

Observation of structures near $J/\psi J/\psi$ threshold at CMS

Kai Yi (Tsinghua University & Nanjing Normal University) On behalf of CMS Collaboration

10th workshop of the APS Topical Group on Hadronic Physics 13 April 2023, Minneapolis, Minnesota

Outline

History

- About exotic hadron
- CMS contribution to heavy exotic hadron
 <u>CMS publications</u>
- New Domain of Exotics: All-Heavy Tetra-quarks
- CMS J/ψJ/ψ study

CMS preliminary result CMS PAS BPH-21-003 at CDS

- Data sample and event selections
- Steps to identify structures
- Result and systematics
- Interpretation through interference models
- Discussion and summary

Two possible extensions of mesons to tetra-quark states Possible penta-quark state Gell-mann noted the possibility of "exotic" hadrons in classic 1964 paper

Selected CMS contributions to heavy exotic states

New Domain of Exotics: All-Heavy Tetra-quarks

- First mention of 4c states at 6.2 GeV (1975): Y. Iwasaki, Prog. of Theo. Phys. Vol. 54, No. 2
 (Just one year after the discovery of J/ψ)
 Linked by color electric flux in a bag
- First calculation of 4c states (1981): K.-T. Chao, Z. Phys. C 7 (1981) 317

Possible P-wave to S-wave decays

Fig.4

• A different exotic system compared to exotics with light quarks

$J/\psi J/\psi$ events—first evidence (1982)

PLB114 (1982) 457

Was interpreted as 2⁺⁺ 4-quark state

PLB158 (1985) 85

Possible explanations of J/ψ -J/ ψ states

2⁺⁺ four-quark states, PRD29 (1984) 426

TABLE I. Parameters used in Eq. (8) to calculate the cross sections for vector-meson pair production. (+) and (-) denote two degenerate $2^{++} Q^2 \overline{Q}^2$ states. Except in the case of JJ, we take $4\pi/f_I^2 = 0.03$, due to the fact that the $2^{++} Q^2 \overline{Q}^2$ are expected to lie not far above the threshold. α_s is determined from Eq. (11).

		_	Mj		
V_1V_2	$a \dot{v}_1 v_2 / a$	$b^{j}_{\alpha\beta} / \alpha_s \frac{a}{\sqrt{8}} \delta_{\alpha\beta}$	(GeV)	α_s	m_1
$J\phi^{(+)}$	$-1/\sqrt{6}$	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_{\perp}f_{\pm}}$	4.40	0.2	
$J\phi^{(-)}$	1/12	$\left(\frac{2}{3}\right)^{1/2} \frac{4\pi}{f_{\perp}f_{\pm}}$	4.40	0.2	
$J\omega^{(-)}$	1/√12	$\left \frac{2}{3}\right ^{\frac{1}{2}} \frac{4\pi}{f_{I}f_{\omega}}$	4.05	0.2	
$\Upsilon J^{(+)}$	1/√6	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_{\rm I}f_{\rm I}}$	13.5	0.167	-
$\Upsilon J^{(-)}$	1/√12	$\left(\frac{2}{3}\right)^{1/2}\frac{4\pi}{f_{\rm X}f_{\rm Z}}$	13.5	0.167	
$B_c^* \overline{B}_c^{*(+)}$	$-1/\sqrt{6}$	$\frac{-1}{\sqrt{3}}\frac{4\pi}{f_{\rm X}f_{\rm I}}$	13.5	0.167	6.60
$B_c^*\overline{B}_c^{*(-)}$	1/√12	$\left[\frac{2}{3}\right]^{1/2}\frac{4\pi}{f_{\rm X}f_{\rm Z}}$	13.5	0.167	

