Spectroscopy of Ising Mesons on a Noisy Quantum Simulator

Chris Lamb, Rob Davis, Yicheng Tang and Ananda Roy

Rutgers University

Ref: arXiv:2303.03311

APS Topical Group on Hadronic Physics Workshop April 14, 2023

Image: BBC UK

What kind of computer are we going to use to simulate physics?

... you can simulate this with a quantum system, with quantum computer elements. It's not a Turing machine, but a machine of a different kind.

A universal quantum computer is also a universal digital quantum simulator Lloyd (1996)

<u>Needs to be error-correcting</u>, fault-tolerant

Shor (1995), Steane (1996)

Trade-off universality for near-term achievability

Does not need Quantum Error Correction

Wide range of platforms available

A universal quantum computer is also a universal digital quantum simulator Lloyd (1996)

<u>Needs to be error-correcting</u>, fault-tolerant

Shor (1995), Steane (1996)

Trade-off universality for near-term achievability

Does not need Quantum Error Correction

Wide range of platforms available

A universal quantum computer is also a universal digital quantum simulator Lloyd (1996)

<u>Needs to be error-correcting</u>, fault-tolerant

Shor (1995), Steane (1996)

Quantum code candidates:

 Shor code (1 logical = 9 data + 8 ancilla)

Shor (1995), Dennis et al (2001), O'Brien et al (2017)

Examples of Current Digital Quantum Machines

IBM Quantum Simulators

source: quantum-computing.ibm.com

ibm_washington	Exploratory	🔒 ibm_ ithaca	Exploratory	🔒 ibmq_ kolkata
System status • Online - Queue ; internal	baused	System status • Online Processor type Hummingbird r3		System statusOnlineProcessor typeFalcon r5.11
Processor type Eagle r1				
Qubits QV CLOPS 127 64 850		Qubits 65	×-	Qubits QV CLOPS 27 128 2K

Similar Quantum Simulators available from AWS, Rigetti, Microsoft, Google, ..., similar number of qubits, decoherence times $\sim 100 \mu s$

Effective number of logical qubits
$$\simeq \frac{100}{17} \sim 6$$

Examples of Current Digital Quantum Machines

IBM Quantum Simulators

source: quantum-computing.ibm.com

ibm_washington	Exploratory	🔒 ibm_ ithaca	Exploratory	🔒 ibmq_ kolkata
System status • Online - Queue ; internal	baused	System status • Online Processor type Hummingbird r3		System statusOnlineProcessor typeFalcon r5.11
Processor type Eagle r1				
Qubits QV CLOPS 127 64 850		Qubits 65	×-	Qubits QV CLOPS 27 128 2K

Similar Quantum Simulators available from AWS, Rigetti, Microsoft, Google, ..., similar number of qubits, decoherence times $\sim 100 \mu s$

Effective number of logical qubits
$$\simeq \frac{100}{17} \sim 6$$

What can we do with these quantum machines of the NISQ era?

NISQ = Noisy Intermediate-Scale Quantum

What kind of quantum field theories can be simulated on the NISQ machines?

Early works on scattering in massless real scalar field (Klein-Gordon, ...)

Jordan et al (2012), Klco and Savage (2019), ...

A more minimalistic approach: spin-chains which can be mapped to qubits with minimal overhead

Smith et al (2019), Vovrosh and Knolle (2020), ...

Abandon error-correction – leads to new question about how quantum field theories respond to noise and dissipation

Look for a model with a `small correlation length'

This talk: the Ising model with transverse and longitudinal field

McCoy and Wu (1978), Rutkevich (2005, 2008), Fonseca and Zamolodchikov (2001, 2006)

Ising model with transverse and longitudinal field

Hamiltonian (periodic boundary conditions):

Important solvable cases:

- 1. Free fermion: h = 0 (Onsager, 1944)
- 2. E_8 model: $g = 1, h \ll 1$ (Zamolodchikov, 1989)

No known exact solution for arbitrary *g*, *h*

Formation of Mesonic Bound States in the model

McCoy and Wu (1978), Rutkevich (2005, 2008), Fonseca and Zamolodchikov (2001, 2006)

Formation of Mesonic Bound States in the model

McCoy and Wu (1978), Rutkevich (2005, 2008), Fonseca and Zamolodchikov (2001, 2006)

Quantum Simulation Protocol

- 1. Initialize in ferromagnetic state: $| \rightarrow, \rightarrow, ..., \rightarrow \rangle$
- Trotterized time-evolution in terms of single and two qubit gates
- 3. Measure $\langle \sigma_i^{\chi} \rangle$

Lamb, Davis, Tang, AR, arXiv:2303.03311

IBM Mumbai Quantum Simulator

Median life-times: $\sim 100 \mu s$ Gate and readout errors: $\sim 1\%$

Ref: https://quantum-computing.ibm.com

Mapping to IBM's Mumbai Quantum Simulator

- 1. Initialize in ferromagnetic state: $| \rightarrow, \rightarrow, ..., \rightarrow \rangle$
- 2. Trotterized time-evolution in terms of single and two qubit gates

amb, Davis, Tang, AR, arviv:2303.03311

Quantum Simulation Experimental Data

Lamb, Davis, Tang, AR, arXiv:2303.03311

Ising meson energies: experimental vs exact results

Lamb, Davis, Tang, AR, arXiv:2303.03311

Summary

Noisy Intermediate Scale Quantum can simulate low-dimensional QFTs

-- example: Ising field theory

Summary

Noisy Intermediate Scale Quantum can simulate low-dimensional QFTs

-- example: Ising field theory

Approach readily generalizable to a wide-family of quantum spin-chains

Ongoing work on the quantum sine-Gordon model

Outlook

Measurement of scattering matrix amplitudes

Improve resilience to noise – `a bit' of error-correction

Towards problems which cannot be solved with classical computers

Ongoing work on the quantum sine-Gordon model

Chris Lamb

Thank You!

Rob Davis

Yicheng Tang

More details in arXiv:2303.03311