The Search for Hybrid Mesons at GlueX

Will Imoehl Carnegie Mellon University on behalf of the GlueX collaboration

April 12, 2023

The Quark Model

Want to know which types of hadrons exist in QCD

Conventional light mesons are $q\bar{q}$ states

• Allowed J^{PC} for conventional light mesons (n = 0, 1, 2, ...):

JPC	$(2n)^{-+}$	$(2n+1)^{+-}$	$(n+1)^{}$	n ⁺⁺
Minimal Quark Content				
u $ar{d}$, u $ar{u}$ -d $ar{d}$, d $ar{u}$ (I = 1)	π	b	ho	а
$dar{d}+uar{u}$ and/or $sar{s}$	$\eta,~\eta'$	h, h'	ω , ϕ	f, f'

Hybrid mesons have gluonic excitations

- Hybrids can mix with conventional mesons
- Some hybrids have "exotic" J^{PC} not allowed for $q\bar{q}$ mesons

Lattice QCD Spectrum

Lightest hybrid meson predicted to be I = 1 J^{PC} = 1⁻⁺ state
 Likely the π₁(1600), seen by multiple experiments
 BESIII observes η₁(1855), candidate for either η₁ or η'₁
 [PRD 88 094505(2013)]

Recent Experimental Results on Lightest Hybrid Meson

- Previous experiments find $\pi_1(1400)$ in $\eta\pi$ and $\pi_1(1600)$ in $\eta'\pi$
- Joint Physics Analysis Center (JPAC) analysis of the COMPASS data only requires one resonance

• $M = 1564 \pm 24 \pm 86$ MeV and $\Gamma = 492 \pm 54 \pm 102$ MeV

Analysis: A. Rodas *et al.* PRL **122** 042002 (2019) Data: C. Adolph *et al.* (COMPASS) PLB **740** 303-311 (2015)

The GlueX Experiment

Photoproduction experiment located at Jefferson Lab

- Photoproduction has been predicted to copiously produce hybrid mesons in some models
- GlueX uses polarized photon beam allows us to differentiate production mechanisms

Steps to studying the hybrid meson spectrum:

- 1. Demonstrate photoproduction produces hybrid mesons by confirming COMPASS result
- 2. Search for undiscovered hybrid mesons

π_1 Branching Fractions from Lattice QCD

▶ Lattice QCD provides predictions for π_1 branching fractions

PRD 103 054502 (2021)				
Decay	Width (MeV)	Branching Fraction		
$\eta\pi$	0 ightarrow 1	0 ightarrow 0.7%		
$\eta'\pi$	0 ightarrow 12	0 ightarrow 7.9%		
$b_1\pi$	139 ightarrow 529	69.5 ightarrow 100%		
All others	0 ightarrow 48	0 ightarrow 25.7%		
Total	139 ightarrow 590	-		

6/16

GlueX Search Strategy for $\pi_1(1600)$

Two main goals:

- 1. Set upper limit on photoproduction cross section of $\pi_1(1600)$
 - Never done before use recent lattice calculations
 - Can be used to test discovery potential in different final states
 - Expect signals in $\pi_1^0 \to \omega \pi^+ \pi^-$ and $\pi_1^- \to \omega \pi^- \pi^0$

- 2. Confirm state found in COMPASS data:
 - Perform partial wave analyses on $\eta\pi$ and $\eta'\pi$
 - $\pi_1(1600)$ would appear in *P*-wave
 - $\eta\pi$ has stronger coupling to $a_2(1320)$
 - $\eta' \pi$ has stronger coupling to $\pi_1(1600)$

$\pi_1(1600) \rightarrow \omega \pi \pi$ Search

• Measure $d\sigma/dM$ in 50 MeV/ c^2 bins of $M(\omega\pi\pi)$

No obvious $\pi_1(1600)$ signal - set upper limit Isolate $\sigma(\omega \pi \pi)_{I=1}$ using Clebsch-Gordan coefficients:

• Assume no
$$I = 2$$
 contributions to $\sigma(\omega \pi \pi)$

$$\sigma((\omega\pi\pi)^0)_{I=1} = \sigma(\omega\pi^+\pi^-) - 2\sigma(\omega\pi^0\pi^0)$$
$$\sigma((\omega\pi\pi)^-)_{I=1} = \sigma(\omega\pi^-\pi^0)$$

Know $a_2(1320)$ shape from PDG, π_1 shape from JPAC Fit I = 1 cross sections with sum of these shapes

π_1 Upper Limit - Upper Limit Results Measure ratio $\frac{\sigma_{ul}(\pi_1)}{\sigma(a_2(1320))}$

Analysis for $0.1 < -t < 0.5~{\rm GeV}^2$ and $8 < E_\gamma < 10$ GeV using 28% of GlueX-I data