There were other attempts

New Domain of Exotics: All-Heavy Tetra-quarks

(cc	cc) Phys. Rev. D	86, 034004 (2012)	
$0^{++'}$:	$M=5.966{\rm GeV},$	$M-M_{\rm th}=-228.{\rm MeV},$	Below double J/ψ threshold
$1^{+-'}$:	$M=6.051{\rm GeV},$	$M - M_{\rm th} = -142. { m MeV},$	Search via J/ψμ⁺μ⁻, J/ψ*
$2^{++}:$	$M=6.223{\rm GeV},$	$M - M_{\rm th} = 29.5 {\rm MeV}.$	Above double J/ψ threshold
(bbo	cc)		Search via J/ψJ/ψ
$0^{++}a$:	$M=12.359{\rm GeV},$	$M-M_{ m th}=-191.{ m MeV}$	
$0^{++}b:$	$M=12.471{\rm GeV},$	$M - M_{\rm th} = -78.7 { m MeV},$	Below double B _c threshold
$1^{+-}a:$	$M=12.424{\rm GeV},$	$M-M_{\rm th}=-126.{\rm MeV}$	J/ψY(1S) threshold
$1^{+-}b$:	$M=12.488{\rm GeV},$	$M - M_{\rm th} = -62.5 \mathrm{MeV},$?
$1^{++}:$	$M=12.485{\rm GeV},$	$M-M_{\rm th}=-64.9{\rm MeV},$	
2^{++} :	$M=12.566{\rm GeV},$	$M - M_{\rm th} = 16.1 {\rm MeV}.$	
(bbl	bb)		Above double B threshold
$0^{++'}$:	$M=18.754{\rm GeV},$	$M - M_{\rm th} = -544. { m MeV},$	$J/\psi Y(1S)$ threshold
$1^{+-'}$:	$M=18.808{\rm GeV},$	$M - M_{\mathrm{th}} = -490. \mathrm{MeV},$	Search via the above two channels
2^{++} :	$M = 18.916 \mathrm{GeV},$	$M - M_{\rm th} = -382. { m MeV}.$	
			Below double Y(1S) threshold

Search via Y(1S)µ⁺µ⁻

Many recent theoretical studies on $(c\overline{c}c\overline{c})$, $(b\overline{b}b\overline{b})$, $(b\overline{b}c\overline{c})$: controversial on existence of bound states below $\eta_b\eta_b$ threshold; consistent on existence of resonant states above $\eta_b\eta_b$ threshold.

The CMS detector & trigger

 η coverage (track & muon):

Excellent detectors for mulit-muon (exotic) quarkonium:

- Muon system
 - High-purity muon ID, $\Delta m/m{\sim}0.6\%$ for J/ψ
- Silicon Tracking detector, B=3.8T
 - $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses at increasing Inst. Lumi.
 - μ p_T, ($\mu\mu$) p_T, ($\mu\mu$) mass, ($\mu\mu$) vertex, and additional μ

$J/\psi J/\psi$ --Data samples & event selections at CMS

- 135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs
- Trigger: 3μ with a J/ ψ mass window, μ p_T from J/ ψ >3.5 GeV for 2017&2018 data
- Blinded signal region: [6.2,7.8] GeV based on preliminary investigation on data collected in 2011-2012
- Main selections:
 - Fire corresponding trigger in each year
 - $p_T(\mu) \ge 2.0 \text{ GeV}; |\eta(\mu)| \le 2.4; p_T(\mu)_{(J/\psi)} \ge 3.5 \text{ GeV}; \text{ soft muon ID (very loose)}$
 - $p_T(\mu^+\mu^-) >= 3.5 \text{ GeV}; m(\mu^+\mu^-) \text{ in } [2.95, 3.25] \text{ GeV}; \text{ then constrain } m(\mu^+\mu^-) \text{ to } J/\psi \text{ mass}$
 - 4μ vertex probability >0.005
 - Multiple candidates treatment:
 - Select best combination of same 4μ (~0.2%) with

$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{m_1(\mu^+\mu^-) - M_{J/\psi}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{m_1(\mu^+\mu^-) - M_{J/\psi}}\right)$$

- Keep all candidates arising from $^{\sigma_{m_1}}$ / (~0.2%)
- Signal and background samples produced by Pythia8, JHUGen, HELAC-Onia...

