Weak decays of hadrons using high-precision lattice simulations

Davide Giusti

10th Biennial Workshop of the APS Topical Group on Hadronic Physics Minneapolis

14th April 2023

OUTLINE

Motivations

Isospin-breaking effects on the lattice:

the RM123 method

Light meson leptonic decays

Phenomenological motivations

Flavor physics is (well) described but not explained in the Standard Model:

A large number of free parameters in the flavor sector (10 parameters in the quark sector only, $6 m_q + 4 CKM$)

- Why 3 families?

- Why the spectrum of quarks and leptons covers 5 orders of magnitude? ($m_q \sim v \sim G_F^{-1/2}$...)

- What give rise to the pattern of quark mixing and the magnitude of CP violation?

Lattice QCD

Strong interactions are non-perturbative at low energies

LQCD is a non-perturbative approach

The Functional Integral

The Green Functions can be written in terms of Functional Integrals over classical fields:

 $\mathbf{G}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4) = \langle \phi(\mathbf{x}_1) \phi(\mathbf{x}_2) \phi(\mathbf{x}_3) \phi(\mathbf{x}_4) \rangle \equiv$

 $\mathbf{Z}^{-1} \int [\mathbf{d}\phi] \phi(\mathbf{x}_1) \phi(\mathbf{x}_2) \phi(\mathbf{x}_3) \phi(\mathbf{x}_4) e^{-\mathbf{S}(\phi)}$

The functional integral is defined by discretizing the space-time on a hypercubic 4-dimensional lattice

$$\phi(\mathbf{x}) \to \phi(\mathbf{a} \mathbf{n}) \qquad \mathbf{n} = (\mathbf{n}_{\mathbf{x}}, \mathbf{n}_{\mathbf{y}}, \mathbf{n}_{\mathbf{z}}, \mathbf{n}_{\mathbf{t}})$$

$$\partial_{\mathbf{u}} \phi(\mathbf{x}) \to \nabla_{\mathbf{u}} \phi(\mathbf{x}) = [\phi(\mathbf{x} + \mathbf{a} \mathbf{n}_{\mathbf{u}}) - \phi(\mathbf{x})]/\mathbf{a}$$

The Lattice regularization

The functional integral is a formal definition because of the infrared and ultraviolet divergences. These are cured by introducing an infrared and an ultraviolet cutoff

1) The ultraviolet cutoff:

The momentum p is cutoff at the first Brioullin zone

2) The infrared cutoff:

$$p_{min} a = 2\pi/L$$

The lattice is defined in a finite volume

The physical theory is obtained in the limit

 $a \rightarrow 0$ Continuum limit ; $L \rightarrow \infty$ Thermodinamic limit

а

Use the most powerful supercomputers in the world

Lattice QCD and flavor physics

PRECISION PHYSICS from LATTICE QCD

ISOSPIN-BREAKING EFFECTS Isospin symmetry is an almost exact property down up +2/3 -1/3 of the strong interactions Isospin-breaking effects are induced by: $m_u \neq m_d$: $O[(m_d - m_u)/\Lambda_{OCD}] \approx 1/100$ "<u>Strong</u>" $\mathbf{Q}_{\mathrm{u}} \neq \mathbf{Q}_{\mathrm{d}}$: $O(\alpha_{\mathrm{em}}) \approx 1/100$ "Electromagnetic"

Since electromagnetic interactions renormalize quark masses the two corrections are intrinsically related

Though small, IB effects play often a very important role (quark masses, Mn - Mp, leptonic decay constants, vector form factor)

Isospin-breaking effects on the lattice RMI23 method

The (m_d-m_u) expansion

- Identify the isospin-breaking term in the QCD action

$$S_{m} = \sum_{x} \left[m_{u} \overline{u} u + m_{d} \overline{d} d \right] = \sum_{x} \left[\frac{1}{2} \left(m_{u} + m_{d} \right) \left(\overline{u} u + \overline{d} d \right) - \frac{1}{2} \left(m_{d} - m_{u} \right) \left(\overline{u} u - \overline{d} d \right) \right] =$$
$$= \sum_{x} \left[m_{ud} \left(\overline{u} u + \overline{d} d \right) - \Delta m \left(\overline{u} u - \overline{d} d \right) \right] = S_{0} - \Delta m \hat{S} \quad \longleftarrow \quad \hat{S} = \Sigma_{x} (\overline{u} u - \overline{d} d)$$

