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Phenomenological 
motivations
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 Flavor physics is (well) described but   
 not explained in the Standard Model: 
A large number of free parameters in the 
flavor sector  (10 parameters in the quark 
sector only, 6 mq + 4 CKM) 

-  Why 3 families?  

-  Why the spectrum of quarks 
and leptons covers 5 orders of 
magnitude? (mq � v � GF

-1/2…) 

-  What give rise to the pattern 
of quark mixing and the 
magnitude of CP violation? 

3



32

Lattice QCD
Strong interactions are non-perturbative
at low energies

Asymptotic 
freedom

LQCD is a non-perturbative approach

Confinement

4
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The Green Functions can be written in terms of 
Functional Integrals over classical fields:

G(x1 , x2 , x3 , x4) = ¢ I(x1) I(x2) I(x3) I(x4) ² {

The Functional Integral

Z -1 � [dI] I(x1) I(x2) I(x3) I(x4) e-S(I)

The functional integral is defined by discretizing the 
space-time on a hypercubic 4-dimensional lattice

a
I(x) ĺ I(a n) n = ( nx , ny , nz , nt ) 

wPI(x) ĺ �PI(x) = [I(x+anP) - I( x ) ] /a
5
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The Lattice regularization
The functional integral is a formal definition because of the 
infrared and ultraviolet divergences. These are cured by 
introducing an infrared and an ultraviolet cutoff

1) The ultraviolet cutoff:
The momentum p is cutoff at the first Brioullin zone

|p| d ʌ/a

The lattice is defined in a finite volume

pmin a = 2ʌ/L 

The physical theory is obtained in the limit 
a o 0 Continuum limit   ;    Lo f Thermodinamic limit

2) The infrared cutoff:

a

6



Use the most powerful 
supercomputers in the world



Lattice QCD and flavor physics 

K

π
ν 

ν Rare decays 

K

π

π

Non-leptonic 
decays 

|Vub/Vcb| εK Δmd Δmd/Δms 

b→u/b→c K0 – K0 Bd - Bd Bs - Bs 

f+,F,… BK fBBB 1/2 ξ 

Quark 
masses 

CKM matrix 
elements 

fK/fπ, f+
Kl3 

Other 
processes 

K K x x 
sL ˜ dR ˜ g ˜ 

sL ˜ dR ˜ g ˜ 

Physics BSM 
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fK / fπ = 1.193(3) 0.3%

BK = 0.7625(97) 1.3%^ fDs = 249(1) MeV 0.4%

f+   (0) = 0.970(3) 0.3%Kπ

fBs = 228(4) MeV 2.0%

2.3%mud= 3.37(8) MeV

PRECISION PHYSICS from LATTICE QCD
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Qu ≠ Qd : O(αem) ≈ 1/100

mu ≠ md : O[(md-mu)/ΛQCD] ≈ 1/100

“Electromagnetic”

“Strong”

Isospin-breaking effects are induced by:

Since electromagnetic interactions renormalize quark masses the 
two corrections are intrinsically related

Isospin symmetry is an almost exact property 
of the strong interactions

Though small, IB effects play often a very important role
(quark masses, Mn - Mp, leptonic decay constants, vector form factor)

ISOSPIN-BREAKING EFFECTS

10



Isospin-breaking 
effects on the lattice 

RM123 method



A strategy for Lattice QCD: 
The isospin-breaking part of the Lagrangian 

is treated as a perturbation  

   Expand in:

arXiv:1110.6294

+

arXiv:1303.4896

RM123 Collaboration

αemmd – mu
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  - Identify the isospin-breaking term in the QCD action

  

Sm = muuu +mddd⎡⎣ ⎤⎦
x
∑ =

1
2

mu +md( ) uu + dd( )− 1
2

md −mu( ) uu − dd( )⎡

⎣
⎢

⎤

⎦
⎥

x
∑ =

    = mud uu + dd( )− Δm uu − dd( )⎡⎣ ⎤⎦
x
∑ = S0 − Δm Ŝ

- Expand the functional integral in powers of Δm

   
O =

Dφ  O e−S0+Δm Ŝ∫
Dφ   e−S0+Δm Ŝ∫

1st

!
Dφ  O e−S0 1+ Δm Ŝ( )∫
Dφ   e−S0 1+ Δm Ŝ( )∫

!
O

0
+ Δm O Ŝ

0

1+ Δm Ŝ
0

= O
0
+ Δm O Ŝ

0

- At leading order in Δm the corrections only appear in the 
  valence-quark propagators:
(disconnected contractions of ūu and 
ƌd vanish due to isospin symmetry)

The (md-mu) expansion

Advantage: 
factorised out

13

Ŝ = Σx(ūu-ƌd)

for isospin symmetry



The QED expansion 
for the quark propagator

In the electro-quenched approximation: 

14
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QED and isospin corrections 

The RM123 method
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▪︎ Decay rates of hadrons
  PHYSICAL REVIEW D 91, 074506 (2015)
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  PHYSICAL REVIEW LETTERS 120, 072001 (2018)
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The hadronic vacuum polarization contribution to aµ from full lattice QCD

Bipasha Chakraborty,1 C. T. H. Davies,1, ⇤ P. G. de Oliveira,1 J. Koponen,1 and G. P. Lepage2

(HPQCD collaboration), †

R. S. Van de Water3

1SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
2Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA

3Fermi National Accelerator Laboratory, Batavia, IL, USA
(Dated: May 30, 2017)

We determine the contribution to the anomalous magnetic moment of the muon from the ↵2
QED

hadronic vacuum polarization diagram using full lattice QCD and including u/d quarks with physical
masses for the first time. We use gluon field configurations that include u, d, s and c quarks in the
sea at multiple values of the lattice spacing, multiple u/d masses and multiple volumes that allow us
to include an analysis of finite-volume e↵ects. We obtain a result for aHVP,LO

µ of 667(6)(12)⇥ 10�10,
where the first error is from the lattice calculation and the second includes systematic errors from
missing QED and isospin-breaking e↵ects and from quark-line disconnected diagrams. Our result
implies a discrepancy between the experimental determination of aµ and the Standard Model of 3�.

I. INTRODUCTION

The muon’s gyromagnetic ratio gµ is known ex-
perimentally with extremely high accuracy: its mag-
netic anomaly, aµ ⌘ (gµ � 2)/2, has been measured
to 0.5 ppm [1] and a new experiment aims to reduce that
uncertainty to 0.14 ppm [2]. By comparing these results
with Standard Model predictions, we can use the muon’s
anomaly to search for indirect evidence of new physics
beyond the mass range directly accessible at the Large
Hadron Collider. There are tantalizing hints of a discrep-
ancy between theory and experiment — the di↵erence is
currently 2.2(7) ppm [3] — but more precision is needed.
In particular the Standard Model prediction, which cur-
rently is known to about 0.4 ppm [3], must be substan-
tially improved in order to match the expected improve-
ment from experiment.

The largest theoretical uncertainty in aµ comes from
the vacuum polarization of hadronic matter (quarks and
gluons) as illustrated in Figure 1. This contribution
has been estimated to a little better than 1% (which
is 0.6 ppm of aµ) from experimental data on e+e�

!

hadrons and ⌧ decay [4–8], but much recent work [9–
18] has focused on a completely di↵erent approach, us-
ing Monte Carlo simulations of lattice QCD [19], which
promises to deliver smaller errors in the future.