10

Steps to identify structures in $J/\psi J/\psi$ mass spectrum

- Null-hypothesis (initial baseline model): NRSPS+NRDPS backgrounds
- Add potential structures to baseline model
 - Add most prominent structure to baseline model
 - Calculate its local significance
 - Keep in baseline only if > 3σ significance
 - Repeat until no more > 3σ structures

NRSPS—Non-Resonant Single Parton Scattering NRDPS—Non-Resonant Double Parton Scattering Local significance: standard likelihood ratio method

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)}, \text{ where } \Gamma(m) = \Gamma_0 \frac{qm_0}{q_0 m},$$

Relativistic S-wave Breit-Wigner (BW) for each structure convolved with resolution function

CMS background (BW0 + NRSPS + DPS)

- Most significant structure in first step is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - Inadequacy of NRSPS model at threshold (only one floating parameter)?
 - **BW0** parameters very sensitive to other model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- NRSPS+NRDPS+BW0 as our background

Final CMS model: 3 BWs + Background (null)

Statistical significance based on:

2 In(L₀/L_{max})

	BW1 (MeV)	BW2 (MeV)	BW3 (MeV)
m	6552 ± 10	6927± 9	7287±19
Г	124± 29	122± 22	95± 46
Ν	474± 113	492± 75	156± 56

- BW2[X(6900)] (9.4 σ) confirmation
- Observation of BW1 (6.5 σ)
- Evidence for BW3 (4.1σ)

Statistical significance only

Final CMS model: 3 BWs + Backgrounds+ BW0

Significances including systematics

- To include systematics, alternative resonance/background shapes applied in the fit:
- Calculate signal- and null-hypothesis *NLL_{syst}* including systematic using:

 $NLL_{syst-sig} = Min\{NLL_{nom-sig}, NLL_{alt-i-sig} + 0.5 + 0.5 \cdot \Delta dof\}$

- *NLL_{nom-sig}* means the NLL of nominal 'signal hypothesis' fit.
- $NLL_{alt-i-sig}$ means the NLL of i-th alternative fit of 'signal hypothesis'
- Δdof means the additional free parameters comparing to the nominal 'signal hypothesis' fit.
- $NLL_{syst-null} = Min\{NLL_{nom-null}, NLL_{alt-j-null} + 0.5 + 0.5 \cdot \Delta dof\}$
- Significance including systematics as usual from $NLL_{syst-null} NLL_{syst-sig}$

	Significance with syst.
BW1	5.7σ
BW2	no sensible changes
BW3	no sensible changes

• Significances with systematics do not alter picture

Summary of systematic uncertainties and CMS result

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	/1	< 1	< 1	3	3	4
NRSPS	3		1	18	15	17
feeddown shape	11	>1	1	25	8	6
momentum scaling	1	3	4	-	-	-
resolution	< 1	< 1	< 1	< 1	< 1	1
efficiency	< 1	< 1	< 1	1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
total	12	5	5	34	19	20
	0110					

Table 2: Systematic uncertainties on masses and widths, in MeV.

CMS PAS BPH-21-003

- Investigated effects of systematics on local significance by a profiling procedure a discrete set of individual alternative signal and background hypotheses tested in minimization
 - Only noticeable change: BW1 significance changed from 6.5σ to $>5.7\sigma$
 - No relative significance changes for BW2 and BW3

$M[BW1] = 6552 \pm 10 \pm 12 \text{ MeV}$	$\Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV}$	>5.7 σ	X(6900) [LHCb] (somewhat different fit mode)
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	$\Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV}$	>9.4 o	Consistent M[BW2]=6905+11+7 MeV	·
$M[BW3] = 7287 \pm 19 \pm 5 \text{ MeV}$	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	>4.1 o	Γ [BW2] =80±19±33 MeV	
CMS PAS BPH-21-003 (N	on-interference fit results)		16	

X(6900) reported by LHCb

- In 2020, LHCb reported X(6900) state in $J/\psi J/\psi$ final state, <u>Sci.Bull.65 (2020) 23</u>
- Tried two different models
 - Model I: background+2 auxiliary BWs+ $X(6900) \rightarrow$ poor description of 'dip' around 6.7 GeV
 - Model II: a "virtual" auxiliary BWs to interfere with NRSPS background to account for dip
- LHCb agnostic on which one is to be preferred

• What happens if fit CMS data using LHCb models?