- Expand the functional integral in powers of Δm $\langle O \rangle = \frac{\int D\phi \ Oe^{-S_0 + \Delta m \hat{S}}}{\int D\phi \ e^{-S_0 + \Delta m \hat{S}}} \stackrel{\text{1st}}{\simeq} \frac{\int D\phi \ Oe^{-S_0} \left(1 + \Delta m \hat{S}\right)}{\int D\phi \ e^{-S_0} \left(1 + \Delta m \hat{S}\right)} \approx \frac{\langle O \rangle_0 + \Delta m \langle O\hat{S} \rangle_0}{1 + \Delta m \langle \hat{S} \rangle_0} = \langle O \rangle_0 + \Delta m \langle O\hat{S} \rangle_0}$ for isospin symmetry

- At leading order in Δm the corrections only appear in the valence-quark propagators:

(disconnected contractions of ūu and dd vanish due to isospin symmetry)

In the electro-quenched approximation:

 $\Delta \longrightarrow \pm = (e_f e)^2 \left[\underbrace{\swarrow}_{f} + \underbrace{\blacktriangledown}_{f} + \underbrace{\bullet}_{f} +$

Spheres of application

QED and isospin corrections

The RMI23 method

Quark and Hadron masses

PHYSICAL REVIEW D 87, 114505 (2013) PHYSICAL REVIEW D 95, 114504 (2017)

Decay rates of hadrons

PHYSICAL REVIEW D 91,074506 (2015)
PHYSICAL REVIEW D 95,034504 (2017)
PHYSICAL REVIEW LETTERS 120,072001 (2018)
PHYSICAL REVIEW D 100,034514 (2019) [Editor's suggestion]
PHYSICAL REVIEW D 103,014502 (2021)

Hadronic corrections to lepton anomalous magnetic moments
 JOURNAL OF HIGH ENERGY PHYSICS 10 (2017) 157
 PHYSICAL REVIEW D 99, 114502 (2019)
 PHYSICAL REVIEW D 102, 054503 (2020)

QED corrections to hadronic decays

The determination of Vus and Vud

Electromagnetic and isospin-breaking effects

Given the present exper. and theor. (LQCD) accuracy, an important source of uncertainty are long distance electromagnetic and SU(2)-breaking corrections.

$$\frac{\Gamma\left(K^{+} \to \ell^{+} \boldsymbol{v}_{\ell}(\boldsymbol{\gamma})\right)}{\Gamma\left(\pi^{+} \to \ell^{+} \boldsymbol{v}_{\ell}(\boldsymbol{\gamma})\right)} = \left(\frac{|V_{us}|}{|V_{ud}|} \frac{f_{K}}{f_{\pi}}\right)^{2} \frac{M_{K^{+}}\left(1 - m_{\ell}^{2}/M_{K^{+}}^{2}\right)^{2}}{M_{\pi^{+}}\left(1 - m_{\ell}^{2}/M_{\pi^{+}}^{2}\right)^{2}} \left(1 + \delta_{EM} + \delta_{SU(2)}\right) K/\pi$$

For $\Gamma_{Kl2}/\Gamma_{\pi l2}$ At leading order in ChPT both δ_{EM} and $\delta_{SU(2)}$ can be expressed in terms of physical quantities (e.m. pion mass splitting, f_K/f_{π} , ...) • $\delta_{EM} = -0.0069(17)$ 25% of error due to higher orders $\rightarrow 0.2\%$ on $\Gamma_{Kl2}/\Gamma_{\pi l2}$ M.Knecht et al., 2000; V.Cirigliano and H.Neufeld, 2011

$$\delta_{SU(2)} = \left(\frac{f_{K^+}/f_{\pi^+}}{f_K/f_{\pi^-}}\right)^2 - 1 = -0.0044(12)$$

25% of error due to higher orders \Rightarrow 0.1% on $\Gamma_{K12}/\Gamma_{\pi12}$

