GPU-based Online Reconstruction for J/ψ TSSA at the SpinQuest Experiment

Eric Fuchey

Mississippi State University

10th workshop of the APS Topical Group on Hadronic Physics

April 12th 2023

Outline

• Motivation:

- The Nucleon Spin Puzzle and the Sivers Functions
- The SpinQuest Experiment
- SpinQuest Reconstruction with GPUs
 - Motivations and Challenges
 - Features and Performances
- Summary and Outlook

Nucleon Spin Puzzle

Spin Sum Rule:

 $S_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$

- $\Delta\Sigma$: spin of quarks and antiquarks ΔG : spin of gluons
- L_a : angular momentum of
 - quarks and antiquarks;
- L_a : angular momentum of gluons

Measurements of $\Delta\Sigma$:

- EMC: Nucl. Phys. B328, 1 (1989): $\Delta\Sigma = 0.12 \pm 0.09 \pm 0.14$,
- COMPASS: Phys. Lett. B753, 18 (2016):
 0.26 < ΔΣ < 0.36

*A*₁^p: longitudinal Double Spin Asymmetry in Deep Inelastic Scattering on proton

 $\Delta G + L_q + L_g$ contributes to more than half of the nucleon spin

Sivers Function

The Sivers function $f_T^{\perp_q}$ provides information on the angular momentum of partons. Sivers function accessed with Transverse Single Spin Asymmetries (TSSA) measurements on polarized Drell-Yan.

The SpinQuest Experiment: Spectrometer

The SpinQuest Experiment: Polarized Target

Polarized targets:

- NH₃: Ammonia;
- ND₃: Deuterated Ammonia;
- NH3 polarization: average 78% (maximum 93%)
- ND3 polarization: average 30% (maximum 50%)
- Polarization flip every 8 hours.

The SpinQuest Experiment: Drell-Yan measurement

Measurement of the antiquark Sivers function $f_T^{\perp_q}$ on proton (NH3) and neutron (ND3). Contributions of the beam Sivers function suppressed by acceptance.

The SpinQuest Experiment: J/ψ measurement

 J/ψ TSSA is dominated by gluon fusion in the SpinQuest kinematical coverage:

- gluon Sivers function;
- gluon angular momentum (L_a) .

The SpinQuest Experiment: J/ψ measurement

 J/ψ TSSA is dominated by gluon fusion in the SpinQuest kinematical coverage:

- gluon Sivers function;
- gluon angular momentum (L_a) .

TSSA statistical uncertainties for one week of J/ψ data for the first SpinQuest publication.

GPU-based Online Reconstruction Program

Scope of the project: monitor SpinQuest data *in real-time* with an ultra-fast analysis program using Graphics Processing Units (GPUs) instead of Computer Processing Units (CPUs).

GPU Programming Challenges

Memory management much more "rigid" on GPUs than on CPU:

- Memory must be pre-allocated on GPUs (input+output);
- Input data copied from CPU to GPU;
- data processed on GPUs;
- output data copied back to CPU to save the output of the data processing on disk.

GPUs Speed Optimization: Per-Event Multithreading

Multithreading is pivotal to achieve the required processing speed:

- Search of tracks candidates on a definite portion of the acceptance for each thread (32 threads total);
- Track candidates spread evenly over the existing threads to optimize GPU resources.

Track Reconstruction for SpinQuest

Main steps:

- reconstruct straight tracks from station 2 (D2) to station 3 (D3p/D3m);
- associate hits with station 1 (D0) to straight tracks;
- combining station 2-station 3 track and station 1 track segments => momentum.

X: vertical wires U: wires at +14 degrees with respect to x wires V: wires at -14 degrees with respect to x wires

Tracking Comparison: GPU vs. CPU

12/04/2023

global tracks

Pure Monte Carlo dimuons: Green: analysis made with CPU track reconstruction Red: analysis made with GPU track reconstruction

 x_0 , y_0 : track position at origin t_x , t_y : track slope p: momentum

14

GPU Online Reconstruction Performance

Processing of 12000 data events:

- with NVidia GTX1070 Max-Q design (2048 cores, 8GB)
 35 seconds
- 15 times faster than multi-threaded CPU program; (CPUs not fast enough)
- further improvements expected with newest hardware (NVidia RTX4090, 16384 cores, 24GB).

Vertex Reconstruction for SpinQuest

Main steps:

- propagate the track through the Focusing magnet;
- extrapolate the track to the target;
- distance of closest approach from beam line => vertex.

Vertex Comparison: GPU vs. CPU

Pure Monte Carlo dimuons: Green: analysis made with CPU track reconstruction Red: analysis made with GPU ²⁰⁰ 300 v_z (cm) track reconstruction

 v_x , v_y , v_z : vertex position p_x , p_y , p_z :momentum at vertex

200

20 140 p_ (GeV/c)

12/04/2023

Summary and Outlook

The Spinquest experiment will provide great insight on the question of the nucleon spin puzzle:

- Drell-Yan on the proton and the neutron => antiquark Sivers function;
- $J/\psi =>$ Gluon Sivers function!

GPU online reconstruction program close to completion

- GPU offers significant performance improvement compared to CPUs;
- Tracking and vertexing results compare reasonably well with CPU analysis;
- Next steps:
 - Optimization of the code for real data processing (ongoing);
 - online display.

This work is supported in part by the U.S. DOE award # DE-FG02-07ER41528