In an earlier paper [14], we introduced a new technique
for the lattice QCD analyses that allowed us to calculate
the s quark’s vacuum-polarization contribution from Fig-
ure 1 with a precision of 1% for the first time. Here we
extend that analysis to the much more important (and
di�cult to analyze) case of u and d quarks, allowing us to
obtain the complete contribution from hadronic vacuum

⇤christine.davies@glasgow.ac.uk
†URL: http://www.physics.gla.ac.uk/HPQCD

µ
q

q

FIG. 1: The ↵2
QED hadronic vacuum polarization contribu-

tion to the muon anomalous magnetic moment is represented
as a shaded blob inserted into the photon propagator (rep-
resented by a wavy line) that corrects the point-like photon-
muon coupling at the top of the diagram.

polarization at ↵2
QED

. We achieve a precision of 2%, for
the first time from lattice QCD. A large part of our un-
certainty is from QED, isospin breaking and quark-line
disconnected e↵ects that were not included in the simu-
lations, but will be in future simulations. The remaining
systematic errors add up to only 1%. A detailed analysis
of these systematic errors allows us to map out a strat-
egy for reducing lattice QCD errors well below 1% using
computing resources that are substantial but currently
available.

II. LATTICE QCD CALCULATION

Almost all of the hadronic vacuum polarization contri-
bution (HVP) comes from connected diagrams with the
structure shown in Figure 1: the photon creates a quark
and antiquark which propagate, while interacting with
each other, and eventually annihilate back into a pho-
ton. Here we analyze the case where the photon creates
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QED corrections to 
hadronic decays



The relevant processes are 
leptonic and semileptonic 

K and π decays

The determination of  Vus and  Vud 

18

K/π
Vus/Vud

K π
Vus

Γ K + → ℓ+ν ℓ γ( )( )
Γ π + → ℓ+ν ℓ γ( )( ) =

Vus
Vud

fK
fπ

⎛

⎝⎜
⎞

⎠⎟

2 M
K + 1−mℓ

2 M
K +
2( )2

Mπ + 1−mℓ
2 Mπ +

2( )2
1+δ EM +δ SU 2( )( )

Γ K +,0 → π 0,−ℓ+ν ℓ γ( )( ) = GF
2M

K + ,0
5

192π 3 C
K + ,0
2 Vus f+

K 0π −

0( )
2
IKℓ
0( )SEW 1+δ EM

K + ,0ℓ +δ SU 2( )
K + ,0π( )



Given the present exper. and theor. (LQCD) accuracy,  an important source of 
uncertainty are long distance electromagnetic and SU(2)-breaking corrections

M.Knecht et al., 2000;   V.Cirigliano and H.Neufeld, 2011

δEM = −  0.0069  (17)

At leading order in ChPT both δEM and δSU(2) can be expressed in 
terms of physical quantities (e.m. pion mass splitting, fK/fπ, …)

25% of error due to higher orders       0.2% on ΓKl2/Γπl2 

For ΓKl2/Γπl2

J.Gasser and H.Leutwyler, 1985;   V.Cirigliano and H.Neufeld, 2011

25% of error due to higher orders           
       0.1% on ΓKl2/Γπl2 

Electromagnetic and isospin-breaking effects

K/π

K π

19

Γ K + → ℓ+ν ℓ γ( )( )
Γ π + → ℓ+ν ℓ γ( )( ) =

Vus
Vud

fK
fπ

⎛

⎝⎜
⎞

⎠⎟

2 M
K + 1−mℓ

2 M
K +
2( )2

Mπ + 1−mℓ
2 Mπ +

2( )2
1+δ EM +δ SU 2( )( )

Γ K +,0 → π 0,−ℓ+ν ℓ γ( )( ) = GF
2M

K + ,0
5

192π 3 C
K + ,0
2 Vus f+

K 0π −

0( )
2
IKℓ
0( )SEW 1+δ EM

K + ,0ℓ +δ SU 2( )
K + ,0π( )

δ SU 2( ) =
f
K + fπ +

fK fπ

⎛
⎝⎜

⎞
⎠⎟

2

−1= −0.0044 12( )

ChPT is not applicable to D and B decays



     The rate is:

In the absence of electromagnetism, the non-perturbative QCD effects are contained 
in a single number, the pseudoscalar decay constant

AP
0( ) ≡ 0 q2γ 4γ 5q1 P

0( ) = fP
0( )MP

0( )
K+

s

u

!+

ν!
K+

s

u

!+

ν!

Leptonic decays at tree level

Since the masses of the pion and kaon are much 
smaller than MW we use the effective Hamiltonian 

 This replacement is necessary in a lattice calculation, since  1/ a≪ MW

q1

q2

!+

ν!

W

q1

q2

!+

ν!

Heff =
GF

2
Vq1q2
* q2γ

µ 1− γ 5( )q1( ) ν ℓγ µ 1− γ 5( )ℓ( )

20

Γ
P±
tree( ) P± → ℓ±ν ℓ( ) = GF

2

8π
Vq1q2

2
fP
0( )⎡⎣ ⎤⎦

2
M

P±mℓ
2 1− mℓ

2

M
P±
2

⎛

⎝⎜
⎞

⎠⎟

2

In the presence of electromagnetism it is not even possible to give a physical 
definition of fP J. Gasser and G.R.S. Zarnauskas, PLB 693 (2010) 122



 At O(α), Γ0 contains infrared divergences. One has to consider:

F. Bloch and A. Nordsieck,  

PR 52 (1937) 54
with 0 ≤ Eγ ≤ ΔE . The sum is infrared finite

... + ...

Γ0 Γ1 ΔE( )

K+

s

u

!+

ν!

K+

s

u

!+

ν!

K+

s

u

!+

ν!

Γ Pℓ2
±( ) = Γ P± → ℓ±ν ℓ( )+ Γ P± → ℓ±ν ℓγ ΔE( )( ) ≡ Γ0 + Γ1 ΔE( )

 Leptonic decays at O(α): the IR problem

Both Γ0 and Γ1(ΔE) can be evaluated in a fully non-perturbative 
way in lattice simulations.

21



Γ Pℓ2
±( ) = Γ0 − Γ0

pt( )+ Γ0
pt + Γ1

pt ΔE( )( )

In order to ensure the cancellation of IR divergences with good 
numerical precision, we rewrite:

The strategy

22

Γ Pℓ2
±( ) = Γ0 − Γ0

pt( )+ Γ0
pt + Γ1

pt ΔE( )( )
+(Γ1(ΔE) − Γpt

1 (ΔE))
Both the quantities         and                are evaluated on the latticeΓ0 Γ1(ΔE)

The contribution                                         can be computed in the 
infinite-volume limit requiring the knowledge of the structure 
dependent form factors                and of 

d2Γ1

dxγdxℓ
=

αemΓ(tree)

4π {
d2Γpt

dxγdxℓ
+

d2ΓSD

dxγdxℓ
+

d2ΓINT

dxγdxℓ }
xγ =

2p ⋅ k
m2

P

xℓ =
2p ⋅ pℓ − m2

ℓ

m2
P

Γ1 − Γpt
1 = ΓSD + ΓINT

FA,V(xγ) fP



The contributions from soft virtual photon to        and         in the first 
term are exactly the same and the IR divergence cancels in the 
difference                  .Γ0 − Γ0

pt

Γ0 Γ0
pt

The sum                          in the second term is IR finite since it is a 
physically well defined quantity. This term can be thus calculated in 
perturbation theory with a different IR cutoff.  

