak: requiring higher momentum and statistics.

Odd moments $\langle x\rangle$ and $\left\langle x^{3}\right\rangle$ (or A_{20} and A_{40}) extracted from imaginary part of matrix
element at each z by fitting P dependence.

