Properties of gluon fields at early times in relativistic heavy ion collisions

M.E. Carrington Brandon University, Manitoba, Canada

Collaborators: Alina Czajka, Stanisław Mrówczyński, Doug Pickering and Bryce Friesen

April 12, 2023

Carrington, April 12, APS-2023 (slide 1 of 21)

・ 同 ト ・ ヨ ト ・ ヨ ト

goal: describe early time ($au \leq 1$ fm) dynamics of heavy-ion collisions

- evolution of system during this early stage not well understood
- importance: initial conditions for subsequent hydro evolution

more generally:

want to understand transition btwn the early-time dynamics and hydro phase 1. microscropic theory of non-abelian gauge fields (far from equilibrium) \rightarrow

- 2. macroscopic effective theory based on universal conservation laws
- valid close to equilibrium

for more details on our work: MEC, Czajka, Mrówczyński: 2001.05074, 2012.03042, 2105.05327, 2112.06812, 2202.00357 MEC, Cowie, Friesen, Mrówczyński, Pickering: 2304.03241.

イロト イヨト イヨト

method - Colour Glass Condensate (CGC) effective theory

 $\mathsf{CGC} = \mathsf{high} \ \mathsf{energy} \ \mathsf{density} \ \mathsf{largely} \ \mathsf{gluonic} \ \mathsf{matter}$

- associated with wavefunction of a high energy hadron
- initial state in high energy hadronic collisions

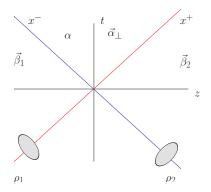
after collision CGC fields are transformed into glasma fields

- initially longitudinal color electric and magnetic fields

method is based on a separation of scales between

- 1. valence partons with large nucleon momentum fraction (x)
- 2. gluon fields with small x and large occupation numbers

basic picture


dynamics of gluon fields determined from classical YM equation \rightarrow source provided by the valence partons

L. D. McLerran and R. Venugopalan, Phys. Rev. D, **49**, 2233 (1994); Phys. Rev. D, **49**, 3352 (1994); Phys. Rev. D, **50**, 2225 (1994).

・ロッ ・回 ・ ・ ヨ ・ ・

theoretical framework

take the collision axis to be the z-axis light-cone coordinates $x^{\pm} = (t \pm z)/\sqrt{2}$ Milne coordinates $\tau = \sqrt{2x^+x^-}$ and $\eta = \ln(x^+/x^-)/2$.

Carrington, April 12, APS-2023 (slide 4 of 21)

use YM equation in the pre-collision region

$$\rho_1(x^-, \vec{x}_\perp) \rightarrow \beta_1^i(x^-, \vec{x}_\perp) \text{ and } \rho_2(x^+, \vec{x}_\perp) \rightarrow \beta_2^i(x^+, \vec{x}_\perp)$$

boundary conditions: boost invariant initial glasma fields


$$\begin{aligned} \alpha_{\perp}^{i}(0,\vec{x}_{\perp}) &= \alpha_{\perp}^{i(0)}(\vec{x}_{\perp}) = \lim_{w \to 0} \left(\beta_{1}^{i}(x^{-},\vec{x}_{\perp}) + \beta_{2}^{i}(x^{+},\vec{x}_{\perp}) \right) \\ \alpha(0,\vec{x}_{\perp}) &= \alpha^{(0)}(\vec{x}_{\perp}) = -\frac{ig}{2} \lim_{w \to 0} \left[\beta_{1}^{i}(x^{-},\vec{x}_{\perp}), \beta_{2}^{i}(x^{+},\vec{x}_{\perp}) \right] \end{aligned}$$

describe glasma fields (at early times) with proper time expansion ($\tau Q_s \ll 1$) R. J. Fries, J. I. Kapusta and Y. Li, Nucl. Phys. A 774, 861 (2006).

