Simultaneous Global Analysis of Di-Hadron Fragmentation Functions and Transversity PDFs

April 12, 2023

JAM Collaboration

- 3-dimensional structure of nucleons:
- Parton distribution functions (PDFs)
- Fragmentation functions (FFs)
- Transverse momentum dependent distributions (TMDs)
- Generalized parton distributions (GPDs)

- Collinear factorization in perturbative QCD
- Simultaneous determinations of PDFs, FFs, etc.
- Monte Carlo methods for Bayesian inference

Approaches to Extract Transversity

Di-Hadron Frag.

- Radici + Bacchetta (RB18)
- Benel + Courtoy + Ferro-Hernandez (2020)

M. Radici and A. Bacchetta, Phys. Rev. Lett. **120**, no. 19, 192001 (2018) TMD + Collinear Twist-3

• JAM3D

L. Gamberg et al., Phys. Rev. D 106, no. 3, 034014 (2022)

Lattice QCD

- ETMC Collaboration
- PNDME Collaboration
- Hasan *et al*.

C. Alexandrou et al., Phys. Rev. D 104, no. 5, 054503 (2021)

JAM Global Analysis in the collinear DiFF Approach

R. Seidl et al., Phys. Rev. D 96, no. 3, 032005 (2017)

C. Adolph et al., Phys. Lett. B 713, 10-16 (2012)

L. Adamczyk et al., Phys. Rev. Lett. 115, 242501 (2015)

The Transverse Spin Puzzle?

1. JAM Methodology

- 2. Extraction of DiFFs
- 3. Extraction of Transversity PDFs
- 4. Extraction of Tensor Charges
- 5. Conclusions and Outlook

Kinematics and Definitions

$$q(k) \to h_1(P_1) + h_2(P_2) + X$$
 $z_{1,2} = P_{1,2}^-/k$

$$M_h^2 \equiv P_h^2 \equiv (P_1 + P_2)^2 \qquad R \equiv \frac{1}{2}(P_1 - P_2) \qquad z \equiv z_1 + z_2 \qquad \zeta = \frac{z_1 - z_2}{z}$$

 $d\xi^+$

(2)

$$D_1^{h_1h_2/q}(z_1, z_2, \overrightarrow{P}_{1\perp}, \overrightarrow{P}_{2\perp}) \equiv \frac{1}{64\pi^3 z_1 z_2}$$

$$\frac{d^2 \vec{\xi}_T}{\pi)^3} e^{ik \cdot \xi} \operatorname{Tr} \left[\langle 0 | \psi_q(\xi) | h_1, h_2, X \rangle \langle h_1, h_2, X | \bar{\psi}_q(0) | 0 \rangle \gamma^- \right]_{\xi^- = 0}$$

9

A. Majumder and X. N. Wang, J. Phys. G **31**, S533-S540 (2005)

Needed for number density interpretation

$$D_1^{h_1 h_2/q}(z_1, z_2) = \int d^2 \overrightarrow{P}_{1\perp} d^2 \overrightarrow{P}_{2\perp} D_1^{h_1 h_2/q}(z_1, z_2, \overrightarrow{P}_{1\perp} \overrightarrow{P}_{2\perp})$$
$$D_1^{h_1 h_2/q}(z, M_h) = \int d\zeta \ D_1^{h_1 h_2/q}(z, \zeta, M_h) \quad (\text{extDiFFs})$$

Checks of Definition

Number density

$$\sum_{h_1h_2} \int dz_1 dz_2 D_1^{h_1h_2/q}(z_1, z_2) = N^q (N^q - 1)$$

Momentum sum rule
$$\sum_{h_1} \int_0^{1-z_2} dz_1 \int d^2 \vec{P}_{1\perp} z_1 D_1^{h_1 h_2 / q}(z_1, z_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) = (1 - z_2) D_1^{h_2 / q}(z_2, \vec{P}_{2\perp})$$