J.Gasser and H.Leutwyler, 1985; V.Cirigliano and H.Neufeld, 2011

ChPT is not applicable to D and B decays

Leptonic decays at tree level

Since the masses of the pion and kaon are much smaller than M_W we use the effective Hamiltonian

$$H_{eff} = \frac{G_F}{\sqrt{2}} V_{q_1 q_2}^* \left(\overline{q_2} \gamma^{\mu} (1 - \gamma_5) q_1 \right) \left(\overline{v_\ell} \gamma_{\mu} (1 - \gamma_5) \ell \right)$$

This replacement is necessary in a lattice calculation, since $1 / a \ll M_W$

The rate is:

$$\Gamma_{P^{\pm}}^{(tree)}\left(P^{\pm} \to \ell^{\pm} \nu_{\ell}\right) = \frac{G_{F}^{2}}{8\pi} |V_{q_{1}q_{2}}|^{2} \left[f_{P}^{(0)}\right]^{2} M_{P^{\pm}} m_{\ell}^{2} \left(1 - \frac{m_{\ell}^{2}}{M_{P^{\pm}}^{2}}\right)^{2}$$

In the absence of electromagnetism, the non-perturbative QCD effects are contained in a single number, the pseudoscalar decay constant

 X^+ u ν_{ℓ}

W

 q_1

In the presence of electromagnetism it is not even possible to give a physical definition of f_P J. Gasser and G.R.S. Zarnauskas, PLB 693 (2010) 122

Leptonic decays at O(α): the IR problem

At $O(\alpha)$, Γ_0 contains **infrared divergences**. One has to consider:

$$\Gamma\left(P_{\ell 2}^{\pm}\right) = \Gamma\left(P^{\pm} \to \ell^{\pm} v_{\ell}\right) + \Gamma\left(P^{\pm} \to \ell^{\pm} v_{\ell} \gamma\left(\Delta E\right)\right) \equiv \Gamma_{0} + \Gamma_{1}\left(\Delta E\right)$$

with $0 \le E_{\gamma} \le \Delta E$. The sum is infrared finite

F. Bloch and A. Nordsieck, PR 52 (1937) 54

Both Γ_0 and $\Gamma_1(\Delta E)$ can be evaluated in a fully non-perturbative way in lattice simulations.

The strategy

In order to ensure the cancellation of IR divergences with good numerical precision, we rewrite:

$$\Gamma\left(P_{\ell 2}^{\pm}\right) = \left(\Gamma_{0} - \Gamma_{0}^{pt}\right) + \left(\Gamma_{0}^{pt} + \Gamma_{1}^{pt}\left(\Delta E\right)\right) + \left(\Gamma_{1}(\Delta E) - \Gamma_{1}^{pt}(\Delta E)\right)$$

Both the quantities Γ_0 and $\Gamma_1(\Delta E)$ are evaluated on the lattice

$$\frac{d^2\Gamma_1}{dx_{\gamma}dx_{\ell}} = \frac{\alpha_{em}\Gamma^{(tree)}}{4\pi} \left\{ \frac{d^2\Gamma_{pt}}{dx_{\gamma}dx_{\ell}} + \frac{d^2\Gamma_{SD}}{dx_{\gamma}dx_{\ell}} + \frac{d^2\Gamma_{INT}}{dx_{\gamma}dx_{\ell}} \right\} \qquad \begin{array}{c} x_{\gamma} = \frac{2p \cdot k}{m_p^2} \\ x_{\ell} = \frac{2p \cdot p_{\ell} - m_{\ell}^2}{m_p^2} \end{array}$$

The contribution $\Gamma_1 - \Gamma_1^{pt} = \Gamma_{SD} + \Gamma_{INT}$ can be computed in the infinite-volume limit requiring the knowledge of the structure dependent form factors $F_{A,V}(x_{\gamma})$ and of f_P

The strategy

$$\Gamma \left(P_{\ell 2}^{\pm} \right) = \left(\Gamma_0 - \Gamma_0^{pt} \right) + \left(\Gamma_0^{pt} + \Gamma_1^{pt} \left(\Delta E \right) \right)$$
$$+ \left(\Gamma_1 (\Delta E) - \Gamma_1^{pt} (\Delta E) \right)$$

- The contributions from soft virtual photon to Γ_0 and Γ_0^{pt} in the first term are exactly the same and the IR divergence cancels in the difference $\Gamma_0 \Gamma_0^{pt}$.
- The sum $\Gamma_0^{\text{pt}} + \Gamma_1^{\text{pt}}(\Delta E)$ in the second term is IR finite since it is a physically well defined quantity. This term can be thus calculated in perturbation theory with a different IR cutoff.
- The difference $\Gamma_1 \Gamma_1^{pt}$ in the third term is also IR finite.
- The three terms are also separately gauge invariant.

