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Parton Distribution Functions
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Introduction

Perturbative 
Physics

Nonperturbative 
Parton Physics

Parton Distribution Function
(Inclusive process)

probability density of finding a 
parton with momentum 
fraction 𝑥 out of the hadron
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Global fitting to experiments

Universal

Important inputs to collider physics! CTEQ PRD, (2019)



𝐶! 𝑡 = ⟨𝜒"#$(0)|𝑂(𝑡)|𝜒"%&(𝜏)⟩𝐶' 𝑡 = ⟨𝜒"#$(0)|𝜒"%&(𝑡)⟩

Lattice QCD
■ Discretization of QCD action:
■ Construction of correlators:

■ Extraction of matrix elements:
𝐶! 𝑡 = ∑ 𝑐" !𝑒#$!%

𝐶& 𝑡, 𝜏 = ∑𝑐'∗ 𝑐" 𝑚 𝑂 𝑛 𝑒#$" )#% 𝑒#$!%
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Introduction

Euclidean 4D spacetime

Savage, NNPSS (2015)

K.G. Wilson,
Nobel Prize
Winner (1982)

t



Large Momentum Effective Theory (LaMET)
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Introduction

Large 𝑃!
Expansion

+𝒪
1
𝑃!"

𝐶 𝑥, 𝑦, 𝜇, 𝑃! ⊗𝑞 𝑦, 𝜇 +𝒪
Λ()*'

x'𝑃+'
Quasi-PDF: 5𝑞 𝑥, 𝑃! =

7
𝑑𝑧𝑃!
2𝜋

𝑒#$!%!⟨𝑃|?𝑞 0 𝛾&𝑈 0, 𝑧 𝑞 𝑧 |𝑃⟩

Ji, PRL (2013)
Ji, SCPMA(2014)



Recipe
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Lattice correlator

Fitting matrix elements

Renormalization

Extract x-dependence

Matching to parton physics

𝐶!,- = 𝑐. ' 0 𝑂 0 𝑒/0!1 +⋯

ℎ2 𝑧 = 0 𝑂 0 /𝑍2(𝑧, 𝑎)

;𝑞 𝑥, 𝑃+ = >
𝑑𝑧𝑃+
2𝜋 ℎ2 𝑧 𝑒34+5"

𝑞 𝑥, 𝜇 = 𝐶/6 𝑥, 𝑦, 𝜇, 𝑃+ ⊗ ;𝑞 𝑦, 𝑃+

𝐶!,- =

Introduction



Precision of Large Momentum Expansion
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Power Accuracy in 1/𝑃+ Expansion 

,𝑞 𝑥, 𝑃D = 𝐶 𝑥, 𝑦, 𝜇, 𝑃D ⊗𝑞 𝑦, 𝜇 + 𝒪
E#$%
F G&

+ 𝒪
E#$%
'

F'G&'

Linear power 
correction must 
be eliminated!

Not properly 
addressed in 
previous work

𝑃F~2GeV, ΛGHI ≈ 300 MeV

Ji, et.al, NPB (2021)



Why is there a linear correction in 1/𝑃!?
■ Non-local operator: 4𝑞 0 Γ𝑈 0, 𝑧 𝑞 𝑧

■ Linearly divergent self-energy 𝛿𝑚 𝑎 ∼ H
I

– A heavy quark propagating with “pole mass” 𝛿𝑚 𝑎
– ℎJ(z) ∼ 𝑒KLM(N) ⋅F

■ What to subtract w/ linear divergence? 
■ Pole mass of a “free” quark?

– Long range interactions contributing 𝒪(ΛPQR) ambiguously

■ ℎ! z ∼ ℎ"(z)𝑒#$ ⋅& uncertain up to 𝑒𝒪()*!"#) → 𝒪
*!"#
, -$

in )𝑞
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Power Accuracy in 1/𝑃+ Expansion 

Beneke, PLB (1995)

Ji, et.al, PRL (2017)

Freedom to choose the scheme



Perturbative determination of 𝛿𝑚 𝑎
■ In perturbation theory, 𝛿𝑚 = H

I
∑𝛼J"KH 𝑎 𝑟"

– 𝑟S ∼ 𝑛!

■ A lattice perturbative expansion of 𝛿𝑚 𝑎 to 20th order
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Power Accuracy in 1/𝑃+ Expansion 

Series is divergent for any 𝛼T

Bali, et al., PRD (2013)

Gerard	't	Hooft
1999	Nobel	Prize

Infrared renormalon is partly related to 
the strong coupling 𝛼'(𝑘) becoming non-
perturbative in the region 𝑘 ∼ Λ()*.

