

LEADING POWER ACCURACY IN LATTICE QCD CALCULATION OF PARTON DISTRIBUTIONS

Rui Zhang Department of Physics,

University of Maryland, College Park

GHP meeting April 12th , 2023 In collaboration with Xiangdong Ji (UMD), Yushan Su (UMD), and Jack Holligan (MSU)

Parton Distribution Functions

Important inputs to collider physics!

Parton Distribution Function (Inclusive process) probability density of finding a parton with momentum fraction *x* out of the hadron

CTEQ PRD, (2019) 2

Lattice QCD

- Discretization of QCD action:
- Construction of correlators:

 $C_2(t) = \langle \chi_{src}(0) | \chi_{snk}(t) \rangle$

 $C_3(t) = \langle \chi_{src}(0) | O(t) | \chi_{snk}(\tau) \rangle$

Euclidean 4D spacetime

Savage, NNPSS (2015)

Large Momentum Effective Theory (LaMET)

Ji, PRL (2013) Ji, SCPMA(2014)

Quasi-PDF: $\tilde{q}(x, P_z) = \int \frac{dzP_z}{2\pi} e^{ixzP_z} \langle P | \bar{q}(0) \gamma_t U(0, z) q(z) | P \rangle$

 $C(x, y, \mu, P_z) \otimes q(y, \mu)$

Precision of Large Momentum Expansion

Ji, et.al, NPB (2021)

Linear power correction must be eliminated!

 $\left(\frac{\Lambda_{QCD}^2}{x^2 P_{\pi}^2}\right)$

Not properly addressed in previous work

Why is there a linear correction in $1/P_z$?

- Non-local operator: $\overline{q}(0)\Gamma U(0,z)q(z)$
- Linearly divergent self-energy $\delta m(a) \sim \frac{1}{a}$
 - A heavy quark propagating with "pole mass" $\delta m(a)$
 - $h^B(\mathbf{z}) \sim e^{-\delta m(a) \cdot \mathbf{z}}$

Ji, et.al, PRL (2017)

200000000000000000000000

- What to subtract w/ linear divergence? Freedom to choose the scheme
- Pole mass of a "free" quark?
 - Long range interactions contributing $\mathcal{O}(\Lambda_{QCD})$ ambiguously Beneke, PLB (1995)
- $h^{R}(z) \sim h^{B}(z)e^{\delta m \cdot z}$ uncertain up to $e^{\mathcal{O}(z\Lambda_{QCD})} \rightarrow \mathcal{O}\left(\frac{\Lambda_{QCD}}{xP_{z}}\right)$ in \tilde{q}

Perturbative determination of $\delta m(a)$

- In perturbation theory, $\delta m = \frac{1}{a} \sum \alpha_s^{n+1}(a) r_n$
 - $r_n \sim n!$ Series is divergent for any α_s
- A lattice perturbative expansion of $\delta m(a)$ to 20th order

Renormalon Divergence

Gerard 't Hooft 1999 Nobel Prize the stron

Beneke, RMP (1998)

Linear correction in matching coefficients $\tilde{q}(x, P_z) = C(x, y, \mu, P_z) \otimes q(y, \mu) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{x P_z}\right) + \mathcal{O}\left(\frac{\Lambda_{QCD}^2}{x^2 P_z^2}\right)$

• $C(x, y, \mu, P_Z)$ is obtained by perturbatively calculate the same operator, thus also has the same ambiguity: $C^{(n+1)} \sim n!$ Braun, et.al., PRD(2018)

Achieve Power Accuracy

Regularizing the infrared physics

- Explicit IR cut off: $\int_0^{\Lambda_{\rm UV}} f(k) dk \rightarrow \int_{\Lambda_{\rm IR}}^{\Lambda_{\rm UV}} f(k) dk$ Very difficult to calculate

- Resumming the series to all orders with some prescription:

Ayala, PRD (2019) Ayala, PRD (2020)

$$\sum_{i}^{\infty} \alpha_{s}^{i+1} r_{i} \rightarrow \int_{C} du \, e^{-u/\alpha_{s}} \sum_{i}^{\infty} \frac{r_{i} u^{i}}{i!}$$

Seems impossible to know high order terms?

But we know the divergent part

Applicable to lattice data

- Neutralize color charge of the heavy quark
 - Non-perturbative determination of $\delta m(a)$
 - Depending on how to choose fitting parameters

Eliminate scheme dependence

Regularization scheme dependence:

Introduce twist-three correction

$$h^{R}(z, P_{z}, \mu, \tau) = \left(1 - m_{0}(\tau)z\right) \sum_{k=0}^{\infty} C_{k} \left(\alpha_{s}(\mu), \mu^{2}z^{2}\right) \lambda^{k}a_{k+1}(\mu) + \mathcal{O}(z^{2})$$

$$\sim e^{\delta m(a) \cdot z} h^{B}(z) = \sum_{k=0}^{\infty} \left[C_{k} \left(\alpha_{s}(\mu), \mu^{2}z^{2}\right) - zm_{0}(\tau)\right] \lambda^{k}a_{k+1}(\mu) + \mathcal{O}(z\alpha_{s}, z^{2}),$$

- Twist-3 ambiguities exist in both sides, h^R and C_k
- $m_0(\tau)$ matches schemes between renormalization of lattice data and regularization of the matching coefficients

Data from Gao, et.al, PRL, (2022) 12

Extract $m_0(\tau)$ from fixed-order theory

$$\ln\left(\frac{h^{R}(z, P_{z} = 0, \mu)}{C_{0}(z, \mu^{2}z^{2})}\right) = c + m_{0}(\tau)z$$

Extract $m_0(\tau)$ from fixed-order theory

$$\ln\left(\frac{h^{R}(z, P_{z} = 0, \mu)}{C_{0}(z, \mu^{2}z^{2})}\right) = c + m_{0}(\tau)z$$
Too large uncertainty!
$$\int_{1}^{\infty} \frac{1}{2} \int_{1}^{\infty} \frac{1}{2} \int_{0}^{0} \frac{1}{2} \int_{0}^$$

LRR improved perturbation theory

 $C_0(z, \mu^2 z^2)$:

LRR improved perturbation theory

 $C_0(z, \mu^2 z^2)$:

Reduce the uncertainty 3~5 times from scale variation

Improve the convergence when going to higher order

Summary

- Parton physics can be calculated from lattice QCD through large momentum expansion
- Power correction is an important source of systematic uncertainty
- We propose the first systematic approach to achieve $1/P_z$ accuracy

Outlook

- More solid determination of the renormalon contribution
- Generalization to more complicated parton observables