 $\Delta \Gamma_0(L) = \Gamma_0(L) - \Gamma_0^{pt}(L) \qquad \Gamma^{pt}(\Delta E) = \lim_{m_\gamma \to 0} \left[\Gamma_0^{pt}(m_\gamma) + \Gamma_1^{pt}(\Delta E, m_\gamma) \right]$

$$\Gamma^{pt}(\Delta E) = \lim_{m_{\gamma} \to 0} \left[\Gamma_{0}^{pt}(m_{\gamma}) + \Gamma_{1}^{pt}(\Delta E, m_{\gamma}) \right]$$

$$\Gamma^{pt}(\Delta E) = \lim_{m_{\gamma} \to 0} \left[\Gamma_{0}^{pt}(m_{\gamma}) + \Gamma_{1}^{pt}(\Delta E, m_{\gamma}) \right]$$
The result is:

$$= \Gamma_{0}^{\text{tree}} \times \left(1 + \frac{\alpha}{4\pi} \left\{ 3 \log \left(\frac{m_{\pi}^{2}}{M_{W}^{2}} \right) + \log \left(r_{\ell}^{2} \right) \underbrace{4 \log(r_{E}^{2})}_{\ell} + \frac{2 - 10r_{\ell}^{2}}{1 - r_{\ell}^{2}} \log(r_{\ell}^{2}) \right\}$$

$$-2 \frac{1 + r_{\ell}^{2}}{1 - r_{\ell}^{2}} \log(r_{\ell}^{2}) \exp(r_{\ell}^{2}) - 4 \frac{1 + r_{\ell}^{2}}{1 - r_{\ell}^{2}} \operatorname{Li}_{2}(1 - r_{\ell}^{2}) - 3$$

$$+ \left[\frac{3 + r_{E}^{2} - 6r_{\ell}^{2} + 4r_{E}(-1 + r_{\ell}^{2})}{(1 - r_{\ell}^{2})^{2}} \log(1 - r_{E}) + \frac{r_{E}(4 - r_{E} - 4r_{\ell}^{2})}{(1 - r_{\ell}^{2})^{2}} \log(r_{\ell}^{2}) - \frac{r_{E}(-22 + 3r_{E} + 28r_{\ell}^{2})}{2(1 - r_{\ell}^{2})^{2}} - 4 \frac{1 + r_{\ell}^{2}}{1 - r_{\ell}^{2}} \operatorname{Li}_{2}(r_{E}) \right] \right\}$$

$$r_{E} = 2\Delta E/m_{\pi}$$
NEW

 $\Gamma(\Delta E)$

IMPORTANT CHECK: For $\Delta E = \Delta E_{MAX}$ the well known result for the total rate as in S. M. Berman, PRL 1 (1958) 468 and T. Kinoshita, PRL 2 (1959) 477 is reproduced

 $\Delta \Gamma_0(L) = \Gamma_0(L) - \Gamma_0^{pt}(L)$

Lattice calculation of $\Gamma_0(L)$ at $O(\alpha)$

The Feynman diagrams at $O(\alpha)$ can be divided in 3 classes

$$\sum_{\nu_{\ell}} P^{-} \sum_{\nu_{\ell}} P^$$

$$\Delta\Gamma_{0} \begin{pmatrix} H_{W}^{\alpha r}(k,p) = \epsilon_{\mu}^{r}(k) H_{W}^{\alpha \mu}(k,p) = \epsilon_{\mu}^{r}(k) \int d^{4}y e^{ik \cdot y} T\langle 0|j_{W}^{\alpha}(0)j_{W}^{\mu}(y)|P(p) \rangle \\ \begin{pmatrix} \mathbf{M} \\ \mathbf{M} \end{pmatrix} = C_{IR} \log \begin{pmatrix} d^{4}y e^{ik \cdot y} T\langle 0|j_{W}^{\alpha}(0)j_{W}^{\mu}(y)|P(p) \rangle \\ \begin{pmatrix} \mathbf{M} \\ \mathbf{M} \end{pmatrix} + \begin{pmatrix} \mathbf{M} \\ \mathbf{M} \end{pmatrix} \\ Lmp \\ Lmp \\ Moreover, by choosing a physical basis for the polarization vectors, i.e. $\epsilon_{r}(\mathbf{k}) \cdot k = 0$, one has$$