Γ0
pt + Γ1

pt ΔE( )

The three terms are also separately gauge invariant.

23

ΔΓ0 L( ) = Γ0 L( )− Γ0
pt L( ) Γ pt ΔE( ) = lim

mγ →0
Γ0

pt mγ( )+ Γ1pt ΔE,mγ( )⎡⎣ ⎤⎦

The strategy

Γ Pℓ2
±( ) = Γ0 − Γ0

pt( )+ Γ0
pt + Γ1

pt ΔE( )( )
+(Γ1(ΔE) − Γpt

1 (ΔE))

Γ1 − Γpt
1The difference                   in the third term is also IR finite.



Γ0
pt mγ( )

Γ1
pt ΔE,mγ( )

Γ pt ΔE( ) = lim
mγ →0

Γ0
pt mγ( )+ Γ1pt ΔE,mγ( )⎡⎣ ⎤⎦

24



The result is:

IMPORTANT CHECK: For ΔE=ΔEMAX the well known result for the total rate as 

in S. M. Berman, PRL 1 (1958) 468 and T. Kinoshita, PRL 2 (1959) 477 is 
reproduced 25

NEW

Γ pt ΔE( ) = lim
mγ →0

Γ0
pt mγ( )+ Γ1pt ΔE,mγ( )⎡⎣ ⎤⎦



is the first term in the master formula

Montecarlo simulation 
Lattice QCD

1

Perturbation theory 
with pointlike pion 

in finite volume

2

Γ Pℓ2
±( ) = lim

L→∞
Γ0 L( )− Γ0

pt L( )⎡⎣ ⎤⎦ + limmγ →0
Γ0

pt mγ( )+ Γ1pt ΔE,mγ( )⎡⎣ ⎤⎦

arXiv:1711.06537
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ΔΓ0 L( ) = Γ0 L( )− Γ0
pt L( )

ΔΓ0 L( )
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The leading-order electromagnetic and strong isospin-breaking corrections to the ratio of Kμ2 and πμ2
decay rates are evaluated for the first time on the lattice, following a method recently proposed. The lattice
results are obtained using the gauge ensembles produced by the European Twisted Mass Collaboration with
Nf ¼ 2þ 1þ 1 dynamical quarks. Systematic effects are evaluated and the impact of the quenched QED
approximation is estimated. Our result for the correction to the tree-level Kμ2/πμ2 decay ratio is
−1.22ð16Þ%, to be compared to the estimate of −1.12ð21Þ% based on chiral perturbation theory and
adopted by the Particle Data Group.

DOI: 10.1103/PhysRevLett.120.072001

Introduction.—The determination of a number of had-
ronic quantities relevant for flavor physics phenomenology
using lattice QCD simulations has reached such an impres-
sive level of precision [1] that both electromagnetic (e.m.)
and strong isospin-breaking (IB) effects cannot be
neglected.
In the past few years accurate lattice results including

e.m. and IB effects have been obtained for the hadron
spectrum, as in the case of the charged-neutral mass
splittings of pseudoscalar (P) mesons and baryons (see,
e.g., Refs. [2,3]). In this respect the inclusion of QED
effects in lattice QCD simulations has been carried out
following mainly two methods: in the first one, QED is
added directly to the action and QCDþ QED simulations
are performed at few values of the electric charge (see, e.g.,
Refs. [3,4]), while the second one, the RM123 approach of
Refs. [2,5], consists in an expansion of the lattice path-

integral in powers of two small parameters [the e.m.
coupling αem and the light-quark mass difference
ðmd −muÞ/ΛQCD], which are both at the level of ≈1%.
Since it suffices to work at leading order in the perturbative
expansion, the attractive feature of the RM123 method is
that the small values of the two expansion parameters are
factorized out, so that one can get relatively large numerical
signals for the slopes of the corrections with respect to the
expansion parameters. Moreover, the slopes can be deter-
mined in isosymmetric QCD. In this Letter we adopt the
RM123 method.
While the calculation of e.m. effects in the hadron

spectrum does not suffer from infrared (IR) divergences,
the same is not true in the case of hadronic amplitudes,
where e.m. IR divergences are present and cancel for well-
defined, measurable physical quantities only after including
diagrams containing both real and virtual photons [6]. This
is the case, for example, for the leptonic πl2 and Kl2 and
the semileptonic Kl3 decays, which play a crucial role for
an accurate determination of the Cabibbo-Kobayashi-
Maskawa (CKM) entries jVus/Vudj and jVusj [7].
The presence of IR divergences requires the develop-

ment of additional strategies to those used in the compu-
tation of e.m. effects in the hadron spectrum. Such a new
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Lattice calculation of Γ0(L) at O(α)

The Feynman diagrams at O(α) can be divided in 3 classes
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FIG. 1: Feynman’s diagrams representing the amplitudes with the emission of a real photon from the meson (left panel) or from the

charged lepton in the final state (right panel).

that the SD corrections might instead be relevant for the decays of pions and kaons into electrons. Moreover, by using
the same single–pole dominance approximation originally used in ref. [15], the SD corrections have been estimated to
be phenomenologically relevant in the case of heavy flavoured mesons.

In this paper we provide the first non–perturbative lattice calculation of the radiative decay rates P ! `⌫̄� in the
case of pions, kaons, D and Ds mesons. The case of bottom mesons will be studied in future works on the subject.

The plan of the paper is as follows. In section . . .

II. THE RADIATIVE DECAY RATE

The non-perturbative contribution to the radiative leptonic decay rate for the processes P ! `⌫� is encoded in the
following hadronic matrix–element, see left panel in Fig. 1

H↵r
W (k, p) = ✏rµ(k) H↵µ

W (k, p) = ✏rµ(k)

Z
d4y eik·y Th0|j↵

W (0)jµ
em(y)|P (p)i , (1)

where ✏rµ(k) is the polarization vector of the outgoing real photon having four–momentum k, p is the momentum of
the ingoing pseudoscalar meson of mass mP (p2 = m2

P ). The operators

jµ
em(x) =

X

f

qf  ̄f (x)�µ f (x) , j↵
W (x) = j↵

V (x) � j↵
A(x) =  ̄1(x) (�↵ � �↵�5) 2(x) , (2)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the di↵erent
quark fields  f having electric charge qf in units of the charge of the positron. In order to calculate the full amplitude
one has to consider the contribution in which the photon is emitted from the final-state charged lepton, see right panel
in Fig. 1. The latter contribution can however, be computed in perturbation theory using the meson decay constant
fP . All the contributions are combined in the formulae for the decay rate given in appendix A.