LO cross section for

$$e^-e^+ \rightarrow (h_1h_2)X$$

$$\frac{d\sigma}{dzdM_h} = \sum_{q\bar{q}} \hat{\sigma}^q D_1^{h_1h_2/q}(z, M_h)$$
 $\hat{\sigma}^q = \frac{4\pi e_q^2 \alpha_{em}^2 N_c}{3Q^2}$

Di-Hadron Production and Transversity Parton Distribution Functions

Evolution

Evolution for extDiFFs (quark non-singlet)

$$\frac{\partial}{\partial \ln \mu^2} D_1^{h_1 h_2/q}(z, \zeta, \overrightarrow{R}_T^2; \mu) = \int_z^1 \frac{\mathrm{d}w}{w} D_1^{h_1 h_2/q}(\frac{z}{w}, \zeta, \overrightarrow{R}_T^2; \mu) P_{q \to q}(w)$$

Homogeneous term only for extended DiFFs

F. A. Ceccopieri, M. Radici, and A. Bacchetta, Phys. Lett. B 650, 81 (2007)

Inhomogeneous term exists for $D_1^{h_1h_2}(z_1, z_2)$

Analogous derivations done for $D_1^{h_1h_2/g}$ and $H_1^{\triangleleft,h_1h_2/q}$

Data for DiFFs

$$\pi^+\pi^-$$
 DiFFs

$$D_{1}^{u} = D_{1}^{d} = D_{1}^{\bar{u}} = D_{1}^{\bar{d}},$$
$$D_{1}^{s} = D_{1}^{\bar{s}}, \quad D_{1}^{c} = D_{1}^{\bar{c}}, \quad D_{1}^{b} = D_{1}^{\bar{b}},$$
$$5 \text{ independent functions } (w/D_{1}^{g})$$

$$\begin{split} H_{1}^{\triangleleft,u} &= -H_{1}^{\triangleleft,d} = -H_{1}^{\triangleleft,\bar{u}} = H_{1}^{\triangleleft,\bar{d}}, \\ H_{1}^{\triangleleft,s} &= -H_{1}^{\triangleleft,\bar{s}} = H_{1}^{\triangleleft,c} = -H_{1}^{\triangleleft,\bar{c}} = 0, \\ & 1 \text{ independent function} \end{split}$$

A. Courtoy et al., Phys. Rev. D 85, 114023 (2012)

Quality of Fit (Unpolarized Cross Section)

R. Seidl et al., Phys. Rev. D 96, 032005 (2017)

Quality of Fit (Artru-Collins Asymmetry)

15

Extracted DiFFs

Bound:

A. Bacchetta and M. Radici, Phys. Rev. D 67, 094002

(2003)

 $< D_{1}^{q}$

 $H^{\triangleleft,q}$

Extracted IFFs

JAM Methodology Extraction of DiFFs Extraction of Transversity PDFs

- 4. Extraction of Tensor Charges
 - **5.** Conclusions and Outlook

Data for PDFs

SIDIS (p, D)COMPASS, HERMES64 pointsProton-ProtonSTAR269 points

Parameterization Choices

3 independent observables 3 independent functions

Prediction from large- N_c limit

P. V. Pobylitsa, arXiv:hep-ph/0301236 (2003)

Quality of Fit (SIDIS)

COMPASS, arXiv:hep-ph/2301.02013 (2023)

19

20

Quality of Fit (STAR $\sqrt{s} = 200$ GeV)

L. Adamczyk et al., Phys. Rev. Lett. 115, 24501 (2015)

Quality of Fit (STAR $\sqrt{s} = 500$ GeV)

21

Transversity PDFs

Controlling Extrapolation

$$\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$$

 $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$
 $g_T \equiv \delta u - \delta d,$

Large
$$x \gtrsim 0.3$$

offer Bound: $|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$

J. Soffer, Phys. Rev. Lett. 74, 1292-1294 (1995)

Small
$$x \leq 0.005$$

S

$$h_1^q \xrightarrow[x \to 0]{} x^{\alpha_q} \qquad \alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 0.17 \pm 50\%$$

Y. V. Kovchegov and M. D. Sievert, Phys. Rev. D 99, 054033 (2019)

Extraction of Tensor Charges

Tensor Charges (no lattice in fit)

25

What happens if lattice is included in our fit?