$$H_W^{\alpha r}(k,p) = \epsilon_\mu^r(\mathbf{k}) \left\{ -i \sum_{m_P} \varepsilon^{\mu \alpha \gamma \beta} k_\gamma p_\beta + \left[\sum_{m_P} F_A + \frac{f_P}{p \cdot k} \right] \left(p \cdot k \, g^{\mu \alpha} - p^\mu k^\alpha \right) + \frac{f_P}{p \cdot k} \, p^\mu p^\alpha \right\}$$

Form factors: results

PHYSICAL REVIEW D 103, 014502 (2021)

arXiv:2006.05358

First lattice calculation of radiative leptonic decay rates of pseudoscalar mesons

A. Desiderio[®],¹ R. Frezzotti[®],¹ M. Garofalo[®],² D. Giusti[®],^{3,4} M. Hansen[®],⁵ V. Lubicz[®],² G. Martinelli[®],⁶ C. T. Sachrajda,⁷ F. Sanfilippo,⁴ S. Simula[®],⁴ and N. Tantalo¹

$$F_{A,V}^P(x_{\gamma}) = C_{A,V}^P + D_{A,V}^P x_{\gamma}$$

E	$C_A^{\pi} = 0.010 \pm 0.003;$	$D_A^{\pi} = 0.0004 \pm 0.0006;$	$\rho_{C_A^{\pi}, D_A^{\pi}} = -0.419;$
Γ_A	$C_A^K = 0.037 \pm 0.009;$	$D_A^K = -0.001 \pm 0.007;$	$\rho_{C^K_A, D^K_A} = -0.673;$
	$C_A^D = 0.109 \pm 0.009;$	$D_A^D = -0.10 \pm 0.03;$	$\rho_{C^D_A, D^D_A} = -0.557;$
	$C_A^{D_s} = 0.092 \pm 0.006;$	$D_A^{D_s} = -0.07 \pm 0.01 ;$	$\rho_{C_A^{D_s},D_A^{D_s}} = -0.745.$
E	$C_V^{\pi} = 0.023 \pm 0.002;$	$D_V^{\pi} = -0.0003 \pm 0.0003 ;$	$\rho_{C_V^{\pi}, D_V^{\pi}} = -0.570 ;$
F_V	$C_V^{\pi} = 0.023 \pm 0.002;$ $C_V^K = 0.12 \pm 0.01;$	$D_V^{\pi} = -0.0003 \pm 0.0003;$ $D_V^{K} = -0.02 \pm 0.01;$	$\begin{split} \rho_{C_V^{\pi},D_V^{\pi}} &= -0.570; \\ \rho_{C_V^{K},D_V^{K}} &= -0.714; \end{split}$
F_V	$C_V^{\pi} = 0.023 \pm 0.002;$ $C_V^K = 0.12 \pm 0.01;$ $C_V^D = -0.15 \pm 0.02;$	$\begin{split} D_V^{\pi} &= -0.0003 \pm 0.0003 ; \\ D_V^{K} &= -0.02 \pm 0.01 ; \\ D_V^{D} &= 0.12 \pm 0.04 ; \end{split}$	$\begin{split} \rho_{C_V^{\pi},D_V^{\pi}} &= -0.570; \\ \rho_{C_V^{K},D_V^{K}} &= -0.714; \\ \rho_{C_V^{D},D_V^{D}} &= -0.580; \end{split}$

$$\frac{4\pi}{\alpha} \frac{d\Gamma_{1}^{\text{ND}}}{dx_{\tau}} = \frac{m_{P}^{2}}{6f_{P}^{2}r_{t}^{2}(1-r_{t}^{2})^{2}} [F_{V}(x_{\tau})^{2} + F_{A}(x_{\tau})^{2}] f^{\text{5D}}(x_{\tau})$$