The decomposition of H↵r
W (k, p) in terms of scalar form–factors has been discussed in ref. [9] (see also [10]). Here we

adopt the same basis used in that paper to write

H↵r
W (k, p) = ✏rµ(k)

(
H1

⇥
k2gµ↵ � kµk↵

⇤
+ H2

⇥
(p · k � k2)kµ � k2(p � k)µ

⇤
(p � k)↵

� i
FV

mP
"µ↵��k�p� +

FA

mP

⇥
(p · k � k2)gµ↵ � (p � k)µk↵

⇤

+ fP


gµ↵ +

(2p � k)µ(p � k)↵

2p · k � k2

�)
. (3)
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that the SD corrections might instead be relevant for the decays of pions and kaons into electrons. Moreover, by using
the same single–pole dominance approximation originally used in ref. [15], the SD corrections have been estimated to
be phenomenologically relevant in the case of heavy flavoured mesons.

In this paper we provide the first non–perturbative lattice calculation of the radiative decay rates P ! `⌫̄� in the
case of pions, kaons, D and Ds mesons. The case of bottom mesons will be studied in future works on the subject.

The plan of the paper is as follows. In section . . .

II. THE RADIATIVE DECAY RATE

The non-perturbative contribution to the radiative leptonic decay rate for the processes P ! `⌫� is encoded in the
following hadronic matrix–element, see left panel in Fig. 1
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are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the di↵erent
quark fields  f having electric charge qf in units of the charge of the positron. In order to calculate the full amplitude
one has to consider the contribution in which the photon is emitted from the final-state charged lepton, see right panel
in Fig. 1. The latter contribution can however, be computed in perturbation theory using the meson decay constant
fP . All the contributions are combined in the formulae for the decay rate given in appendix A.

The decomposition of H↵r
W (k, p) in terms of scalar form–factors has been discussed in ref. [9] (see also [10]). Here we

adopt the same basis used in that paper to write

H↵r
W (k, p) = ✏rµ(k)

(
H1

⇥
k2gµ↵ � kµk↵

⇤
+ H2

⇥
(p · k � k2)kµ � k2(p � k)µ

⇤
(p � k)↵

� i
FV

mP
"µ↵��k�p� +

FA

mP

⇥
(p · k � k2)gµ↵ � (p � k)µk↵

⇤

+ fP


gµ↵ +

(2p � k)µ(p � k)↵

2p · k � k2

�)
. (3)

3

The term in the last line of Eq. (3), H↵µ
pt (k, p), corresponds to the point–like infrared–divergent contribution. The

other terms correspond to the so called Structure Dependent contribution, H↵µ
SD(k, p). H↵µ

pt (k, p) saturates the Ward
Identity satisfied by H↵µ

W (k, p), i.e.

kµ H↵µ
W (k, p) = kµ H↵µ

pt (k, p) = ih0|j↵
W (0)|P (p)i = fP p↵ , kµ H↵µ

SD(k, p) = 0 . (4)

The four form-factors H1,2 and FV,A are scalar functions of Lorentz invariants, the squared meson mass m2
P , p · k and

k2. Eq. (3) is valid for generic (o↵-shell) values of the photon momentum and for generic choices of the polarisation
vectors. The knowledge of the four form-factors in the case of o↵-shell photons (k2 6= 0) gives access to the study of
decays in which the pseudo scalar meson decays in four leptons. These processes are very interesting in the search of
physics beyond the Standard Model and will be the subject of a future work. In this work we concentrate on the case
in which the photon is on-shell.

By setting k2 = 0, at fixed meson mass, the form factors are functions of p · k only. Moreover, by choosing a physical
basis for the polarization vectors, i.e. such that (see Eqs. (B6) and Eqs. (B7))

✏r(k) · k = 0 , (5)

one has

H↵r
W (k, p) = ✏r

µ(k)

(
� i

FV

mP
"µ↵��k�p� +


FA

mP
+

fP

p · k

�
(p · k gµ↵ � pµk↵) +

fP

p · k
pµp↵

)
. (6)

Once the decay constant fP and the two SD axial and vector form–factors FA and FV are known, the radiative decay
rate can be calculated by using the formulae given in appendix A. These formulae are expressed in terms of the
convenient dimensionless variable

x� =
2p · k

m2
P

with 0  x�  1 � m2
`

m2
P

, (7)

where m` is the mass of the outgoing lepton in the process P ! `⌫�.

III. EXTRACTING THE FORM–FACTORS FORM EUCLIDEAN CORRELATORS

In order to connect the hadronic matrix–element with Euclidean correlators, the primary observables in lattice calcula-
tions, it is useful to express the H↵r

W (k, p), defined in Eq. (1) in Minkowsky space, by using the canonical representation,
i.e. in terms of the contributions coming from the di↵erent time–orderings. To this end, we define

H↵r
W (k, p) = H↵r

W,1(k, p) + H↵r
W,2(k, p) , jr(k) =

Z
d3y e�ik·y ✏r

µ(k) jµ
em(0,y) , (8)

and perform the y0 integral,

H↵r
W,1(k, p) =

Z 0

�1
dty eiE�ty h0|j↵

W (0)ei(Ĥ�E�i")tyjr(k)|P (p)i = �ih0|j↵
W (0)

1

Ĥ + E� � E � i"
jr(k)|P (p)i ,

H↵r
W,2(k, p) =

Z 1

0
dty eiE�ty h0|jr(k)e�i(Ĥ�i")tyj↵

W (0)|P (p)i = �ih0|jr(k)
1

Ĥ � E� � i"
j↵
W (0)|P (p)i , (9)

where Ĥ is the Hamiltonian operator and we have introduced the compact notation

E =
q

m2
P + p2 , E� = |k| , (10)

are the energies of the incoming meson and of the outgoing real photon.

The important observation that makes the lattice calculation possible by using standard e↵ective–mass/residue tech-
niques is that the integral appearing in the definition of H↵r

W (k, p) can be rotated to Euclidean signature without

By setting , at fixed meson mass, the form factors depend on  only. 
Moreover, by choosing a physical basis for the polarization vectors, i.e. , one 
has

k2 = 0 p ⋅ k
ϵr(k) ⋅ k = 0
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 Form factors: results

FP
A,V(xγ) = CP

A,V + DP
A,V xγ

22

continuum limit and to physical quark masses. The discretisation artefacts, which include ones of

O(m2
c a

2), while approximately of the expected size, appear to be relatively large because the form

factors are small. In fact the form factors at the three lattice spacings we have at our disposal are

fully consistent, within our uncertainties, with a linear behaviour in a2, as illustrated in Fig. 12

where the form factors at x� = 0.2 are presented as a function of the lattice spacing. The points

in the figure are obtained after extrapolation to physical quark masses either using a polynomial

of pole ansatz corresponding to Eqs. (35) or (36) at fixed lattice spacing. In this first study, with

only three lattice spacings at our disposal, we are unable to include corrections of higher order in

a2 beyond those present in Eqs. (35) and (36). In AppendixD we have estimated their e↵ects in

the uncertainties of our final results for the form factors.

We also study our physical results (i.e those obtained after the continuum and chiral extrapo-

lations) as a function of x� by fitting them to the following linear expressions:

FP

A,V (x�) = CP

A,V +DP

A,V x� , (37)

where P represents each of the pseudoscalar mesons, ⇡, K, D and Ds.

