Numerical Study of Twist-3 Longitudinal-Transverse Double-Spin Asymmetries: a Probe of Quark-Gluon-Quark Correlations in Hadrons

Brandon Bauer

Lebanon Valley College, Annville, PA, USA

Based on B. Bauer, D. Pitonyak and C. Shay, "Numerical study of the twist-3 asymmetry A_{LT} in single-inclusive electron-nucleon and proton-proton collisions," Phys. Rev. D 107, 014013 (2023) [arXiv:2210.14334 [hep-ph]]

Supported by NSF Grant No. PHY-2011763

B. Bauer also acknowledges financial support from The Gordon and Betty Moore Foundation and the American Physical Society to present this work at the GHP 2023 Workshop

Motivation and Background

- A_{LT} longitudinally polarized electron or proton colliding with a transversely polarized proton, with a single pion, photon, or jet detected in the final state
- Limited numerical work and only one measurement (from Jefferson Lab Hall A)
- These collisions give access to twist-3 parton distribution functions (PDFs) and fragmentation functions (FFs)
- By generating these predictions, we hope to motivate future experiments in order to gain more insight into the quark-gluon-quark interactions that occur inside of hadrons

A_{LT} depends on the transverse momentum
 P_T and rapidity η of the final-state pion,
 photon, or jet, as well as the center-of mass energy of the collision

• We need input for the PDFs and FFs that show up in the analytical calculation of A_{LT} :

 $f_1(x)$ (unpolarized PDF) - Probability to find an unpolarized parton inside an unpolarized nucleon carrying a fraction x of the nucleon's momentum (use CT18)

 $D_1(z)$ (unpolarized FF) - Probability for a parton to fragment into a hadron that carries a fraction z of the parton's momentum (use DSS14)

 $h_1(x)$ (transversity PDF) - Probability to find a transversely polarized quark inside a transversely polarized nucleon carrying a fraction x of the nucleon's momentum (use JAM3D-22)

 $g_1(x)$ (helicity PDF) - Probability to find a longitudinally polarized parton inside a longitudinally polarized nucleon carrying a fraction x of the nucleon's momentum (use NNPDFpol1.1)

 $g_{1T}(x,k_T)$ ("worm gear" TMD PDF) - Probability to find a longitudinally polarized quark inside a transversely polarized nucleon carrying a fraction x of the nucleon's momentum and transverse momentum k_T (use Bhattacharya, et al. (2021) and also a Wandzura-Wilczek (WW) approx.)

 $g_T(x)$ - This function does not have a simple probabilistic interpretation, but it is related to a quark-gluon-quark (qgq) correlation in a transversely polarized nucleon (use a WW approx. and qgq approx.)

E(z) - This function does not have a simple probabilistic interpretation, but it is related to a quark-gluon-quark correlation in the fragmentation to an unpolarized hadron (use H^{\sim} from JAM3D-22)

More about *E*(*z*)...

$$E^{h/q}(z) = -2z \left(\int_{z}^{\infty} \frac{dz_1}{z_1^2} \frac{\hat{H}_{FU}^{\Re,h/q}(z,z_1)}{\frac{1}{z} - \frac{1}{z_1}} - \frac{m_q}{2M_h} D_1^{h/q}(z) \right)$$

$$\sum_{h} \sum_{S_h} M_h \int_0^1 dz \, E^{h/q}(z) = M_j$$

Connection to dynamical quark mass generation in $QCD - M_i$ is the mass of a "dressed" quark (Accardi, Signori (2019, 2020))

Look at 3 scenarios: $E = H^{\sim}, E = 0, \text{ or } E = -H^{\sim}$

$$\tilde{H}^{h/q}(z) = 2z \int_{z}^{\infty} \frac{dz_1}{z_1^2} \frac{\hat{H}_{FU}^{\Im,h/q}(z,z_1)}{\frac{1}{z} - \frac{1}{z_1}}$$

$$\sum_h \sum_{S_h} M_h \int_0^1 dz \, ilde{H}^{h/q}(z) = 0$$

$$\sum_{h}\sum_{S_{h}}M_{h}\int_{0}^{1}dz\, ilde{H}^{h/q}(z)=$$

 $h_{1L}(x,k_{T})$ ("worm gear" TMD PDF) - Probability to find a transversely polarized quark inside a longitudinally polarized nucleon carrying a fraction x of the nucleon's momentum and transverse momentum k_{T} (use WW approx. to write in terms of $h_{1}(x)$)