$$\alpha(\tau, \vec{x}_{\perp}) = \alpha(0, \vec{x}_{\perp}) + \tau \alpha^{(1)}(\vec{x}_{\perp}) + \tau^2 \alpha^{(2)}(\vec{x}_{\perp}) + \cdots$$

and similarly for $\alpha^i_{\perp}(au, ec{x}_{\perp})$. . .

coefs of expansion: require $\alpha(\tau, \vec{x}_{\perp})$ and $\alpha_{\perp}^{i}(\tau, \vec{x}_{\perp})$ satisfy sourceless YM eqn $\rightarrow \alpha^{(n)}(\vec{x}_{\perp})$ and $\vec{\alpha}_{\perp}^{(n)}(\vec{x}_{\perp})$ in terms of $\alpha(0, \vec{x}_{\perp})$ and $\vec{\alpha}_{\perp}(0, \vec{x}_{\perp})$

next: colour charge distributions are not known

- assume Gaussian distribution of colour charges in each nucleus $\langle \rho_1(x^-, \vec{x}_\perp) \rho_1(y^-, \vec{y}_\perp) \rangle \sim g^2 \mu_1(\vec{x}_\perp) \delta(x^- - y^-) \delta^2(\vec{x}_\perp - \vec{y}_\perp)$

 $\mu(\vec{x}_{\perp})$ is surface colour charge density result for correlator of 2 potentials: $(\vec{R} = \frac{1}{2}(\vec{x}_{\perp} + \vec{y}_{\perp}), \vec{r} = \vec{x}_{\perp} - \vec{y}_{\perp})$

$$\begin{split} \delta_{ab} \mathcal{B}^{ij}(\vec{x}_{\perp}, \vec{y}_{\perp}) &\equiv \lim_{\mathbf{w} \to 0} \langle \beta_a^i(x^-, \vec{x}_{\perp}) \beta_b^j(y^-, \vec{y}_{\perp}) \rangle \\ \lim_{r \to 0} \mathcal{B}^{ij}(\vec{x}_{\perp}, \vec{y}_{\perp}) &= \delta^{ij} g^2 \frac{\mu(\vec{R})}{8\pi} \left(\ln \left(\frac{Q_s^2}{m^2} + 1 \right) - \frac{Q_s^2}{Q_s^2 + m^2} \right) + \cdots \end{split}$$

infra-red regulator $m \sim \Lambda_{\rm QCD} \sim 0.2 \text{ GeV}$ ultra-violet regulator = saturation scale = $Q_s = 2 \text{ GeV}$

 \cdots kept to 2nd order in grad expansion of μ

J. Jalilian-Marian, A. Kovner, L. McLerran, H. Weigert, Phys. Rev. D 55, 5414 (1997); H. Fujii, K. Fukushima, Y. Hidaka, Phys. Rev. C 79, 024909 (2009); G. Chen, R. Fries, J. Kapusta, Y. Li, Phys. Rev. C 92, 064912 (2015).

イロト イポト イヨト イヨト

summary of method:

YM eqn with average over gaussian distributed valence sources

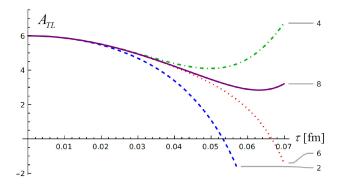
- \rightarrow correlators of pre-collision fields
- ightarrow glasma field correlators (b. conds, sourceless YM eqn, au exp)
- ightarrow correlators of glasma chromodynamic $ec{E}$ and $ec{B}$ fields

 \Rightarrow observables

- 1. energy momentum tensor
 - isotropization of transverse/longitudinal pressures
 - azimuthal momentum distribution and spatial eccentricity
 - angular momentum
- 2. momentum broadening of hard probes

comment: many numerical approaches to study initial dynamics our method is fully analytic

- allows control over different approximations and sources of errors
- can be systematically extended
- it has limitations (classical / no fluctuations of positions of nucleons)