Fit with LHCb model I: background+2 auxiliary BWs+ X(6900)

 117 ± 24

CMS Data shows a shoulder before BW1

 112 ± 27

 6927 ± 10

CMS shoulder helps make BW1 distinct

 6550 ± 10

Does not describe well dips

Model I

CMS

- LHCb did not give parameters for another 2 BWs
- CMS vs LHCb comparisons:
 - $135/9 \approx 15X$ (int. lum.)
 - $(5/3)^4 \approx 8X$ (muon acceptance due to pseudo-rapidity range) •
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events, but much less DPS
 - 2X yield @CMS for X(6900)

Fit with LHCb model II: DPS + X(6900) + auxiliary BW interferes with NRSPS

- X(6900) parameters are consistent
- CMS obtained larger amplitude and natural width for BW1
 - Fast CMS threshold turn-on drives NRSPS high, which drives large aux. BW
- CMS's X(6600) is 'eaten' –does not describe X6600 and below
- Does not describe X(7200) region

The dips

CMS PAS BPH-21-003

- Possibility #2:
- Multiple fine structures to reproduce the dips?
- Mentioned in PAS

Possibility #1:

- Interference among structures?
- Why no interference between J/ψ and $\psi(2S)$?
 - Width too narrow to overlap

- More secrets to dig out
- We explored possibility #1 in detail

Exploration of possible interference among BWs

- Explored fit with interference among various combinations of BWs
- Pdf for three BW interference

$$\begin{aligned} Pdf(m) &= N_{X_0} \cdot |BW_0|^2 \otimes R(M_0) \\ &+ N_{X \text{ and interf}} \cdot |r_1 \cdot \exp(i\phi_1) \cdot BW_1 + BW_2 + r_3 \cdot \exp(i\phi_3) \cdot BW_3|^2 \\ &+ N_{NRSPS} \cdot f_{SPS}(m) + N_{NRDPS} \cdot f_{DPS}(m) \cdot \end{aligned}$$

- Many ways interference due to possible J^{PC} and quantum coherence
 - 2-object-interference among BW0, BW1, BW2, BW3
 - 3-object-interference among BW0, BW1, BW2, BW3
 - 4-object-interference among BW0, BW1, BW2, BW3
- Our choice: interference among BW1, BW2, BW3

Interf. term

CMS interference fit

- Fit with interf. among BW1, BW2 and BW3 describes data well
- Measured mass and width in the interference fit

Summary of systematic uncertainties for interf. case

- Total systematic uncertainty is quadrature sum of each source
- Systematic uncertainties from feeddown contribution are asymmetric; systematic uncertainties from other sources are symmetric

L	1						
Fit	Dominant sources	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
Interference	Signal shape	7	12	7	56	8	7
	NRDPS	1	3	2	18	6	2
	NRSPS	9	14	13	85	9	20
	Resolution	8	4	1	24	7	13
	Combinatorial bkg.	7	2	< 1	5	3	2
	Feeddown shape	-27	+44	+38	-208	+19	+12
	Full uncertainty	$+16\\-31$	$^{+48}_{-20}$	$\begin{array}{c} +41 \\ -15 \end{array}$	$^{+109}_{-235}$	$+25 \\ -17$	$^{+29}_{-26}$

CMS PAS BPH-21-003

Final result

• Measured mass and width

		Non-i	nterference fit	CMS PAS	S BPH-21-003	Interferer	nce fit	
	BW1		BW2	BW3		BW1	BW2	BW3
т	6552 ± 10 ±	± 12	$6927\pm9\pm5$	$7287 \pm 19 \pm 5$	m [MeV]	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	7134_{-25-15}^{+48+41}
Γ	$124\pm29\pm$: 34	$122\pm22\pm19$	$95\pm46\pm20$	Γ[MeV]	$444^{+226+109}_{100}$	191^{+66+25}_{40}	97^{+40+29}_{-20}
N	474 ± 11	3	492 ± 75	156 ± 56		-199-233	-49-17	-29-20

• Systematic uncertainty table (sources with minor effects suppressed)

	N	on-inter	rference	fit		CMS	PAS B	PH-21-003	Interfere	ence fit		-		
Source		ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$	Dominant sources	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape		3	4	3	14	7	7							
NRDPS		1	< 1	< 1	3	3	4	Signal shape	7	12	7	56	8	7
NRSPS		3	1	1	18	15	17	NRDPS	1	3	2	18	6	2
momentum scaling		1	3	4	-	-	-	NRSPS	9	14	13	85	9	20
mass resolution		< 1	< 1	< 1	< 1	< 1	1	Resolution	8	4	1	24	7	13
combinatorial background	d	< 1	< 1	< 1	2	3	3	Combinatorial bkg.	7	2	< 1	5	3	2
efficiency		< 1	< 1	< 1	1	< 1	1	Feeddown shape	-27	+44	+38	-208	+19	+12
feeddown shape		11	1	1	25	8	6	Full uncertainty	+16	+48	+41	+109	+25	+29
total		12	5	5	34	19	20		-31	-20	-15	-235	-17	-26

• Implication of interf. Result:

- Same J^{PC}
- Large separation--200-300 MeV indicates radial excitation
- Any theoretical predication?