For the axial form factors we find:

C⇡

A = 0.010± 0.003 ; D⇡

A = 0.0004± 0.0006 ; ⇢C⇡
A,D

⇡
A
= �0.419 ;

CK

A = 0.037± 0.009 ; DK

A = �0.001± 0.007 ; ⇢
C

K
A ,D

K
A
= �0.673 ;

CD

A = 0.109± 0.009 ; DD

A = �0.10± 0.03 ; ⇢
C

D
A ,D

D
A
= �0.557 ;

CDs
A

= 0.092± 0.006 ; DDs
A

= �0.07± 0.01 ; ⇢
C

Ds
A ,D

Ds
A

= �0.745 . (38)

and for the vector form factors we obtain

C⇡

V = 0.023± 0.002 ; D⇡

V = �0.0003± 0.0003 ; ⇢C⇡
V ,D

⇡
V
= �0.570 ;

CK

V = 0.12± 0.01 ; DK

V = �0.02± 0.01 ; ⇢
C

K
V ,D

K
V
= �0.714 ;

CD

V = �0.15± 0.02 ; DD

V = 0.12± 0.04 ; ⇢
C

D
V ,D

D
V
= �0.580 ;

CDs
V

= �0.12± 0.02 ; DDs
V

= 0.16± 0.03 ; ⇢
C

Ds
V ,D

Ds
V

= �0.900 . (39)

In Eqs. (38) and (39), for each of the C’s and D’s, ⇢C,D is the correlation between them, defined

by

⇢C,D =

P
i
(Ci � µC)(Di � µD)pP

i
(Ci � µC)2

pP
i
(Di � µD)2

, µC =
1

N

X

i

Ci , µD =
1

N

X

i

Di , (40)

where Ci and Di are the jackknife samples and the sum runs over all the jackknifes following the

procedure in Appendix A of Ref. [29].
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We present a nonperturbative lattice calculation of the form factors which contribute to the amplitudes
for the radiative decays P → lν̄lγ, where P is a pseudoscalar meson and l is a charged lepton. Together
with the nonperturbative determination of the corrections to the processes P → lν̄l due to the exchange of
a virtual photon, this allows accurate predictions at OðαemÞ to be made for leptonic decay rates for
pseudoscalar mesons ranging from the pion to the Ds meson. We are able to separate unambiguously and
nonpertubatively the pointlike contribution, from the structure-dependent, infrared-safe, terms in the
amplitude. The fully nonperturbative OðaÞ improved calculation of the inclusive leptonic decay rates will
lead to the determination of the corresponding Cabibbo-Kobayashi-Maskawa matrix elements also at
OðαemÞ. Prospects for a precise evaluation of leptonic decay rates with emission of a hard photon are also
very interesting, especially for the decays of heavy D and B mesons for which currently only model-
dependent predictions are available to compare with existing experimental data.

DOI: 10.1103/PhysRevD.103.014502

I. INTRODUCTION

The unitarity of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix is one of the most precise tests of the
Standard Model. Indeed, CKM unitarity may rule out many
theoretically well-motivated models for new physics and
put severe constraints on the energy scale where new
phenomena might occur, well beyond the range accessible
to direct experimental searches. In this respect, leptonic
decay rates of light and heavy pseudoscalar mesons are
essential ingredients for the extraction of the CKM matrix
elements. A first-principles calculation of these quantities
requires nonperturbative accuracy and hence numerical
lattice simulations. Moreover, in order to fully exploit
the presently available experimental information and to

perform the next generation of flavor-physics tests, OðαemÞ
electromagnetic corrections must be included. In this
endeavor, the radiative leptonic decays P → lν̄lðγÞ (where
P is a negatively charged pseudoscalar meson, l a lepton,
ν̄l the corresponding antineutrino, and γ a photon) are
particularly important; see [1].
Knowledge of the radiative leptonic decay rate in the

region of small (soft) photon energies is required in order to
properly define the infrared-safe measurable decay rate for
the process P → lν̄lðγÞ. Indeed, according to the well-
known Bloch-Nordsieck mechanism [2], the integral of the
radiative decay rate in the phase space region correspond-
ing to soft photons must be added to the decay rate with no
real photons in the final states (the so-called virtual rate) in
order to cancel infrared divergent contributions appearing
in unphysical quantities at intermediate stages of the
calculations.
On the one hand, in the limit of ultrasoft photon energy,

the radiative decay rate can be reliably calculated in an
effective theory in which the meson is treated as a pointlike
particle. This is a manifestation of the well-known

Published by the American Physical Society under the terms of
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Structure dependent electromagnetic
corrections

In this note we provide the expression for the di↵erential decay rate

d�1

dx�
=

d

dx�
�
⇣
P+ ! `+⌫`�

⌘
(1)

where, in rest frame of the initial meson, x� = 2E�/mP .
The starting point is the expression for the double di↵erential decay rate

d2�1/dx�dx`, which was obtained in Ref.[1] and it also reported in Eqs. (B12)
and (B13) of our paper [2]1. By expressing the rate as �1 = �pt

1 + �SD
1 +

�INT
1 , where the three terms correspond to the pointlike, structure-dependent

and interference contributions respectively, after integrating over the lepton
energy x` we find

4⇡

↵�tree
0

d�SD
1

dx�
=

m2
P

6f 2
P r2` (1� r2` )

2 [FV (x�)2 + FA(x�)2] fSD(x�)
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↵�tree
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d�INT
1

dx�
= � 2mP

fP (1� r2` )
2

h
FV (x�) f INT

V (x�) + FA(x�) f INT
A (x�)

i
(2)

where FV,A(x�) are the vector and axial form factors, r` = m`/mP and the
functions fSD(x�) and f INT

V,A (x�) in Eq. (2) are given by

fSD(x�) = x3
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"
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#
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� + r2`x� � r4`
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+ (x� � 2r2` ) log

 
1� x�
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!#

.

(3)
Note that a term proportional to FV (x�) · FA(x�), which appears in the
double di↵erential decay rate d2�SD

1 /dx�dx`, gives a vanishing contribution
to the integral over x` and does not enter in d�SD

1 /dx� of Eq. (2). The total

1I have checked the correctness of these results.

1

�������

ChPT O(e2p4) lattice

0.1 0.2 0.3 0.4
x�

5.×10-10

1.×10-9

1.5×10-9

2.×10-9

2.5×10-9

dR1SD(� � ����)/dx�

�������

ChPT O(e2p4) lattice

0.1 0.2 0.3 0.4
x�

-2.×10-7

-1.×10-7

1.×10-7

2.×10-7

dR1INT(� � ����)/dx�

�������

ChPT O(e2p4) lattice

0.2 0.4 0.6 0.8
x�

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

dR1SD(K � ����)/dx�

�������

ChPT O(e2p4) lattice

0.2 0.4 0.6 0.8
x�

-0.00015

-0.00010

-0.00005

dR1INT(K � ����)/dx�



31

Leptonic decays at O(α):  RESULTS
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The emission of a real hard photon removes the  helicity suppression (mℓ /MB)2

This is the simplest process that probes (for large ) the first inverse moment of the 
B-meson LCDA

Eγ

1
λB(μ)

= ∫
∞

0

dω
ω

ΦB+(ω, μ)

 is an important input in QCD-factorization predictions for non-leptonic B decays 
but is poorly known
λB

B� ! `�⌫̄�

• Adding a (hard) photon removes the (m`/mB)
2
helicity suppression.