- ► $a_2(1320)$ size fixed to $\sigma_{\eta\pi}(a_2)\mathcal{B}_{PDG}(a_2 \rightarrow \omega\pi\pi)$
- Fit $M(\omega \pi \pi)_{I=1} < 1.6 \text{ GeV}/c^2$ using $\pi_1(1600)$ (pink) shape

• Only free parameter in fit is the π_1 normalization $\pi_1(1600)$ upper limit is of similar size to the $a_2(1320)$ cross section

π_1 Upper Limit - Projections to $\eta\pi$ and $\eta'\pi$

Projections for $0.1 < -t < 0.5 \text{ GeV}^2$ and $8.2 < E_{\gamma} < 8.8 \text{ GeV}$ using full GlueX-I data **First limit on size of hybrid photoproduction cross sections** These projections guide the next steps of the search

10/16

Partial Wave Analysis of $\eta\pi$

- Beam polarization allows us to separate production mechanisms
- Natural parity exchange for $J^P = 0^+, 1^-, 2^+, ...$
- Unnatural parity exchange for $J^P = 0^-, 1^+, 2^-, ...$

• $\eta\pi$ is system of two pseudoscalars ($J^{PC} = 0^{-+}$)

$$\begin{array}{|c|c|c|c|c|} \hline S - \text{wave} \ (\ell = 0) & P - \text{wave} \ (\ell = 1) & D - \text{wave} \ (\ell = 2) \\ \hline J^{PC} & 0^{++} & 1^{-+} \ (\text{exotic}) & 2^{++} \\ \hline \end{array} \\ \hline \text{Amplitudes function of production angle } \Phi \ \text{and decay angles} \ (\phi, \theta) \end{array}$$

Semi-Mass Independent PWA on $\eta\pi^0$

Signal process: $\gamma p \rightarrow a_2^0(1320)p$

- Ultimately want mass independent PWA to ηπ and η'π
- Mass independent PWA has many parameters
- To stabilize fits, we add in physical constraints: model a₂(1320) and a₂(1700) as Breit-Wigner
- Use these results to measure $\frac{d\sigma(a_2)}{dt}$

$a_2^0(1320)$ Cross Section from $\eta\pi^0$

First separation of natural and unnatural exchanges

Comes from polarized photon beam - unique to GlueX

- $\sigma(a_2(1320))$ measured here can be used as reference for $\eta'\pi$
- Results agree reasonably well with theory prediction
- Publication being prepared

Semi-mass Independent PWA on $\eta\pi^-$

Process: $\gamma p \rightarrow \eta \pi^- \Delta^{++}$

- ▶ Use same method as $\eta \pi^0$
- a₂(1320) appears in D₁⁻
 wave ⇒ pion exchange
 with direct polarization
 transfer from γ to a₂

Complication: background from $\gamma p \rightarrow (a_2^- \pi^+) p \rightarrow \pi^+ \pi^- \eta p$

Prospects for $\eta'\pi$

Analysis on $\eta'\pi$ being performed in parallel

- Expect best sensitivity to $\pi_1(1600)$ in $\eta'\pi$
- Less pronounced $a_2(1320) \implies$ use $\eta\pi$ measurement as reference

Summary

- GlueX provides a unique place to look for hybrid mesons
 - Beam polarization gives info on production mechanisms
 - Some models predict hybrids copiously produced in photoproduction
- We set first upper limit on π_1 photoproduction cross sections
 - $\eta'\pi$ final states have largest discovery potential
- $\eta\pi$ PWA is being used to extract $\sigma(a_2(1320))$
 - Agrees well with theory predictions
 - Can be used as reference for $\eta'\pi$ analysis
 - Publication being prepared
- $\eta'\pi$ is most sensitive channel to $\pi_1(1600)$ at GlueX
 - PWA framework from $\eta\pi$ analysis can be used

Acknowledgements: gluex.org/thanks

Hall D at Jefferson Lab

- ▶ Hall D is one of four experimental halls at Jefferson Lab
- CEBAF accelerates electrons up to 12 GeV
- Electrons impinge on diamond wafer, creating linearly polarized photons via coherent bremsstrahlung
- Photon beam incident on liquid hydrogen target

CLAS $\pi_1 \rightarrow 3\pi$ Upper Limit

CLAS sets an upper limit of $\sigma(\gamma p \rightarrow \pi_1^+ n) < 13.5$ nb.

- Lower photon beam energy: $4.8 < E_{\gamma} < 5.4$ GeV
- Different reaction produced against a neutron

- Upper limit is really on $\sigma(\gamma p \to \pi_1^+ n) \mathcal{B}(\pi_1^+ \to \pi^+ \pi^- \pi^+)$
- They used a model dependent central value for $\mathcal{B}(\pi_1)$
- Upper limit needs to include systematic uncertainty in $\mathcal{B}(\pi_1^+)$
- LQCD allowed values are $0 < \mathcal{B}(\pi_1 \rightarrow 3\pi) < 12.6\%$.