Comparison with some theoretical calculations

Table 1. Predictions of the masses (MeV) of S-wave fully heavy $T_{4Q}(nS)$ tetraquarks. Only 0⁺⁺ and 2⁺⁺ are considered for $T_{bc\bar{b}\bar{c}}$. The uncertainty is from the coupling constant $\alpha_s = 0.35 \pm 0.05$.

Nucl. Phys. B 966 (2021) 115393

$T_{4Q}(nS)$ states	J^p	Mass(n=1)	Mass(n=2)	Mass(n=3)	Mass(n=4)			
$T_{ccar{c}ar{c}}$	0++	$6055\substack{+69\\-74}$	6555^{+36}_{-37}	6883^{+27}_{-27}	$7154\substack{+22\\-22}$			
	2++	$6090\substack{+62\\-66}$	6566^{+34}_{-35}	$6890\substack{+27\\-26}$	7160^{+21}_{-22}			
$T_{ccar{c}ar{c}}'$	0++	5984_{-67}^{+64}	64682_{15}^{35}	6795^{+26}_{-26}	566^{+21}_{-22}			
$T_{bcar{b}ar{c}}$	0++	12387^{+109}_{-120}	12911^{+18}_{-11}	$13200\substack{+35\\-36}$	$13429\substack{+29\\-30}$			
	2++	$12401\substack{+117\\-106}$	$12914\substack{+49\\-49}$	13202^{+35}_{-36}	13430^{+29}_{-29}			
$T_{bcar bar c}'$	0++	$12300\substack{+106\\-117}$	$12816\substack{+48 \\ -50}$	$13.04\substack{+35\\-35}$	$13333\substack{+29\\-29}$			
$T_{bbar{b}ar{b}}$	0++	18475^{+151}_{-169}	$19073\substack{+59 \\ -63}$	19353^{+42}_{-42}	$19566\substack{+33\\-35}$			
	2++	18483^{+149}_{-168}	$19075\substack{+59\\-62}$	19355^{+41}_{-43}	$19567\substack{+33\\-35}$			
$T_{bbar{b}ar{b}}'$	0++	18383^{+149}_{-167}	$18976\substack{+59\\-62}$	19256^{+43}_{-42}	$19468\substack{+34\\-34}$			
			MIBM	'1] = 6688 ± 10 ±	12 MeV			
	S-wave		M[BW	$M[BW2] = 6847 \pm 9 \pm 5 MeV$				
			M[BW	M[BW3] = 7134 ± 19 ± 5 MeV				

Radial excited p-wave states (like J/ ψ series)?

- Or Radial excited S-wave states?
- Theoretical situation difficulty & confusing
 - Important next step: measure J^{PC} to clarify
- Natural question: what about YY final state?

Summary

CMS found 3 significant $J/\psi J/\psi$ structures using 135 fb⁻¹ 13 TeV data

- BW2 consistent with X(6900) reported by LHCb
- CMS found two new structures, provisionally named as X(6600), X(7200)
- A family of structures which are candidates for all-charm tetra-quarks!
 - Large mass separations 200+ MeV suggest radial excitation
 - Possible interference effects suggest same J^{PC} and coherent production
- All-heavy quark exotic states offer system easier to understand, i.e., ignore relativistic effect...
- Mass differences from multiple structures can be better calculated with a further measurement
- A new window to understand the strong interaction

CMS has good sensitivity to all-muon final states in this mass region

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html

Backup

Blinded mass windows for Run II $J/\psi J/\psi$ at CMS

We saw hints of structue at Run I data Proposed three signal regions for Run II data

Blinded mass windows for Run II $J/\psi J/\psi$:

- 1. [6.3,6.6] GeV
- 2. [6.8,7.1] GeV
- 3. [7.2,7.8] GeV (for potential wide structure)

These mass windows will be windows for LEE for potential structures

Run I data will be ignored for significance calculation

CMS eventually decide to blind the whole region: [6.2, 7.8] GeV after LHCb released their result₂₈