• This is the simplest decay that (for large E�) probes the first inverse

moment of the B-meson light-cone distribution amplitude,

1/�B =

Z 1

0

�B+(!)
!

d!.

�B is an important input in QCD-factorization predictions for nonleptonic

B decays and is poorly known.

[See, for example, M. Beneke, V. Braun, Y. Ji, Y.-B. Wei, arXiv:1804.04962/JHEP2018;

M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, arXiv:hep-ph/9905312/PRL 1999]

• Belle: B(B
�
! `�⌫̄�, E� > 1 GeV) < 3.0⇥ 10

�6
SM: O(10

�6
)

[arXiv:1810.12976/PRD2018]

ν̄ℓ

M. Beneke, V. M. Braun, Y. Ji, Y.-B. Wei, 2018

Radiative corrections to leptonic heavy-meson decays

B− → ℓ−ν̄ℓγ
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High-precision determination of radiative-leptonic-decay form factors

using lattice QCD: a study of methods

Davide Giusti,1 Christopher F. Kane,2 Christoph Lehner,1 Stefan Meinel,2 and Amarjit Soni3

1Fakultät für Physik, Universität Regensburg, 93040, Regensburg, Germany
2Department of Physics, University of Arizona, Tucson, AZ 85721, USA
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(Dated: February 2, 2023)

We present a study of lattice-QCD methods to determine the relevant hadronic form factors for
radiative leptonic decays of pseudoscalar mesons. We provide numerical results for D

+
s ! `

+
⌫�.

Our calculation is performed using a domain-wall action for all quark flavors and on a single
RBC/UKQCD lattice gauge-field ensemble. The first part of the study is how to best control
two sources of systematic error inherent in the calculation, specifically the unwanted excited states
created by the meson interpolating field, and unwanted exponentials in the sum over intermediate
states. Using a 3d sequential propagator allows for better control over unwanted exponentials from
intermediate states, while using a 4d sequential propagator allows for better control over excited
states. We perform individual analyses of the 3d and 4d methods as well as a combined analysis
using both methods, and find that the 3d sequential propagator o↵ers good control over both sources
of systematic uncertainties for the smallest number of propagator solves. From there, we further im-
prove the use of a 3d sequential propagator by employing an infinite-volume approximation method,
which allows us to calculate the relevant form factors over the entire allowed range of photon ener-
gies. We then study improvements gained by performing the calculation using a di↵erent three-point
function, using ratios of three-point functions, averaging over positive and negative photon momen-
tum, and using an improved method for extracting the structure-dependent part of the axial form
factor. The optimal combination of methods yields results for the D

+
s ! `

+
⌫� structure-dependent

vector and axial form factors in the entire kinematic range with statistical/fitting uncertainties of
order 5%, using 25 gauge configurations with 64 samples per configuration.
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FIG. 14. Results of FA,SD and FV , as a function of x� calculated using the complete analysis method. Also shown are the
contributions from the individual quark flavors in the electromagnetic current. The data shown in these plots are also provided
in machine-readable files [77]. Note that these results are from a single gauge-field ensemble, and thus not yet extrapolated to
the continuum limit and physical pion mass.

individual quark components of the electromagnetic-current contributions to the form factors; the full form factors
are obtained by summing the fit results of these contributions. As before, we check that the fit result of an individual
data set is stable under variations of the fit range. This stability analysis is first performed to the data with the
weak and EM currents at the origin separately. For the tem < 0 and tW < 0 data, we search for stability under
variations of the minimum fit ranges T<

min and T<,EM
min , as well as the distances from the interpolating field T<

max + tH
and T<,EM

max + tH . For the tem > 0 and tW > 0 data on the other hand, stability is only checked under variations of
the minimum fit ranges T>

min and T>,EM
min . The stable fit ranges determined from these individual fits are then used to

perform simultaneous fits to the tem < 0(tem > 0) and tW > 0(tW < 0) data. To check that the combined fits are also
stable, we perform fits to a number of di↵erent fit ranges varied about these chosen fit ranges. In particular, we vary
each of the three possible fit ranges individually by �1, 0, and +1, resulting in 27 total fits. For simultaneous fits to
the tem < 0 and tW > 0 data, the three fit ranges we vary are T<

min, T>,EM
min , and T<

max + tH , and for simultaneous fits

to the tem > 0 and tW < 0 data, the three fit ranges we vary are T>

min, T
<,EM
min , and T<,EM

max + tH . Because we found
that performing global fits to all x� did not significantly improve the precision of the extrapolated values for the form
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in machine-readable files [77]. Note that these results are from a single gauge-field ensemble, and thus not yet extrapolated to
the continuum limit and physical pion mass.
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are obtained by summing the fit results of these contributions. As before, we check that the fit result of an individual
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Another application: the muon g-2

Electromagnetic correction to 
the hadronic vacuum  

polarization

arXiv:1901.10462
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We present a lattice calculation of the leading-order electromagnetic and strong isospin-breaking
corrections to the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of
the muon. We employ the gauge configurations generated by the European Twisted Mass Collaboration
with Nf ¼ 2þ 1þ 1 dynamical quarks at three values of the lattice spacing (a ≃ 0.062; 0.082; 0.089 fm)
with pion masses between ≃210 and ≃450 MeV. The results are obtained by adopting the RM123
approach in the quenched-QED approximation, which neglects the charges of the sea quarks.
Quark disconnected diagrams are not included. After the extrapolations to the physical pion
mass and to the continuum and infinite-volume limits the contributions of the light, strange, and charm
quarks are, respectively, equal to δaHVPμ ðudÞ ¼ 7.1ð2.5Þ × 10−10, δaHVPμ ðsÞ ¼ −0.0053ð33Þ × 10−10,
and δaHVPμ ðcÞ ¼ 0.0182ð36Þ × 10−10. At leading order in αem and ðmd −muÞ=ΛQCD we obtain
δaHVPμ ðudscÞ ¼ 7.1ð2.9Þ × 10−10, which is currently the most accurate determination of the isospin-
breaking corrections to aHVPμ .

DOI: 10.1103/PhysRevD.99.114502

I. INTRODUCTION

The muon anomalous magnetic moment aμ ≡ ðg − 2Þ=2
is one of the most precisely determined quantities in
particle physics. It is experimentally known with an
accuracy of 0.54 ppm [1] (BNL E821), and the current
precision of the Standard Model (SM) prediction is at the
level of 0.4 ppm [2]. The discrepancy between the
experimental value, aexpμ , and the SM prediction, aSMμ ,
corresponds to ≃3.5–4 standard deviations, namely aexpμ −
aSMμ ¼ 31.3ð7.7Þ × 10−10 [3], aexpμ − aSMμ ¼ 26.8ð7.6Þ ×
10−10 [4], and aexpμ − aSMμ ¼ 27.1ð7.3Þ × 10−10 [5].