 $h_L(x)$ - This function does not have a simple probabilistic interpretation, but it is related to a quark-gluon-quark correlation in a longitudinally polarized nucleon (use WW approx. to write in terms of $h_1(x)$)

$$h_{1L}^{\perp(1)a/N}(x) \stackrel{\mathrm{WW}}{pprox} x^2 \int_x^1 dy \, rac{h_1^{a/N}(y)}{y^2}$$

$$h_L^{a/N}\!(x) \stackrel{
m WW}{pprox} 2x \int_x^1 dy \, rac{h_1^{a/N}\!(y)}{y^2}$$

Electron-nucleon collisions (Kanazawa, et al. (2015), Kanazawa, et al. (2016))

$$A_{LT}^{\vec{e}N^{\uparrow} \to \pi X} = \frac{\int_{z_{min}}^{1} \frac{dz}{z^{3}} \left(\frac{-4P_{T}}{S+T/z}\right) \frac{1}{x} \sum_{a} e_{a}^{2} \left[\frac{M}{\hat{u}} D_{1}^{\pi/a}(z) \mathcal{G}^{a/N}(x, \hat{s}, \hat{t}, \hat{u}) + \frac{M_{\pi}}{z\hat{t}} h_{1}^{a/N}(x) E^{\pi/a}(z) \left(-\frac{\hat{s}}{\hat{t}}\right)\right]}{\int_{z_{min}}^{1} \frac{dz}{z^{2}} \frac{1}{S+T/z} \frac{1}{x} \sum_{a} e_{a}^{2} f_{1}^{a/N}(x) D_{1}^{\pi/a}(z) \left(\frac{\hat{s}^{2} + \hat{u}^{2}}{\hat{t}^{2}}\right)}$$

$$\mathcal{G}(x,\hat{s},\hat{t},\hat{u}) = \left(g_{1T}^{(1)}(x) - x\frac{dg_{1T}^{(1)}(x)}{dx}\right) \left(\frac{\hat{s}(\hat{s}-\hat{u})}{2\hat{t}^2}\right) + x g_T(x) \left(-\frac{\hat{s}\hat{u}}{\hat{t}^2}\right) + x g_1(x) \left(\frac{\hat{u}(\hat{s}-\hat{u})}{2\hat{t}^2}\right)$$

"hard factors" - encode the electron-quark scattering

Numerical Scenarios

<u>Quark-Gluon-Quark (qgq) scenario:</u>

-Use direct extraction of $g_{1T}(x,k_T)$ from Bhattacharya, et al. (2021) and the following for $g_T(x)$ (with $G_{FT} = 0$):

$$g_T^{q/N}(x) = g_1^{q/N}(x) + \frac{dg_{1T}^{(1)q/N}(x)}{dx} - 2\mathcal{P} \int_{-1}^1 dy \, \frac{G_{FT}^{q/N}(x,y)}{(x-y)^2} dy$$

WW scenario: $g_{1T}^{(1)a/N}(x) \overset{WW}{\approx} x \int_{x}^{1} dy \, \frac{g_{1}^{a/N}(y)}{y}$ $g_{1T}^{(1)a/N}(x) \overset{WW}{\approx} x \int_{x}^{1} dy \, \frac{g_{1}^{a/N}(y)}{y}$

$$g_T^{a/N}\!(x) \stackrel{ ext{WW}}{pprox} \int_x^1 dy \, rac{g_1^{a/N}\!(y)}{y}$$

Also, $E = H^{\sim}$, E = 0, or $E = -H^{\sim}$ for each

Could possibly use lattice QCD data to extract information about the dynamical twist-3 function G_{FT}