$$\frac{4\pi}{\alpha} \frac{d\Gamma_{1}^{\text{ND}}}{dx_{\tau}} = -\frac{2m_{P}}{f_{P}(1-r_{t}^{2})^{2}} [F_{V}(x_{\tau})f_{V}^{\text{NT}}(x_{\tau}) + F_{A}(x_{\tau})f_{A}^{\text{NT}}(x_{\tau})]$$

$$\xrightarrow{-\alpha \text{err}} \delta \phi^{\alpha} - \omega \text{err}}$$

$$\xrightarrow{-\alpha$$

+

0.2

0.4

0.6

0.8

Radiative corrections to leptonic heavy-meson decays

• The emission of a real hard photon removes the $(m_{\ell}/M_B)^2$ helicity suppression

В

 J_{μ}

• This is the simplest process that probes (for large E_{γ}) the first inverse moment of the B-meson LCDA

$$\frac{1}{\lambda_B(\mu)} = \int_0^\infty \frac{d\omega}{\omega} \Phi_{B+}(\omega,\mu)$$

 λ_B is an important input in QCD-factorization predictions for non-leptonic B decays but is poorly known M. Beneke, V. M. Braun, Y. Ji, Y.-B. Wei, 2018

Another application: the muon g-2

33

Conclusions and future perspectives

The experimental and theoretical accuracy reached in flavor physics for some hadronic observables implies that electromagnetic and strong isospin breaking effects cannot be neglected anymore

• We have developed a method to compute isospin breaking effects in hadronic processes with lattice QCD and presented the first calculation for light-meson leptonic decay rates

For hadronic decays, the presence of IR divergences in the intermediate steps of the calculation requires a dedicated procedure

Extension to leptonic heavy-light meson decays (<u>arXiv:2111.15614</u>, <u>arXiv:2302.01298</u>) and neutron beta decay is in progress

Supplementary slides

Details of the lattice simulation

We have used the gauge field configurations generated by ETMC, European Twisted Mass Collaboration, in the pure isosymmetric QCD theory with Nf=2+1+1 dynamical quarks

Gluon action		1	1					4			
	M_K	M_{π}	$a\mu_s$	N_{cf}	$a\mu_{\delta}$	$a\mu_{\sigma}$	$a\mu_{ud}$	V/a^4	β	ensemble	
- Ouark action	(MeV)	(MeV)									
	576(22)	317(12)	0.02363	100	0.19	0.15	0.0040	$40^3 \cdot 80$	1.90	A40.40	
	568(22)	275(10)		150			0.0030	$32^3 \cdot 64$		A30.32	
	578(22)	316(12)		100			0.0040			A40.32	
	586(22)	350(13)		150			0.0050			A50.32	
	582(23)	322(13)		150			0.0040	$24^3 \cdot 48$		A40.24	
	599(23)	386(15)		150			0.0060			A60.24	
Pion mass	618(14)	442(17)		150			0.0080			A80.24	
	639(24)	495(19)		150			0.0100			A100.24	
4 volumes @	586(23)	330(13)		150			0.0040	$20^3 \cdot 48$		A40.20	
	546(19)	259 (9)	0.02094	150	0.170	0.135	0.0025	$32^3 \cdot 64$	1.95	B25.32	
	555(19)	302(10)		150			0.0035			B35.32	
	578(20)	375(13)		150			0.0055			B55.32	
	599(21)	436(15)		80			0.0075			B75.32	
	613(21)	468(16)		150			0.0085	$24^3 \cdot 48$		B85.24	
	529(14)	223 (6)	0.01612	100	0.1385	0.1200	0.0015	$48^3 \cdot 96$	2.10	D15.48	
	535(14)	256 (7)		100			0.0020			D20.48	
	550(14)	312 (8)		100			0.0030			D30.48	

Gluon action: Iwasaki
Quark action: twisted mass at maximal twist (automatically O(a) improved)
OS for s and c valence quarks
Pion masses in the range 220 - 490 MeV
4 volumes @ M_π ≈ 320 MeV and a ≈ 0.09 fm

 $M_{\pi}L \simeq 3.0 \div 5.8$

- Interference contributions are negligible in all the decays
- Structure-dependent contributions can be sizable for $K \rightarrow ev(\gamma)$ but they are negligible for $\Delta E < 20$ MeV (which is experimentally accessible)

Unitarity of the CKM first-row