Since the above tension may be an exciting indication of
new physics (NP) beyond the SM, an intense research
program is currently underway in order to achieve a
significant improvement of the uncertainties. The forth-
coming g − 2 experiments at Fermilab (E989) [6] and
J-PARC (E34) [7] aim at reducing the experimental
uncertainty by a factor of 4, down to 0.14 ppm, making
the comparison of the experimental value aexpμ with the
theoretical prediction aSMμ one of the most stringent tests
of the SM in the quest of NP effects. On the theoretical side,
the main uncertainty on aSMμ comes from hadronic con-
tributions, related to the hadronic vacuum polarization
(HVP) and light-by-light terms [3,8]. With the planned
reduction of the experimental error, the uncertainty of the
hadronic corrections will soon become the main limitation
of this SM test.
The theoretical predictions for the hadronic contribution

aHVPμ have been traditionally obtained from experimental

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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Conclusions and future perspectives

We have developed a method to compute isospin breaking effects in 
hadronic processes with lattice QCD and presented the first calculation for 
light-meson leptonic decay rates

For hadronic decays, the presence of IR divergences in the intermediate 
steps of the calculation requires a dedicated procedure

Extension to leptonic heavy-light meson decays (arXiv:2111.15614, 
arXiv:2302.01298) and neutron beta decay is in progress

The experimental and theoretical accuracy reached in flavor physics for 
some hadronic observables implies that electromagnetic and strong isospin 
breaking effects cannot be neglected anymore
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Details of the lattice simulation

  We have used the gauge field configurations generated by ETMC,

  European Twisted Mass Collaboration, in the pure isosymmetric QCD

  theory with Nf=2+1+1 dynamical quarks

- Gluon action: Iwasaki

- Quark action: twisted mass at maximal twist

                       (automatically O(a) improved)

OS for s and c valence quarks

6

SUPPLEMENTARY MATERIAL

Details of the calculation described in this letter will
be presented in Ref. [24]. Here, in subsection A we col-
lect the main parameters of the simulations performed in
the isosymmetric QCD theory and discuss briefly their
relation with the prescription of Ref. [3], while in subsec-
tion B we sketch some of the key points and illustrate the
quality of the results by showing the time-dependence of
the most complicated diagrams, i.e. those in Fig. 4(a) and
(b) in which a photon is exchanged between the quarks
and the final-state charged lepton.

A. Simulation parameters

The main parameters of the simulations performed
within isosymmetric QCD in Ref. [15] are collected in
Table I.

ensemble � V/a4 aµud aµ� aµ� Ncf aµs M⇡ MK

(MeV) (MeV)

A40.40 1.90 403 · 80 0.0040 0.15 0.19 100 0.02363 317(12) 576(22)

A30.32 323 · 64 0.0030 150 275(10) 568(22)

A40.32 0.0040 100 316(12) 578(22)

A50.32 0.0050 150 350(13) 586(22)

A40.24 243 · 48 0.0040 150 322(13) 582(23)

A60.24 0.0060 150 386(15) 599(23)

A80.24 0.0080 150 442(17) 618(14)

A100.24 0.0100 150 495(19) 639(24)

A40.20 203 · 48 0.0040 150 330(13) 586(23)

B25.32 1.95 323 · 64 0.0025 0.135 0.170 150 0.02094 259 (9) 546(19)

B35.32 0.0035 150 302(10) 555(19)

B55.32 0.0055 150 375(13) 578(20)

B75.32 0.0075 80 436(15) 599(21)

B85.24 243 · 48 0.0085 150 468(16) 613(21)

D15.48 2.10 483 · 96 0.0015 0.1200 0.1385 100 0.01612 223 (6) 529(14)

D20.48 0.0020 100 256 (7) 535(14)

D30.48 0.0030 100 312 (8) 550(14)

TABLE I: Values of the valence and sea bare quark masses (in
lattice units), of the pion and kaon masses for the Nf = 2+ 1+ 1

ETMC gauge ensembles used in Ref. [15] and for the gauge ensem-
ble, A40.40 added to improve the investigation of FVEs. A separa-
tion of 20 trajectories between each of the Ncf analysed configura-
tions. The bare twisted masses µ� and µ� describe the strange and
charm sea doublet according to Ref. [18]. The values of the strange
quark bare mass aµs, given for each �, correspond to the physical

strange quark mass mphys
s (MS, 2GeV) = 99.6(4.3) MeV and to

the mass renormalization constants determined in Ref. [15]. The
central values and errors of pion and kaon masses are evaluated
using the bootstrap procedure of Ref. [15].

Three values of the inverse bare lattice coupling � and
several lattice volumes have been considered. For the
earlier investigation of FVEs ETMC had produced three
dedicated ensembles, A40.20, A40.24 and A40.32, which
share the same quark masses and lattice spacing and dif-
fer only in the lattice size L. To improve the present
investigation we have generated a further gauge ensem-
ble, A40.40, at a larger value of L.

At each lattice spacing di↵erent values of the light sea
quark mass have been considered. The light valence and

sea bare quark masses are always taken to be degenerate
(aµsea

ud = aµval
ud = aµud).

In Ref. [15] the values of the physical u/d and strange
quark masses, mphys

ud (MS, 2GeV) = 3.70(17) MeV and
mphys

s (MS, 2GeV) = 99.6(4.3) MeV, as well as the val-
ues of the lattice spacing, a = 0.0885(36), 0.0815(30),
0.0619(18) fm at � = 1.90, 1.95 and 2.10, have been de-
termined using the following inputs for the isosymmetric

QCD theory: M (0)
⇡ = M⇡0 = 134.98 MeV, M (0)

K = 494.2

MeV and f (0)
⇡ = 130.41 MeV. The first two inputs corre-

spond to the values suggested in the FLAG reviews [2],

while the value of f (0)
⇡ corresponds to the use of the exper-

imental rate �(⇡`2), the value of |Vud| from Ref. [29] and
the value �R⇡ = 0.0176 (21) obtained in ChPT [27, 28]
and currently adopted by the PDG [14]. We will refer to
the choice of the above three inputs as the FLAG/PDG
prescription.
In Ref. [6] we have calculated the pion and kaon masses

in the isosymmetric QCD theory according to the pre-

scription of Ref. [3], obtaining M (0)
⇡ = 134.9 (2) MeV,

M (0)
K = 494.4 (1) MeV. We anticipate that in Ref. [24]

we shall provide a slightly di↵erent value for �R⇡, which

corresponds to a change of [f (0)
⇡ ]2 less than 0.5%. Since

[M (0)
⇡ /f (0)

⇡ ]2 / mphys
ud +O([mphys

ud ]2), the change expected

in mphys
ud is less than 0.02 MeV. Analogously, the change

in mphys
s is expected to be less than 0.5 MeV. Corre-

spondingly, the variations of �R⇡ and �RK⇡ are well
within the statistical uncertainties, as it can be easily
inferred from Fig. 6 in the case of �RK⇡.
The above findings indicate that our prescription [3]

and the FLAG/PDG one di↵er only by e↵ects which are
well within the uncertainties of the input parameters of
Ref. [15]. This justifies the use of the FLAG average for

the ratio f (0)
K /f (0)

⇡ to get Eq. (15) as well as the com-
parison of our result (14) with the ChPT prediction of
Refs. [27, 28].

