The Search for Hybrid Mesons at GlueX

Will Imoehl
Carnegie Mellon University on behalf of the GlueX collaboration

April 12, 2023

The Quark Model

Want to know which types of hadrons exist in QCD

Conventional light mesons are $q \bar{q}$ states

- Allowed $J^{P C}$ for conventional light mesons $(n=0,1,2, \ldots)$:

$J^{P C}$	$(2 n)^{-+}$	$(2 n+1)^{+-}$	$(n+1)^{--}$	n^{++}
Minimal Quark Content				
$u \bar{d}, u \bar{u}-d \bar{d}, d \bar{u}(I=1)$	π	b	ρ	a
$d \bar{d}+u \bar{u}$ and /or $s \bar{s}$	η, η^{\prime}	h, h^{\prime}	ω, ϕ	f, f^{\prime}

Hybrid mesons have gluonic excitations

- Hybrids can mix with conventional mesons
- Some hybrids have "exotic" $J^{P C}$ not allowed for $q \bar{q}$ mesons

Lattice QCD Spectrum

- Lightest hybrid meson predicted to be $I=1 J^{P C}=1^{-+}$state - Likely the $\pi_{1}(1600)$, seen by multiple experiments
- BESIII observes $\eta_{1}(1855)$, candidate for either η_{1} or η_{1}^{\prime}

Recent Experimental Results on Lightest Hybrid Meson

- Previous experiments find $\pi_{1}(1400)$ in $\eta \pi$ and $\pi_{1}(1600)$ in $\eta^{\prime} \pi$
- Joint Physics Analysis Center (JPAC) analysis of the COMPASS data only requires one resonance
- $M=1564 \pm 24 \pm 86 \mathrm{MeV}$ and $\Gamma=492 \pm 54 \pm 102 \mathrm{MeV}$

Analysis: A. Rodas et al. PRL 122042002 (2019)
Data: C. Adolph et al. (COMPASS) PLB 740 303-311 (2015)

The GlueX Experiment

Photoproduction experiment located at Jefferson Lab

- Photoproduction has been predicted to copiously produce hybrid mesons in some models
- GlueX uses polarized photon beam - allows us to differentiate production mechanisms
Steps to studying the hybrid meson spectrum:

1. Demonstrate photoproduction produces hybrid mesons by confirming COMPASS result
2. Search for undiscovered hybrid mesons

π_{1} Branching Fractions from Lattice QCD

- Lattice QCD provides predictions for π_{1} branching fractions

PRD 103054502 (2021)		
Decay	Width (MeV)	Branching Fraction
$\eta \pi$	$0 \rightarrow 1$	$0 \rightarrow 0.7 \%$
$\eta^{\prime} \pi$	$0 \rightarrow 12$	$0 \rightarrow 7.9 \%$
$b_{1} \pi$	$139 \rightarrow 529$	$69.5 \rightarrow 100 \%$
All others	$0 \rightarrow 48$	$0 \rightarrow 25.7 \%$
Total	$139 \rightarrow 590$	-

GlueX Search Strategy for $\pi_{1}(1600)$

Two main goals:

1. Set upper limit on photoproduction cross section of $\pi_{1}(1600)$

- Never done before - use recent lattice calculations
- Can be used to test discovery potential in different final states
- Expect signals in $\pi_{1}^{0} \rightarrow \omega \pi^{+} \pi^{-}$and $\pi_{1}^{-} \rightarrow \omega \pi^{-} \pi^{0}$

2. Confirm state found in COMPASS data:

- Perform partial wave analyses on $\eta \pi$ and $\eta^{\prime} \pi$
- $\pi_{1}(1600)$ would appear in P-wave
- $\eta \pi$ has stronger coupling to $a_{2}(1320)$
- $\eta^{\prime} \pi$ has stronger coupling to $\pi_{1}(1600)$

$\pi_{1}(1600) \rightarrow \omega \pi \pi$ Search

- Measure $d \sigma / d M$ in $50 \mathrm{MeV} / c^{2}$ bins of $M(\omega \pi \pi)$

No obvious $\pi_{1}(1600)$ signal - set upper limit Isolate $\sigma(\omega \pi \pi)_{I=1}$ using Clebsch-Gordan coefficients:

- Assume no $I=2$ contributions to $\sigma(\omega \pi \pi)$
- $\sigma\left((\omega \pi \pi)^{0}\right)_{l=1}=\sigma\left(\omega \pi^{+} \pi^{-}\right)-2 \sigma\left(\omega \pi^{0} \pi^{0}\right)$
- $\sigma\left((\omega \pi \pi)^{-}\right)_{I=1}=\sigma\left(\omega \pi^{-} \pi^{0}\right)$

Know $a_{2}(1320)$ shape from PDG, π_{1} shape from JPAC
Fit $I=1$ cross sections with sum of these shapes

π_{1} Upper Limit - Upper Limit Results

Measure ratio $\frac{\sigma_{u l}\left(\pi_{1}\right)}{\sigma\left(a_{2}(1320)\right)}$

Analysis for $0.1<-t<0.5 \mathrm{GeV}^{2}$ and $8<E_{\gamma}<10 \mathrm{GeV}$ using 28% of GlueX-I data
$\rightarrow a_{2}(1320)$ size fixed to $\sigma_{\eta \pi}\left(a_{2}\right) \mathcal{B}_{P D G}\left(a_{2} \rightarrow \omega \pi \pi\right)$

