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Introduction and motivation 

A detailed description of hadron structure is needed to disentangle the basic mechanisms 

behind strong interaction

Recent Lattice QCD calculations …
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Lattice QCD 

But:

Finite baryon density in experiment 

Non-zero 𝝁 (chemical potential) lead to non-Hermitian Dirac operator

sign problem

MC calculations are not applicable anymore

important constraint in the theoretical characterization of the 

physical states under different conditions of temperature and 

pressure. 

The Phase Diagram of QCD 

Matter

LATTICE

QCD

first model independent 
determination of pressure 
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Introduction and motivation 

A detailed description of hadron structure is needed to disentangle the basic mechanisms 

behind strong interaction

Recent Lattice QCD calculations …

Future projects aiming to a better understanding of the 3D structure of protons  e.g.  

Electron Ion Collider - EIC
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Precision 3D imaging of the internal structure of protons and atomic nuclei. 

High-energy electrons will interact with the internal microcosm to reveal unprecedented details—zooming in 

beyond the simplistic structure of three valence quarks bound by a mysterious force. 

We know that gluons multiply and play a significant role in establishing key properties of protons and nuclear 

matter. 

EIC will reveal features of this “ocean” of gluons and the “sea” of quark-antiquark pairs that form when gluons 

interact—allowing the mapping  the distribution and movement within protons and nuclei. 

EIC science

The Electron-Ion Collider (EIC), a powerful new facility to 

be built in the United States at the U.S. Department of 

Energy’s Brookhaven National Laboratory in collaboration 

with Thomas Jefferson National Accelerator Facility

Construction is expected to start around 2024, with operations beginning in the early 2031s
6



Introduction and motivation 

A detailed description of hadron structure is needed to disentangle the basic mechanisms 

behind strong interaction

Recent Lattice QCD calculations …

Future projects aiming to a better understanding of the 3D structure of protons  e.g.  

Electron Ion Collider - EIC

Modeling of heavy astrophysical objects, matter under extreme conditions 
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The Phase Diagram of QCD Matter

FAIR
NICA
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Introduction and motivation 

A detailed description of hadron structure is needed to disentangle the basic mechanisms 

behind strong interaction

Recent Lattice QCD calculations …

Future projects aiming to a better understanding of the 3D structure of protons  e.g.  

Electron Ion Collider - EIC

Modeling of heavy astrophysical objects, matter under extreme conditions 

Recent measurements by the ALICE collaboration of final state interactions between hyperons

and proton - neutrons 
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proton proton collisions

𝑠 = 13 TeV

two particle 

correlation 

function

FINAL STATE INTERACTION
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Potential p–Ξ     and    p–Ω  

HAL QCD collaboration

HAL (Hadrons to Atomic nuclei from Lattice) QCD 

Collaboration

Example:
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p-Ξ– correlation as a  function of relative 
momenta between proton and  Ξ–

Studying neutron stars 
in  the laboratory
10 July 2019
ALICE experiment

ALICE Collab. 2019 
arXiv:1904.12198.
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MIT Bag Model 

spherical bag with radius

R

0)( =−  
 mi

quarks with mass=0:
0=p

Dirac eq.

A. Chodos,  et al.   Phys.   Rev.  D9 (1974) 3471

Quick 
overview 
of the 
MIT 
bag 
model  
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current flux through  

the surface of the sphere = 0
Confinement
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The phase space volume of quarks in a spatial volume V with momentum p in 

the interval dp is  

Vdpp24

since each state occupies a phase space volume of  
3)2(  the number of

states characterized by a momentum p in the interval dp is
32 )2/(4  dpVp

The ocupation probability is given by the Fermi –Dirac distribution

The number of quarks in a volume V with momentum p within the interval dp is
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The energy of the system due to quarks is therefore 
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for massles fermions and bosons pressure and energy are related:  
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the pressure due to gluons
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Tsallis statistics

21

𝑆𝑞 ≡ 𝑘
1 − σ

𝑖=1
𝑊

𝑝𝑖
𝑞

𝑞 − 1
(𝑞 ∈ ℝ)

Journal of Statistical Physics 52(1988) 

Additivity 

correlated systems



Successfully applied to 
high energy physics

22

Journal of Statistical Physics 52(1988) 

EPJ Web of Conferences
Volume 13, 2011
HCBM 2010 – International Workshop on Hot and Cold Baryonic Matter



Hagedorn theory

Tsallis in high energy physics

Hadronization

temperature

Exponential asymptotic 

behavior

Fitting parameter
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Tsallis distribution

First time in HEP

Bediaga, E. M. Curado and J. M. de Miranda, 

Physica A 286, 156 (2000).

