Extracting the Proton's Tensor Charge from QCD Phenomenology

Daniel Pitonyak Lebanon Valley College, Annville, PA, USA

APS Group on Hadronic Physics Meeting April 12, 2023 Minneapolis, MN

Outline

- Background and motivation
- Overview of two phenomenological approaches
- Previous results and impact studies for future experiments
- Recent analyses and current status
- Summary and outlook

Background and Motivation

$$S_{T}^{i} h_{1}^{q}(x) = \frac{1}{2} \int \frac{d\xi^{-}}{2\pi} e^{ixP^{+}\xi^{-}} \operatorname{Tr}[\langle P, S | \bar{\psi}_{q}(0) \mathcal{W}(0, \xi^{-}) \psi_{q}(\xi^{-}) i\sigma^{i+} \gamma_{5} | P, S \rangle]$$

transversity PDF - universal parton density encoding the difference between the number of quarks with their spin aligned versus anti-aligned to the proton's spin when it's in a transverse direction

$$S_T^i \boldsymbol{h}_1^{\boldsymbol{q}}(\boldsymbol{x}) = \frac{1}{2} \int \frac{d\xi^-}{2\pi} e^{i\boldsymbol{x}P^+\xi^-} \operatorname{Tr}[\langle P, S | \bar{\psi}_q(0) \mathcal{W}(0, \xi^-) \psi_q(\xi^-) i\sigma^{i+}\gamma_5 | P, S \rangle]$$

transversity PDF – universal parton density encoding the difference between the number of quarks with their spin aligned versus anti-aligned to the proton's spin when it's in a transverse direction

local matrix element - can be computed in lattice QCD as well as other approaches like Dyson-Schwinger equations

Lebanon Valley College

D. Pitonyak

- Importance of the nucleon tensor charge:
 - Like the scalar, vector, and axial charges, it is a fundamental charge of the nucleon (although scale dependent)
 - Since helicity PDF ≠ transversity PDF in relativistic quantum mechanics, it can be considered a measure of relativistic effects in the nucleon
 - Key point of comparison between QCD phenomenology/experiment and *ab initio* approaches like lattice QCD and DSE
 - Needed in certain beyond the Standard Model studies (e.g., beta decay, EDM)

$$\mathcal{L}_{n \to p e \bar{\nu}_{e}} \sim \dots + 4\sqrt{2}G_{F}V_{ud} \mathbf{g_{T}} \epsilon_{T} \bar{p} \sigma^{\mu\nu} n \bar{e} \sigma_{\mu\nu} \nu_{e} + \dots$$
Lagrangian for neutron beta decay BSM coupling
$$\tilde{d}_{p} = \tilde{d}_{u} \mathbf{\delta u} + \tilde{d}_{d} \mathbf{\delta d}$$
proton EDM quark EDMs

Overview of Two Phenomenological Approaches

Transverse Momentum Dependent/Collinear Twist-3 Approach

Transverse Momentum Dependent/Collinear Twist-3 Approach

لوی Lebanon Valley College

D. Pitonyak

$$\ell N^{\uparrow} \rightarrow \ell h X \qquad e^{+}e^{-} \rightarrow h_{1}h_{2}X$$

$$\int_{advised plane} P_{h\perp} P_{h} \phi_{h} \phi_{h} (Collins (1992); Anselmino, et al. (2007); Bottom plane} (Collins (1992); Anselmino, et al. (2007); Bottom plane (Collins, et al. (2016); ...) = C \left[2\hat{h} \cdot \vec{p}_{a\perp} \cdot \vec{h} \cdot \vec{p}_{b\perp} - \vec{p}_{a\perp} \cdot \vec{p}_{b\perp} H_{1}^{\perp} \vec{H}_{1}^{\perp} \right]$$

$$F_{UT}^{\sin(\phi_{h} + \phi_{S})} = C \left[-\frac{\hat{h} \cdot \vec{p}_{\perp}}{M_{h}} h_{1}H_{1}^{\perp} \right] F_{UU}^{\cos(2\phi_{0})} = C \left[\frac{2\hat{h} \cdot \vec{p}_{a\perp} \cdot \hat{h} \cdot \vec{p}_{b\perp} - \vec{p}_{a\perp} \cdot \vec{p}_{b\perp}}{M_{a}M_{b}} H_{1}^{\perp} \vec{H}_{1}^{\perp} \right]$$

$$TMD/Collins-Soper-Sterman (CSS) Evolution$$

$$\tilde{h}_{1}(x, b_{T}; Q^{2}, \mu_{Q}) \sim h_{1}(x; \mu_{b_{*}}) \exp \left[-S_{pert}(b_{*}(b_{T}); \mu_{b_{*}}, Q, \mu_{Q}) - S_{NP}^{h_{1}}(b_{T}, Q) \right]$$