- Fit $M(\omega \pi \pi)_{I=1}<1.6 \mathrm{GeV} / c^{2}$ using $\pi_{1}(1600)$ (pink) shape
- Only free parameter in fit is the π_{1} normalization
$\pi_{1}(1600)$ upper limit is of similar size to the $a_{2}(1320)$ cross section

π_{1} Upper Limit - Projections to $\eta \pi$ and $\eta^{\prime} \pi$

Do not expect large $\pi_{1}(1600)$ in $\eta \pi$
$\pi_{1}(1600)$ could be the dominant contribution in $\eta^{\prime} \pi^{-}$

Projections for $0.1<-t<0.5 \mathrm{GeV}^{2}$ and $8.2<E_{\gamma}<8.8 \mathrm{GeV}$ using full GlueX-I data First limit on size of hybrid photoproduction cross sections
These projections guide the next steps of the search

Partial Wave Analysis of $\eta \pi$

- Beam polarization allows us to separate production mechanisms
- Natural parity exchange for $J^{P}=0^{+}, 1^{-}, 2^{+}, .$.
- Unnatural parity exchange for $J^{P}=0^{-}, 1^{+}, 2^{-}, .$.

Natural exchange

Unnatural exchange

- $\eta \pi$ is system of two pseudoscalars $\left(J^{P C}=0^{-+}\right)$

	S-wave $(\ell=0)$	P-wave $(\ell=1)$	D-wave $(\ell=2)$
$J^{P C}$	0^{++}	$1^{-+}($exotic $)$	2^{++}

Amplitudes function of production angle Φ and decay angles (ϕ, θ)

Semi-Mass Independent PWA on $\eta \pi^{0}$

Signal process: $\gamma p \rightarrow a_{2}^{0}(1320) p$

- Ultimately want mass independent PWA to $\eta \pi$ and $\eta^{\prime} \pi$
- Mass independent PWA has many parameters
- To stabilize fits, we add in physical constraints: model $a_{2}(1320)$ and $a_{2}(1700)$ as Breit-Wigner
- Use these results to measure $\frac{d \sigma\left(a_{2}\right)}{d t}$

$a_{2}^{0}(1320)$ Cross Section from $\eta \pi^{0}$

- First separation of natural and unnatural exchanges
- Comes from polarized photon beam - unique to GlueX
- $\sigma\left(a_{2}(1320)\right)$ measured here can be used as reference for $\eta^{\prime} \pi$
- Results agree reasonably well with theory prediction
- Publication being prepared

Semi-mass Independent PWA on $\eta \pi^{-}$

Process: $\gamma p \rightarrow \eta \pi^{-} \Delta^{++}$

- Use same method as $\eta \pi^{0}$
- $a_{2}(1320)$ appears in D_{1}^{-} wave \Longrightarrow pion exchange with direct polarization transfer from γ to a_{2}
S_{0}^{-}
$\mathbf{a}_{2}(1320)$
Gluef
Preliminary

$$
M\left(\eta \pi^{-}\right)\left[G e V / c^{2}\right]
$$

Complication: background from $\gamma p \rightarrow\left(a_{2}^{-} \pi^{+}\right) p \rightarrow \pi^{+} \pi^{-} \eta p$

Δ^{++}

Prospects for $\eta^{\prime} \pi$

Analysis on $\eta^{\prime} \pi$ being performed in parallel

- Expect best sensitivity to $\pi_{1}(1600)$ in $\eta^{\prime} \pi$
- Less pronounced $a_{2}(1320) \Longrightarrow$ use $\eta \pi$ measurement as reference

- GlueX-I Data
a_{2} MC Projection
$=\pi_{1}$ MC Upper Limit

Summary

- GlueX provides a unique place to look for hybrid mesons
- Beam polarization gives info on production mechanisms
- Some models predict hybrids copiously produced in photoproduction
- We set first upper limit on π_{1} photoproduction cross sections
- $\eta^{\prime} \pi$ final states have largest discovery potential
- $\eta \pi$ PWA is being used to extract $\sigma\left(a_{2}(1320)\right)$
- Agrees well with theory predictions
- Can be used as reference for $\eta^{\prime} \pi$ analysis
- Publication being prepared
- $\eta^{\prime} \pi$ is most sensitive channel to $\pi_{1}(1600)$ at GlueX
- PWA framework from $\eta \pi$ analysis can be used

Acknowledgements: gluex.org/thanks

Hall D at Jefferson Lab

- Hall D is one of four experimental halls at Jefferson Lab
- CEBAF accelerates electrons up to 12 GeV
- Electrons impinge on diamond wafer, creating linearly polarized photons via coherent bremsstrahlung
- Photon beam incident on liquid hydrogen target

CLAS $\pi_{1} \rightarrow 3 \pi$ Upper Limit

CLAS sets an upper limit of $\sigma\left(\gamma p \rightarrow \pi_{1}^{+} n\right)<13.5 \mathrm{nb}$.

- Lower photon beam energy: $4.8<E_{\gamma}<5.4 \mathrm{GeV}$
- Different reaction - produced against a neutron

- Upper limit is really on $\sigma\left(\gamma p \rightarrow \pi_{1}^{+} n\right) \mathcal{B}\left(\pi_{1}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)$
- They used a model dependent central value for $\mathcal{B}\left(\pi_{1}\right)$
- Upper limit needs to include systematic uncertainty in $\mathcal{B}\left(\pi_{1}^{+}\right)$
- LQCD allowed values are $0<\mathcal{B}\left(\pi_{1} \rightarrow 3 \pi\right)<12.6 \%$.