Deviations from exponential decay were 

observed → Polynomial decay (Higher PT)

I. Bediaga et al (2000)

T0 should not depend on the center of mass energy

c depends on the average multiplicity of the events →

same shape for all 

energies spectrum

Non-extensivity

Parameter
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Findings

Transverse momentum distribution of charged 

hadrons in the e+e- interaction

The Hagedorn predicted exponential behavior 

is shown by the dotted lined.

The deviation of the exponential behavior 

increases when the energy increases.

The continuous lines are the Tsallis fits.

Good description of the transverse momentum.

TASSO, Z. Phys. C 22, 307-340 (1984).

DELPHI data get from: PhD Thesis from Oliver Passon, 1997, 

Wuppertal University-Germany
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The power law associated with Tsallis statistics (Tsallis distributions) is  

being widely used in pp collisions

CMS

V. Khachatryan et al. (CMS Collaboration) Phys. Rev. Lett. 105, 022002 (2010)

Charged-hadron yield as a function 

of pT in pp collisions

q-exponential function

Fitting parameters: T, q
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Other references

pp collisions

L. Marques, J. Cleymans, and A. Deppman Phys. 

Rev. D 91, 054025 (2015)

Transverse momentum and rapidity

distributions for different identified

particles.

PHENIX, ALICE, CMS (0.2 → 7 Tev)

T. Bhattacharyya, J. Cleymans, L. Marques, S. 

Mogliacci and M. W. Paradza, J. Phys. G 45 no.5, 

055001 (2018) 

Transverse momentum for identified

particles (pions, kaons and protons).

ALICE (0.9, 2.76 and 7 Tev)

A. Khuntia, S. Tripathy, R. Sahoo and J. Cleymans. 

Eur. Phys. J. A (2017) 53: 103.

Transverse momentum for strange

and mutil-strange particles.

LHC at 7 Tev
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Heavy ions collisions

K. Saraswat, P. Shukla, V. Singh. J. Phys. 

Commun. 2 (2018) 035003

Transverse momentum of charged

hadrons. LHC at 13 Tev

Transverse momentum of hadrons in 

pPb and PbPb collisions (different

centralities) . CMS at 5.02 Tev.

K. Saraswat, P. Shukla, V. Kumar and V. 

Singh, Eur. Phys. J. A 53 (2017) 84.

Transverse momentum of the strange

hadrons in pPb (5.02 Tev) and PbPb

(2.76 Tev) collisions at CMS

Tsallis distributions with some 

modifications to include the transverse flow

all this may indicate a universal underlying mechanism in the hadron structure
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Tsallis MIT bag model

▪ We present a phenomenological framework based on the MIT bag model to estimate

the total pressure inside nucleons. To do so, a non-extensive Tsallis statistics of

quarks and gluons is implemented

T-MIT - Tsallis MIT Bag Model

all this may indicate a universal underlying mechanism in the hadron structure
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Pressure in the MIT bag model with a non 
extensive Tsallis statistics

▪ Quarks and gluones are two correlated systems in the hadron structure.

The correlation is represented effectively by the q Tsallis parameter. The non extensive

entropy for the hadron is then given by

▪ where SQ y SG están dados por
𝑆 =

1

𝑇
𝐸 + 𝑃𝑉 − σ

𝑖
𝜇𝑖𝑁𝑖
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One may obtain entropy from the Maxwell relations:

And then integrating this expresión with respect to Temperature and requiring that

q →1, the Tsallis pressure is simply Pq = PQ + PG
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Pressure
distribution
in the
T-MIT bag model

Tsallis parameter: q=1.002
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The pressure of quarks 
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Conclusions

B. In the new frame one may obtain the QCD phase diagram, masses and

the pressure inside hadrons in an effective model in which the     

chemical potential may be larger than zero

C.  A quick calculation gives a total pressure which describes general aspects

of the one obtained with LQCD calculations

A. A Tsallis Statistics treatment of the interacting subsystems in a hadron

has been implemented

D. The “q” Tsallis parameter can be understood as effective interaction

replacing the bag pressure “B” 

36



Backup 
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Bag pressure
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Parameters for the proton in a Bag Model

(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 = 0,𝑚 = 0

𝜓𝜓|𝑟=𝑅 = [𝑗0(𝑝
0𝑅)]2 − 𝜎 ⋅ 𝐫

̂
𝜎 ⋅ 𝐫

̂
[𝑗1(𝑝

0𝑅)]2 = 0 𝑝𝑚
0 =

2.04

𝑅 39



Temperature as a function of radii

▪ By considering the mass of the nucleon as the

totalenergy

Et = M

▪ Taking the proton as a system in termic equilibrium

▪ Neglecting the chemical potential µq=0

40



𝑞 = 𝑞0 +
𝐵 𝑟

256𝜋2

15
𝜋2

90
+

1
30

𝜇
𝑇

2
𝑉𝑇7

Bag pressure and q parameter
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