$$\tilde{H}_{1}^{\perp(1)}(z, b_{T}; Q^{2}, \mu_{Q}) \sim H_{1}^{\perp(1)}(z; \mu_{b_{*}}) \exp \left[-S_{pert}(b_{*}(b_{T}); \mu_{b_{*}}, Q, \mu_{Q}) - S_{NP}^{H_{1}^{\perp}}(b_{T}, Q) \right]$$

$$Parton model$$

$$h_1(x) = \int d^2 \vec{k}_T h_1(x, \vec{k}_T^2) \qquad H_1^{\perp(1)}(z) = z^2 \int d^2 \vec{p}_\perp \frac{p_\perp^2}{2M_h^2} H_1^{\perp}(z, z^2 p_\perp^2)$$

ليون Lebanon Valley College

D. Pitonyak

(Yuan (2008); D'Alesio, Murgia, Pisano (2017); Kang, Prokudin, Ringer, Yuan (2017), ...)

 $F_{UT}^{\sin(\phi_S - \phi_H)} \sim H_{ab \to c}^{\text{Collins}}(\hat{s}, \hat{t}, \hat{u}) \otimes \boldsymbol{h_1^a}(\boldsymbol{x_1}) \otimes f_1^b(\boldsymbol{x_2}) \otimes (j_{\perp}/(z_h M_h)) \boldsymbol{H_1^{\perp h/c}}(\boldsymbol{z_h}, \boldsymbol{j_{\perp}^2})$

لي Lebanon Valley College

D. Pitonyak

$$\Delta \sigma(S_T) \sim H_{QS} \otimes f_1 \otimes \mathbf{F_{FT}} \otimes D_1$$

Qiu-Sterman term
 $+ H_F \otimes f_1 \otimes \mathbf{h_1} \otimes \left(\mathbf{H_1^{\perp(1)}}, \tilde{\mathbf{H}} \right)$

Fragmentation term (Metz, DP (2012); Kanazawa, et al. (2014); Cammarota, et al. (2020); Gamberg, et al. (2017, 2022))

 A_N is a *collinear* (twist-3) observable

Dihadron Fragmentation Approach

From Bianconi, et al. (2000)

Dihadron Fragmentation Approach

Collinear PDFs (x)

transversity PDF

extDiFFs (z, M_h)

"interference" FF

Dihadron Fragmentation Approach

Collinear PDFs (x)

q pol. H pol.	U	L	Т
U	f_1		
L		g_1	
Т			h_1

extDiFFs (z, M_h)

q pol. H pol.	U	L	Т
U	D_1		H_1^{\sphericalangle}

(Collins, et al. (1994); Bianconi, et al. (1999), ...)

 $z = z_1 + z_2$, M_h = invariant mass of dihadron

"extended" DiFFs (extDiFFs) depend on z and M_h (or equivalently R_T)

DiFFs at the fully unintegrated level depend on a few more variables

Correction needed to original correlator definition in order to have a number density interpretation (Cocuzza, Metz, DP, Prokudin, Sato, in preparation) 9

بنین Lebanon Valley College

D. Pitonyak

(Collins, et al. (1994); Bianconi, et al. (1999); Bacchetta, Radici (2003, 2004); Courtoy, et al. (2012); Matevosyan, et al. (2018); Radici, et al. (2013, 2015, 2018); Benel, et al. (2020), ...)

 $\frac{d\hat{\sigma}_{ab\to cd}}{d\hat{t}} \otimes f_1^a(x_a) \otimes f_1^b(x_b) \otimes D_1^c(z, M_h^2)$

Previous Results and Impact Studies for Future Experiments

Transverse Momentum Dependent/Collinear Twist-3 Approach

	e⁺e⁻ Collins	SIDIS Collins	Hadron- in-jet Collins	Proton- proton A _N	Lattice tensor charge(s)	Soffer bound	Framework
Anselmino, et al. (2015)	\checkmark	\checkmark	Х	X	X	\checkmark	Parton model
Kang, et al. (2016)	\checkmark	\checkmark	X	X	X	\checkmark	CSS/TMD evolution
Lin, et al. (2018)	X	\checkmark	X	X	$\checkmark g_{\tau}$	X	Parton model
D'Alesio, et al. (2020)	\checkmark	\checkmark	X	X	X	X^{\dagger}	Parton model
Cammarota, et al. (2020) JAM3D-20*	\checkmark	\checkmark	X	\checkmark	X	X	Parton model
*Also included S	ivers effects i	in SIDIS and	Drell-Yan	Soffer	bound (SB):	$ h_1^q(x) < \frac{1}{2}$	$(f_1^q(x) + q_1^q(x))$