・ロ・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

isotropization

compare longitudinal and transverse pressures

$$A_{TL} \equiv \frac{3(p_T - p_L)}{2p_T + p_L}$$

J. Jankowski, S. Kamata, M. Martinez and M. Spaliński, Phys. Rev. D 104, 074012 (2021). in equilibrium $(p_L = p_T = \mathcal{E}/3) \longrightarrow A_{TL} = 0$

Carrington, April 12, APS-2023 (slide 8 of 21)

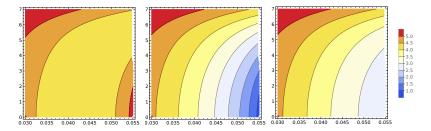
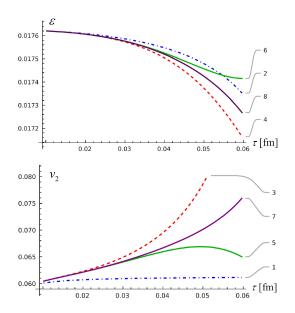


Figure: A_{TL} at fourth, sixth and eighth order. The vertical/horizontal axes are R and τ in fm.

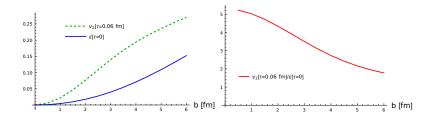
イロン イヨン イヨン イヨン


Э

in a non-central collision - initial spatial asymmetry relativistic collision \rightarrow spatial asymmetries rapidly decrease \rightarrow anisotropic momentum flow can develop only in the first fm/*c* • sensitive to system properties very early in its evolution • provides direct information about the early stages of the system spatial asymmetries from moments of the energy density asymmetry in momentum from Fourier coefficients of the flow

 \cdots write in terms of components T^{00} , T^{0x} and T^{0y}

$$\varepsilon = -\frac{\int d^2 R \, \frac{R_x^2 - R_y^2}{\sqrt{R_x^2 + R_y^2}} \, T^{00}}{\int d^2 R \, \sqrt{R_x^2 + R_y^2} \, T^{00}} \quad \text{and} \quad v_2 = \frac{\int d^2 R \, \frac{T_{0x}^2 - T_{0y}^2}{\sqrt{T_{0x}^2 + T_{0y}^2}}}{\int d^2 R \, \sqrt{T_{0x}^2 + T_{0y}^2}}$$


・ 回 ト ・ ヨ ト ・ ヨ ト

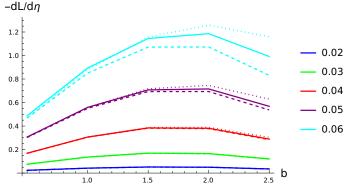
Carrington, April 12, APS-2023 (slide 11 of 21)

▲□▶ ▲圖▶ ▲屋▶ ▲屋▶

æ

relative change in v_2 as $b: 1 \to 6$ fm \gg relative change in $v_2/\varepsilon(0) \to correlation$ btwn spatial asymmetry from initial geometry and anisotropy of azimuthal momentum distribution

- mimics behaviour of hydrodynamics


4 B K 4 B K

angular momentum

result: angular momentum per unit rapidity

$$\frac{dL^{y}}{d\eta} = -\tau^2 \int d^2 \vec{R} \, R^{\times} T^{0z}$$

ions moving in +/-z dirns displaced in +/- x dirns \rightarrow L_y is negative

dotted/dashed/solid lines are orders 4/6/8

Carrington, April 12, APS-2023 (slide 13 of 21)

comparison:

$L_y \sim 10^5$ at RHIC energies for initial system of colliding ions - even larger at LHC energies

J. H. Gao, S. W. Chen, W. t. Deng, Z. T. Liang, Q. Wang and X. N. Wang, Phys. Rev. C 77, 044902 (2008); F. Becattini, F. Piccinini and J. Rizzo, Phys. Rev. C 77, 024906 (2008).

idea: initial rapid rotation of glasma

 \rightarrow could be observed via polarization of final state hadrons

- large \vec{L} & spin-orbit coupling \rightarrow alignment of spins with \vec{L}

many experimental searches for this polarization

- effect of a few percent observed at RHIC
- at LHC result consistent with zero

- difficult to measure . . . F. Becattini, M.A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020).