B. Evaluation of �Aµ
P /�A

(0)
P

The evaluation of the diagrams 4(a) and (b), corre-
sponding to the “new” term �A`

P , starts from the corre-
lator �C`

P (t) defined as

�C`(t) =
X

↵�

u⌫`↵(p⌫`)C1(t)↵�v`�(p`) , (19)

where C1(t)↵� is given by Eq. (35) of Ref. [1], while t is
the time distance between the P-meson source and the
insertion of the weak (V-A) current. At large time dis-
tances and for T ! 1 one has

�C`(t) ��!
t�a

Z(0)
P �A`

P

2M (0)
P

T `
P e

�M(0)
P t , (20)

where T `
P = Tr

⇥
�0(1� �5)``�0(1� �5)⌫`⌫`

⇤
is the tree-

level leptonic trace. Analogously, in the absence of the

Pion masses in the range 220 - 490 MeV

4 volumes @                         andMπ ! 320 MeV a ! 0.09 fm

MπL ! 3.0 ÷ 5.8
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We present results on the nucleon axial, scalar and tensor charges computed within lattice Quan-
tum Chromodynamics. We use three ensembles of gauge configurations generated with physical
values of the pion mass to compute these quantities to high accuracy avoiding the need of uncon-
trolled chiral extrapolations. We determine the values for the axial, scalar and tensor charges for
each quark flavor. We include all contributions from valence and sea quarks by using improved meth-
ods to compute the disconnected quark loops. For the nucleon axial charge we find gA = 1.286(23)
in agreement with the experimental value. In addition, we extract the nucleon �-terms and find
�⇡N = 41.6(3.8) MeV as well as the strangeness content of the nucleon obtaining for the y-parameter
y = 0.0740(59).
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INTRODUCTION

The fundamental role of the nucleon axial charge in the
physics of weak interactions and in beyond the standard
model (SM) physics makes its non-perturbative determi-
nation of central importance. The nucleon axial charge
determines the rate of the weak decay of neutrons into
protons and provides a quantitative measure of spon-
taneous chiral symmetry breaking in hadronic physics.
It enters in the analysis of neutrinoless double-beta de-
cay and in the unitarity tests of the Cabibbo-Kobayashi-
Maskawa matrix. Equally important are the isovector
scalar and tensor charges of the nucleon, which provide
essential input for probing novel scalar and tensor inter-
actions at the TeV scale [1].

An ab initio calculation of the axial charge, as pre-
cisely as known experimentally from neutron beta decay
measurements using polarized ultracold neutrons [2, 3],
will provide a strong validation of Quantum Chromody-
namics (QCD). However, the non-perturbative nature of
QCD makes a theoretical calculation of the axial charge,
an isovector coupling that we will denote by gu�d

A , di�-
cult. Lattice QCD provides a rigorous, non-perturbative
formulation of QCD on a Euclidean lattice that allows for

a numerical simulation with controlled systematic uncer-
tainties. Numerous past lattice QCD studies [4]. under-
estimated gu�d

A and impeded reliable predictions of the
other nucleon charges. Only recently an accurate com-
putation of gu�d

A was presented [5] that reproduced the
experimental value. It was, however, obtained using chi-
ral extrapolations involving ensembles with heavier than
physical pions.

In this work, we evaluate gu�d
A using simulations car-

ried out directly at the physical pion mass and includ-
ing the physical strange and charm quarks in the sea.
This avoids chiral extrapolation or any modelling of the
pion mass dependence eliminating a systematic error that
has been problematic in many studies. Reproducing the
value of gu�d

A within the lattice QCD framework serves as
a most valuable benchmark computation for the predic-
tion of the isovector scalar gu�d

S and tensor gu�d
T charges,

also presented here. Another milestone of our work, is the
computation of the axial, scalar and tensor charges for
each quark flavor separately, namely gfA, g

f
S and gfT where

f denotes the up, down, strange and charm quarks. In
particular, the quark flavor axial charge gfA determines
the intrinsic spin carried by the quarks in the nucleon
and scalar and tensor charges probe novel interactions
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R1
A(ΔE) = Γ1

A(ΔE)
Γ0

α ,pt + Γ1
pt (ΔE)

  ,   A = { SD, INT } SD!=!structure!dependent!

INT!=!interference!

π → µν(γ )

K → eν(γ ) K → µν(γ )
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ΔE = 20 MeV
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Unitarity of the CKM first-row

Vus
Vud

fK
fπ

= 0.27599 38( )

Vus f+ 0( ) = 0.21654 41( )

21

f+ 0( ) f
K ± fπ ±

Vud  from

PDG 20

Vu
2 ≡ Vud

2 + Vus
2 + Vub

2
[165]

[255]

Figure 11: Same as Fig. 10 but with |Vus|/|Vud| through Eq. (70).

4.4 Tests of the Standard Model

In the Standard Model, the CKM matrix is unitary. In particular, the elements of the
first row obey

|Vu|2 ⌘ |Vud|2 + |Vus|2 + |Vub|2 = 1 . (84)

The tiny contribution from |Vub| is known much better than needed in the present context:
|Vub| = 3.82(24) · 10�3 [165]. In the following, we test the first row unitarity Eq. (84) by
calculating |Vu|2 and by analyzing the lattice data within the Standard Model.

In Fig. 10, the correlation between |Vud| and |Vus| imposed by the unitarity of the
CKM matrix is indicated by a dotted line (more precisely, in view of the uncertainty in
|Vub|, the correlation corresponds to a band of finite width, but the e↵ect is too small
to be seen here). The plot shows that there is a tension with unitarity in the data for
Nf = 2 + 1 + 1: Numerically, the outcome for the sum of the squares of the first row
of the CKM matrix reads |Vu|2 = 0.9813(66), which deviates from unity at the level of
' 2.8 standard deviations. Still, it is fair to say that at this level the Standard Model
passes a nontrivial test that exclusively involves lattice data and well-established kaon
decay branching ratios.

The test sharpens considerably by combining the lattice results for f+(0) with the �
decay value of |Vud|: f+(0) in Eq. (76) and the PDG estimate of |Vud| in Eq. (71) lead to
|Vu|2 = 0.99794(37), which highlights a ' 5.6 � deviation with unitarity. A lower tension
at the three-� level is suggested either from fK±/f⇡± in Eq. (81) (|Vu|2 = 0.99883(37))
or |Vud| in Eq. (72) with the updated nuclear corrections (|Vu|2 = 0.99800(65)). Unitarity
is fulfilled with fK±/f⇡± and |Vud| (72) (|Vu|2 = 0.99890(68)). Note that, when the PDG
value of |Vud| (71) is employed, the uncertainties on |Vu|2 coming from the errors of |Vud|
and |Vus| are of similar magnitude with each other.

The situation is similar for Nf = 2 + 1: with the lattice data alone one has |Vu|2 =
0.9832(89), which deviates from unity at the level of ' 1.9 standard deviations. The lattice
results for f+(0) in Eqs. (77) with the PDG value of |Vud| (71) lead to |Vu|2 = 0.99816(43),

77

|Vu |2 = 0.99794(37) ≈ 5.6σ

|Vu |2 = 0.99884(53) ≈ 2.2σ ≈ 0.4σ

≈ 3.4σ

|Vu |2 = 0.99988(46)

|Vu |2 = 0.99885(34)

PDG 18

±

±