^TPerformed fit both with and without SB

Note: Predictions exist for hadron-in-jet Collins effect (D'Alesio, et al. (2017); Kang, et al. (2017)) but no groups have included the STAR data in a fit. These are important measurements to use in future studies. 11

12

Lebanon Valley College

D. Pitonyak

- Analyses that only include e^+e^- and SIDIS Collins effect data (e.g., Kang, et al. (2016)) are generally below the lattice values for g_T and δu
- > JAM3D-20 also includes A_N data, which causes a larger $h_I^u(x)$ and brought g_T and δu in agreement with lattice for the first time

Dihadron Fragmentation Approach

	e⁺e⁻ dơ/dzdM _h	e⁺e⁻ Artru- Collins	SIDIS sin(φ _R +φ _S)	Proton- proton sin(φ _R -φ _S)	Lattice tensor charge(s)	Soffer bound
Radici, Bacchetta (2018)	✓* PYTHIA	✓*	\checkmark	\checkmark	X	\checkmark
Benel, et al. (2020)	✓* PYTHIA	✓*	\checkmark	X	X	✓^

* $D_1(z, M_h)$ and $H_1^{\triangleleft}(z, M_h)$ were fit in a separate analysis and then fixed when extracting $h_1(x)$

^ Imposed the SB but allowed for violations given the uncertainties in $f_1(x)$ and $g_1(x)$

لي Lebanon Valley College

D. Pitonyak

Radici, Bacchetta (2018)

Lebanon Valley College

D. Pitonyak

Dihadron analyses (e.g., Benel, et al. (2020); Radici, Bacchetta (2018)), along with TMD fits that only include e⁺e⁻ and SIDIS Collins effect data (e.g., Kang, et al. (2016)), are generally below the lattice values for g₇ and *Su*

"Transverse Spin Puzzle"

Lebanon Valley College

D. Pitonyak

Gamberg, Kang, DP, Prokudin, Sato, Seidl (2021) – EIC and SoLID pseudodata on **SIDIS Collins effect**

With future EIC and SoLID data, phenomenological extractions of the tensor charge will become as (or more) precise as current lattice computations Radici and Bacchetta from EIC Yellow Report (2021) – pseudodata on **dihadron SIDIS**

Recent Analyses and Current Status

Transverse Momentum Dependent/Collinear Twist-3 Approach

	e⁺e⁻ Collins	SIDIS Collins	Hadron- in-jet Collins	Proton- proton A _N	Lattice tensor charge(s)	Soffer bound	Framework
Anselmino, et al. (2015)	\checkmark	\checkmark	Х	Х	Х	\checkmark	Parton model
Kang, et al. (2016)	\checkmark	\checkmark	Х	Х	X	\checkmark	CSS/TMD evolution
Lin, et al. (2018)	X	\checkmark	Х	Х	$\checkmark g_{T}$	X	Parton model
D'Alesio, et al. (2020)	\checkmark	\checkmark	Х	Х	X	\mathbf{X}^{\dagger}	Parton model
Cammarota, et al. (2020) JAM3D-20*	\checkmark	\checkmark	X	\checkmark	X	X	Parton model
Gamberg, et al. (2022) JAM3D-22*	\checkmark	\checkmark	Х	\checkmark	$\checkmark g_{\tau}$	✓^	Parton model

*Also included Sivers effects in SIDIS and Drell-Yan [†]Performed fit both with and without SB

^ Imposed the SB but allowed for violations given the uncertainties in $f_1(x)$ and $g_1(x)$ 18

ليچ) Lebanon Valley College

D. Pitonyak

Transversity becomes much more tightly constrained by imposing the SB and including the lattice g_T data point, in particular the latter

Lebanon Valley College

D. Pitonyak

Figure modified from Gamberg, Malda, Miller, DP, Prokudin, Sato (2022)

- The JAM3D-22 tensor charges are more precise because of including the lattice g_{τ} data point
- Note that because of the SB, one initially finds more tension between JAM3D-22 and lattice, but this does *not* imply phenomenology and lattice are incompatible – *one can only fully answer this by including lattice data in the analysis*
- > Once the lattice g_{τ} data point is included, the JAM3D-22 non-perturbative functions can accommodate it **and still describe the experimental data very well**²⁰