Tensor Charges (with lattice in fit)

26

Fit is able to accommodate lattice data quite well!

Global χ^2 without lattice: 1.11 Global χ^2 with lattice: 1.15

Tensor Charges (before and after lattice)

27

JAM Methodology Extraction of DiFFs Extraction of Transversity PDFs Extraction of Tensor Charges Conclusions and Outlook

Conclusions and Outlook

Conclusions

Simultaneous extraction of DiFFs and transversity PDFs

Transverse spin puzzle?

Conclusions and Outlook

Outlook

More data from RHIC Proton-proton cross section

SIDIS multiplicities from COMPASS

N. Makke, Phys. Part. Nucl. 45, 138-140 (2014)

L. Gamberg et al., Phys. Lett. B 816, 136255 (2021)

30

EIC can provide new information

Simultaneous fit of DiFF channel + TMD channel + Lattice QCD

Collaboration

Andreas Metz

Wally Melnitchouk

Alexey Prokudin

Ralf Seidl

Nobuo Sato

Daniel Pitonyak

Thank you to Yiyu Zhou and Patrick Barry for helpful discussions

Extra Slides

Parameterize PDFs at input scale
$$Q_0^2 = m_c^2$$

 $f_i(x) = Nx^{\alpha}(1-x)^{\beta}(1+\gamma\sqrt{x}+\eta x)$
Evolve PDFs using DGLAP

$$\frac{d}{d \ln(\mu^2)}f_i(x,\mu) = \sum_j \int_x^1 \frac{dz}{z} P_{ij}(z,\mu)f_j(\frac{x}{z},\mu)$$
Mellin Space Techniques
 $d\sigma^{pp} = \sum_{ijkl} \frac{1}{(2\pi i)^2} \int dN \int dM \tilde{f}_j(N,\mu_0) \tilde{f}_l(M,\mu_0)$
 $\otimes [x_1^{-N} x_2^{-M} \tilde{\mathcal{H}}_{ik}^{pp}(N,M,\mu) U_{ij}^S(N,\mu,\mu_0) U_{kl}^S(M,\mu,\mu_0)]$

Now that the observables have been calculated...

Now that we have calculated $\chi^2(a, data)...$

Likelihood Function

$$\mathcal{L}(\boldsymbol{a}, \text{data}) = \exp\left(-\frac{1}{2}\chi^{2}(\boldsymbol{a}, \text{data})\right)$$

$$\begin{array}{c} \text{Posterior Beliefs} \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \sim \mathcal{L}(\boldsymbol{a}, \text{data}) \pi(\boldsymbol{a}) \end{array}$$

$$\begin{array}{c} \text{Posterior Beliefs} \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \text{Prior Beliefs} \end{array}$$

For a quantity O(a): (for example, a PDF at a given value of (x, Q^2))

 $E[O] = \int d^n a \ \rho(\boldsymbol{a} \mid data) \ O(\boldsymbol{a})$ $V[O] = \left[d^n a \ \rho(\boldsymbol{a} \,|\, data) \ \left[O(\boldsymbol{a}) - E[O] \right]^2 \right]$ Build an MC ensemble $\begin{vmatrix} E[O] \approx \frac{1}{N} \sum_{k} O(\boldsymbol{a}_{k}) \\ V[O] \approx \frac{1}{N} \sum_{k}^{k} \left[O(\boldsymbol{a}_{k}) - E[O] \right]^{2} \end{vmatrix}$

Exact, but $n = \mathcal{O}(100)!$

Average over k sets of the parameters (replicas)

PYTHIA data ($\sqrt{s} = 10.58$ GeV)

PYTHIA data ($\sqrt{s} = 30.73$ GeV)

PYTHIA data ($\sqrt{s} = 50.88$ GeV)

PYTHIA data ($\sqrt{s} = 71.04$ GeV)

PYTHIA data ($\sqrt{s} = 91.19$ GeV)

Transversity PDFs (antiquarks)

Tensor Charges (Different Datasets)