Quantifying Uncertainties via Bootstrapping

- Since A_{LT} involves several PDFs and FFs that have been extracted by different groups, it is not reasonable to calculate the full result using all replicas (e.g., 100 replicas for g_1 from NNPDF and 200 replicas for g_{1T} from Bhattacharya, et al. = 20,000 computations of A_{LT}) need to bootstrap!
- Randomly sample a replica for each function (with replacement) and calculate A_{LT} vs. P_{T} . Repeat this N times and then N' times (with N' > N). This forms two distributions of A_{LT} values at each P_{T} value.
- Use Welch's t-statistic to determine when the two distributions are "equal" (p-value > 0.1) signifying convergence of the resampling

$$t = \frac{\mu_1 - \mu_2}{\sqrt{\sigma_1^2 / N_1 + \sigma_2^2 / N_2}}$$

Comparison With JLab6

- Measurements of A_{LT} for the electron-neutron case from Jefferson Lab (JLab Hall A (2015))
- We are able to describe the data reasonably well with all scenarios
- Distribution term plays a dominant role over the fragmentation term

A_{LT} vs. P_T for JLab12

- Neutron target
- Asymmetries of 15-30% are predicted which grow more substantial with increasing P_T
- A_{LT} is dominated by the distribution term
- One may use JLab12 data to test the WW approximation and extract information about dynamical quark-gluon-quark correlations in the nucleon

A_{LT} vs. P_T for COMPASS

- Proton target
- Compass results are measurable at ~2-4%
- A_{LT} fragmentation term can be comparable to the distribution term for π⁻ production
- E(z) = 0 case: A_{LT} for π⁻ is positive, so a measured negative asymmetry would be a likely indication of quarkgluon-quark fragmentation effects
- The qgq and WW scenarios may be difficult to distinguish at COMPASS since they give similarly-sized effects

A_{LT} vs. P_T for Low-Energy EIC

- Predictions at midrapidity show a decrease in the size of the asymmetry compared to JLab12 and COMPASS, with A_{LT} now ~0.5-1.5%
- A clearly negative signal for π⁻ production would be caused by E(z) (quark-gluon-quark fragmentation) - connected to dynamical quark mass generation

Proton-proton collisions

$$A_{LT}^{p^{\uparrow}\vec{p}\to\pi X} = \frac{d\sigma_{LT}^{\text{Tdist}} + d\sigma_{LT}^{\text{Ldist}} + d\sigma_{LT}^{\text{frag}}}{d\sigma_{unp}}$$

$$d\sigma_{unp} = \int_{z_{min}}^{1} dz \int_{x_{min}}^{1} \frac{dx}{x} \frac{1}{x'z^2(xS + U/z)} \sum_{i} \sum_{a,b,c} f_1^{a/p}(x) f_1^{b/p}(x') D_1^{\pi/c}(z) H_U^i(\hat{s}, \hat{t}, \hat{u})$$

sum over all "channels" of how quarks and gluons in two protons can interact, e.g., qq --> qq, qg --> qg, etc. "hard factors" - encode the interactions between quarks and gluons (too lengthy to explicitly write out)

Proton-proton collisions

$$A_{LT}^{p^{\uparrow}\vec{p}\rightarrow\pi X} = \frac{d\sigma_{LT}^{\text{Tdist}} + d\sigma_{LT}^{\text{Ldist}} + d\sigma_{LT}^{\text{frag}}}{d\sigma_{unp}}$$

Metz, et al. (2012)

$$d\sigma_{LT}^{\text{Tdist}} = -2MP_T \int_{z_{min}}^1 dz \int_{x_{min}}^1 \frac{dx}{x} \frac{1}{x'z^3(xS+U/z)} \sum_i \sum_{a,b,c} \frac{1}{\hat{m}_i} \,\mathcal{G}_i^{a/p^{\uparrow}}(x,\hat{s},\hat{t},\hat{u}) \,g_1^{b/\vec{p}}(x') \,D_1^{\pi/c}(z)$$