Dihadron Fragmentation Approach

	e⁺e⁻ dơ/dzdM _h	e⁺e⁻ Artru- Collins	SIDIS sin(φ _R +φ _s)	Proton- proton sin(φ _R -φ _S)	Lattice tensor charge(s)	Soffer bound
Radici, Bacchetta (2018)	✓* PYTHIA	✓*	\checkmark	\checkmark	X	\checkmark
Benel, et al. (2020)	✓* PYTHIA	✓*	\checkmark	X	X	✓^
Cocuzza, et al. (in prep) JAMDiFF-23	\checkmark	\checkmark	\checkmark	\checkmark	🗸 δ u, δ d	✓^

* $D_1(z, M_h)$ and $H_1^{\triangleleft}(z, M_h)$ were fit in a separate analysis and then fixed when extracting $h_1(x)$ ^ Imposed the SB but allowed for violations given the uncertainties in $f_1(x)$ and $g_1(x)$

ليو Lebanon Valley College

D. Pitonyak

Transverse Momentum Dependent/Collinear Twist-3 Approach

	e⁺e⁻ Collins	SIDIS Collins	Hadron- in-jet Collins	Proton- proton A _N	Lattice tensor charge(s)	Soffer bound	Framework
Gamberg, et al. (2022) JAM3D-22*	\checkmark	\checkmark	Х	\checkmark	δ υ, δ d	\checkmark^{\wedge}	Parton model
*Also included Sivers offects in SIDIS and Droll Van							

Also included Sivers effects in SIDIS and Drell-Yan

Slight modification to published fit

Dihadron Fragmentation Approach

	e⁺e⁻ dơ/dzdM _h	e⁺e⁻ Artru- Collins	SIDIS sin(φ _R +φ _S)	Proton- proton sin(φ _R -φ _S)	Lattice tensor charge(s)	Soffer bound
Radici, Bacchetta (2018)	✓* PYTHIA	✓*	\checkmark	\checkmark	X	\checkmark
Cocuzza, et al. (in prep) JAMDiFF-23	\checkmark	\checkmark	\checkmark	\checkmark	🗸 δu, δd	✓^

* $D_1(z, M_h)$ and $H_1^{\triangleleft}(z, M_h)$ were fit in a separate analysis and then fixed when extracting $h_1(x)$ ^ Imposed the SB but allowed for violations given the uncertainties in $f_1(x)$ and $g_1(x)$

Lebanon Valley College

D. Pitonyak

Cocuzza, Melnitchouk, Metz, DP, Prokudin, Sato, Seidl (in preparation)

- Similar to the JAM3D analysis, JAMDiFF also finds compatibility with lattice \succ once that data is included in the fit (and the experimental data is still described **very well** - only weakly sensitive to the nucleon tensor charges)
- This is not an unexpected outcome given the nature of the "inverse problem" \succ
- JAM3D, JAMDiFF, and lattice QCD now all overlap for δu , δd , and g_{τ} , resolving \succ the "transverse spin puzzle" from earlier studies

Summary and Outlook

Summary

- The tensor charges are fundamental properties of the nucleon that have connections to QCD phenomenology, *ab initio* computations (e.g., lattice QCD, DSE), and beyond the Standard Model studies (e.g., beta decay, EDM)
- There are two approaches in QCD phenomenology to extract the transversity PDF in order to compute the tensor charges: one analyzing TMD/collinear twist-3 observables, and the other utilizing dihadron fragmentation measurements
- Historically there has always been an apparent tension between the tensor charges extracted from experimental data and those computed in lattice QCD, creating a so-called "transverse spin puzzle"
- Recent analyses by the JAM Collaboration (Gamberg, et al. (2022), Cocuzza, et al. (in preparation)) in both approaches show that lattice QCD tensor charge data can be accommodated within phenomenology

Outlook

- Further refinements/improvements:
 - TMD/collinear twist-3: include lattice tensor charge data and hadron-in-jet Collins effect measurements with CSS evolution in the analysis, ...
 - Dihadron: other groups including lattice tensor charge data; unpolarized pp cross section measurements to better constrain $D_I^g(z, M_h), \ldots$
 - "Universal" analysis where TMD/collinear twist-3 <u>and</u> dihadron measurements are fit simultaneously
 - Incorporate small-*x* evolution for transversity (Kovchegov, Sievert (2019))

 $\delta q \equiv \int_{0}^{1} dx \left[h_{1}^{q}(x) - h_{1}^{\bar{q}}(x) \right]$

• Using pseudo-PDF or quasi-PDF approaches, lattice can now compute $h_1(x)$ - eventually can include data into phenomenology (more constraining than the tensor charge data)