47

DiFF Parameterization

 $\mathbf{M}_{h}^{u} = [2m_{\pi}, 0.40, 0.50, 0.70, 0.75, 0.80, 0.90, 1.00, 1.20, 1.30, 1.40, 1.60, 1.80, 2.00] \text{ GeV}.$

$$D_1^q(z, \mathbf{M}_h^{q,i}) = \sum_{j=1,2,3} \frac{N_{ij}^q}{\mathcal{M}_{ij}^q} z^{\alpha_{ij}^q} (1-z)^{\beta_{ij}^q},$$

204 parameters for D_1 48 parameters for H_1^{\triangleleft}

PDF Parameterization

$$h_1^{u_v}$$

$$h_1^{d_v}$$

$$h_1^{\bar{u}} = -h_1^{\bar{d}}$$

$$f(x,\mu_0^2) = rac{N}{\mathcal{M}} x^lpha (1-x)^eta (1+\gamma\sqrt{x}+\eta x),$$

49

15 parameters for h_1

 χ^2 Tables

experiment	observable	binning	$N_{ m dat}$	$\chi^2_{ m red}$	fitted norm.
Belle [2]	$rac{d^2\sigma}{\mathrm{d}z\mathrm{d}M_h}$	z, M_h	1121	1.24	0.992(20)
Belle [3]	a_{12R}	$z, M_h \ M_h, \overline{M}_h \ z, ar{z}$	$55\\64\\64$	$0.53 \\ 3.43 \\ 1.54$	_
HERMES [5]	$A_{UT}^{ m HERMES}$	${x_{ m bj} \over M_h} \ z$	4 4 4	$1.84 \\ 1.27 \\ 1.74$	1.101(43)
COMPASS (p) [53]	$A_{UT}^{ m COMPASS}$	${x_{ m bj} \over M_h} _z$	9 10 7	$0.88 \\ 1.12 \\ 1.58$	0.994(4)
COMPASS (D) [53]	$A_{UT}^{ m COMPASS}$	${x_{ m bj} \over M_h} \ z$	9 10 7	$1.20 \\ 0.39 \\ 0.47$	1.002(5)
STAR [6] $\sqrt{s} = 200 \text{ GeV}$ R < 0.3	A_{UT}^{pp}	$egin{aligned} M_h, \eta < 0 \ M_h, \eta > 0 \ P_{hT}, \eta < 0 \ P_{hT}, \eta < 0 \ P_{hT}, \eta > 0 \ \eta \end{aligned}$	55554	$2.54 \\ 1.52 \\ 0.92 \\ 1.05 \\ 1.72$	0.982(17)
STAR [25] $\sqrt{s} = 500 \text{ GeV}$ R < 0.7	A_{UT}^{pp}	$egin{aligned} M_h, \eta < 0 \ M_h, \eta > 0 \ P_{hT}, \eta > 0 \ \eta \end{aligned}$	$32 \\ 32 \\ 35 \\ 7$	$\begin{array}{c} 0.78 \\ 1.16 \\ 1.09 \\ 1.57 \end{array}$	1.078(27)
STAR [76] $\sqrt{s} = 200 \text{ GeV}$ R < 0.3 PRELIMINARY Total	A_{UT}^{pp}	$M_{h}, \eta < 0 \ M_{h}, \eta > 0 \ P_{hT}, \eta < 0 \ P_{hT}, \eta < 0 \ P_{hT}, \eta > 0 \ \eta$	$31 \\ 31 \\ 29 \\ 29 \\ 9 \\ 1627$	0.94 1.25 0.85 1.05 2.06 1.29	0.955(16)

experiment	$N_{\rm dat}$	Lattice	Baseline
HERMES [5]	12	1.92	1.62
COMPASS (p) [53]	26	1.28	1.16
COMPASS (D) [53]	26	0.71	0.69
STAR (2015) [6]	24	1.62	1.54
STAR (2018) [25]	106	1.09	1.05
STAR (PRELIM) [76]	129	1.09	1.10
ETMC δu [46]	1	4.04	
ETMC δd [46]	1	0.15	—
Total	325	1.15	1.11