$$\begin{aligned} \mathcal{G}_{i}(x,\hat{s},\hat{t},\hat{u}) &= \left(g_{1T}^{(1)}(x) - x\frac{dg_{1T}^{(1)}(x)}{dx}\right) H_{\tilde{g}}^{i}(\hat{s},\hat{t},\hat{u}) + xg_{T}(x) H_{1,G_{DT}}^{i}(\hat{s},\hat{t},\hat{u}) + \frac{x}{2} \left(g_{1}(x) - g_{T}(x)\right) H_{3,G_{DT}}^{i}(\hat{s},\hat{t},\hat{u}) \\ &+ \left[g_{1T}^{(1)}(x) + \mathcal{P} \int_{-1}^{1} \frac{dx_{1}}{x_{1}} \frac{x \left(F_{FT}(x,x_{1}) + G_{FT}(x,x_{1})\right)}{x - x_{1}}\right] H_{2,G_{DT}}^{i}(\hat{s},\hat{t},\hat{u}). \end{aligned}$$

Neglect because no input is available

Proton-proton collisions

$$A_{LT}^{p^{\uparrow}\vec{p}\to\pi X} = \frac{d\sigma_{LT}^{\text{Tdist}} + d\sigma_{LT}^{\text{Ldist}} + d\sigma_{LT}^{\text{frag}}}{d\sigma_{unp}}$$

Koike, Pitonyak, Yoshida (2016)

$$d\sigma_{LT}^{\text{Ldist}} = -2MP_T \int_{z_{min}}^1 dz \int_{x_{min}}^1 \frac{dx}{x} \frac{1}{z^3(xS + U/z)} \sum_i \sum_{a,b,c} h_1^{a/p^{\uparrow}}(x) \mathcal{H}^{b/\vec{p}}(x',\hat{s},\hat{t},\hat{u}) D_1^{\pi/c}(z)$$

$$\mathcal{H}(x',\hat{s},\hat{t},\hat{u}) = h_1(x') H_{1L}^i(\hat{s},\hat{t},\hat{u}) + h_L(x') H_{2L}^i(\hat{s},\hat{t},\hat{u}) + \frac{dh_{1L}^{\perp(1)}(x')}{dx'} H_{3L}^i(\hat{s},\hat{t},\hat{u})$$

Proton-proton collisions

$$A_{LT}^{p^{\uparrow}\vec{p}\rightarrow\pi X} = \frac{d\sigma_{LT}^{\text{Tdist}} + d\sigma_{LT}^{\text{Ldist}} + d\sigma_{LT}^{\text{frag}}}{d\sigma_{unp}}$$

Koike, et al. (2016)

$$d\sigma_{LT}^{\text{frag}} = 2M_h P_T \int_{z_{min}}^1 dz \int_{x_{min}}^1 \frac{dx}{x} \frac{1}{x' z^4 (xS + U/z)} \sum_i \sum_{a,b,c} h_1^{a/p^{\uparrow}}(x) g_1^{b/\vec{p}}(x') E^{\pi/c}(z) H_f^i(\hat{s}, \hat{t}, \hat{u})$$

RHIC Proton-Proton A_{LT} vs. P_{T}

- Predictions for charged pion production at midrapidity (η= 0) reach ~0.02-0.05% for π[±] at the highest P_T
- The transverse distribution term gives the largest contribution to A_{LT}
- The fragmentation term plays a non-negligible role

RHIC Proton-Proton A_{LT} vs. P_{T}

- At forward rapidity (η= 3.3) the qgq scenario has larger error bands that are consistent with zero but range from ~-0.3% to +0.2%
- WW scenario uncertainties are smaller at larger P_T and again consistent with zero.
- In either case, the transverse distribution term gives the entirety of A_{LT} at forward rapidity

Conclusions and Outlook

- We found good agreement with JLab6 data, which is the only A_{LT} measurement available (for single-inclusive observables)
- Electron-nucleon collisions the asymmetry decreases with increasing centerof-mass energy
- If significant deviations from the E(z) = 0 scenario are measured, it could provide direct information on E(z), which is connected to dynamical quark mass generation
- One may also be able to test the validity of the Wandzura-Wilczek approximation for g_{1T} , g_T and probe dynamical twist-3 PDFs, especially with precision measurements at the EIC
- Proton-proton collisions very small asymmetries; any measurable effect at RHIC would be direct evidence of dynamical quark-gluon-quark correlations
- We hope these predictions motivate future measurements