Renormalon Divergence

Beneke, RMP (1998)



Linear correction in matching coefficients

■ 𝐶 𝑥, 𝑦, 𝜇, 𝑃D is obtained by perturbatively calculate the 
same operator, thus also has the same ambiguity:

𝐶("KH) ∼ 𝑛!
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Power Accuracy in 1/𝑃+ Expansion 

,𝑞 𝑥, 𝑃D = 𝐶 𝑥, 𝑦, 𝜇, 𝑃D ⊗𝑞 𝑦, 𝜇 + 𝒪
E#$%
F G&

+ 𝒪
E#$%
'

F'G&'

Braun, et.al., PRD(2018)



Achieve Power Accuracy
■ Regularizing the infrared physics

– Explicit IR cut off: ∫U
V!" 𝑓 𝑘 𝑑𝑘 → ∫V#$

V!" 𝑓 𝑘 𝑑𝑘

– Resumming the series to all orders with some prescription:

S
#

+

𝛼'#,-𝑟# → 7
.
𝑑𝑢 𝑒/0/2"S

#

+
𝑟#𝑢#

𝑖!

– Neutralize color charge of the heavy quark
■ Non-perturbative determination of 𝛿𝑚 𝑎
■ Depending on how to choose fitting parameters

■ Eliminate scheme dependence
10

Power Accuracy in 1/𝑃+ Expansion 

Very difficult to calculate

Seems impossible to know high 
order terms?

Applicable to lattice data

But we know the divergent part

Ayala, PRD (2019)
Ayala, PRD (2020)



Regularization scheme dependence:
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■ Introduce twist-three correction

■ Twist-3  ambiguities	exist	in	both	sides,	ℎ\ and	𝐶]
■ 𝑚^ 𝜏 matches schemes between renormalization of lattice 

data and regularization of the matching coefficients

∼ 𝑒78 9 ⋅+ℎ;(𝑧)

Matching Coefficients

PDF moments

Power Accuracy in 1/𝑃+ Expansion 



Achieve Power Accuracy
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Power Accuracy in 1/𝑃+ Expansion 

,𝑞 𝑥, 𝑃D = 𝐶 𝑥, 𝑦, 𝜇, 𝑃D ⊗𝑞 𝑦, 𝜇 + 𝒪
E()*
F G&

+ 𝒪
E()*
'

F'G&'

Renormalize with 
scheme-dependent 

non-perturbative 
parameter 𝑚. 𝜏
𝑍 𝑎, 𝜏
∝ 𝑒(78 9 =8! 1 )⋅+

Define 𝜏 scheme:
Leading 

renormalon 
resummation (LRR)

+ Extract 𝑚. 𝜏 :
Fitting to 
𝑃+ = 0

Lattce data

Matching 
Condition

Data from 
Gao, et.al, PRL, (2022)



Extract 𝑚$ 𝜏 from fixed-order theory 
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ln
ℎZ 𝑧, 𝑃F = 0, 𝜇
𝐶U 𝑧, 𝜇[𝑧[

= 𝑐 +𝑚U 𝜏 𝑧

Power Accuracy in 1/𝑃+ Expansion 

Too large 
uncertainty!



Extract 𝑚$ 𝜏 from fixed-order theory 
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ln
ℎZ 𝑧, 𝑃F = 0, 𝜇
𝐶U 𝑧, 𝜇[𝑧[

= 𝑐 +𝑚U 𝜏 𝑧

Power Accuracy in 1/𝑃+ Expansion 

Too large 
uncertainty!
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LRR improved perturbation theory

Power Accuracy in 1/𝑃+ Expansion 

𝐶. 𝑧, 𝜇'𝑧' : ln ?# +,5"A.,B
)! +,B$+$

:
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LRR improved perturbation theory

Power Accuracy in 1/𝑃+ Expansion 

𝐶. 𝑧, 𝜇'𝑧' : ln ?# +,5"A.,B
)! +,B$+$

:

■ Reduce the uncertainty 3~5 times from scale variation
■ Improve the convergence when going to higher order
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Conclusion and Outlook

• Parton physics can be calculated from lattice QCD through large 
momentum expansion

• Power correction is an important source of systematic uncertainty
• We propose the first systematic approach to achieve 1/𝑃F accuracy

Summary

• More solid determination of the renormalon contribution
• Generalization to more complicated parton observables

Outlook