these results supports our calculation glasma carries only tiny imprint of the \vec{L} of the intial state \rightarrow majority of the angular momentum is carried by valence quarks

イロト イヨト イヨト イヨト

hard probes produced via hard interactions at earliest phase of HIC

- propagate through the evolving medium
- suppression of high- p_T probes (jet quenching)
- \Rightarrow signal of formation of QGP
- deconfined state of matter = significant braking of hard partons

physics: frequent small \vec{p} exchanges by probe and glasma fields \rightarrow transport equation in Fokker-Planck form

- describes interactions of hard probe interacting with glasma fields

$$\begin{aligned} \hat{q} &= \frac{1}{v} \Big(\delta^{\alpha\beta} - \frac{v^{\alpha}v^{\beta}}{v^{2}} \Big) \frac{\langle \Delta p^{\alpha} \Delta p^{\beta} \rangle}{\Delta t} \\ &= \frac{2}{v} \Big(\delta^{\alpha\beta} - \frac{v^{\alpha}v^{\beta}}{v^{2}} \Big) X^{\alpha\beta}(\vec{v}) \\ X^{\alpha\beta}(\vec{v}) &\equiv \frac{1}{2N_{c}} \int_{0}^{t} dt' \operatorname{Tr} \big[\langle \mathcal{F}^{\alpha}(t, \vec{x}) \mathcal{F}^{\beta}(t - t', \vec{x} - \vec{v}t') \rangle \big] \end{aligned}$$

colour Lorentz force: $\vec{\mathcal{F}}(t,\mathsf{x})\equiv gig(\vec{E}(t,\vec{x})+\vec{v}\times\vec{B}(t,\vec{x})ig)$

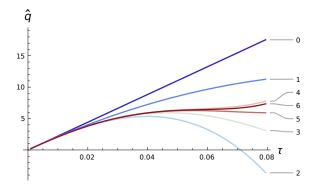
notation: $\alpha \in (1, 2, 3)$ \vec{v} is the velocity of the probe

• • = • • = •

note: combination of two approaches

1. medium that the hard probe interacts with is a glasma

 \rightarrow described with CGC effective theory with proper time expansion ** description is valid only at very early times

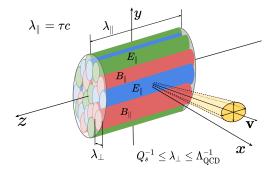

2. FP eqn describes interactions of hard probe with glasma fields ** valid at times long enough that collision terms saturate

 \Rightarrow conflict btwn assumptions that set these two time scales also:

- FP description requires gradient expansion type approximations
- our CGC approach assumes boost invariance
- ** can all these conditions can be satisfied simultaneously?

・ 回 ト ・ ヨ ト ・ ヨ ト …

result: \hat{q} as a function of τ at different orders in the expansion



key: saturation regime appears before τ expansion breaks down caution:

figure above obtained for $v_{\perp} = v$

method works less well if v_{\parallel} large (experimentally less interesting)

reason: at very early times glasma fields represented as longitudinal flux tubes

 \hat{q} built up during time probe is in domain of correlated fields at zeroth order this time is determined by

- transverse correlation length (inferred from 2-point correlator)
- orientation and magnitude of the probe's velocity
- \rightarrow saturation is faster if $v_{\parallel}=0$

note: probe's velocity also enters through the Lorentz force.

Carrington, April 12, APS-2023 (slide 19 of 21)

impact of the glasma on jet quenching

radiative Eloss/length of probe traversing medium of length L \propto total accumulated transverse momentum broadening

$$\Delta p_T^2 = \int_0^L dt \hat{q}(t)$$

our calculation gives $\hat{q}_{\rm max}=6~{\rm GeV}^2/{\rm fm}$ at $t_{\rm max}=0.06$ fm typical equilibrium values are much smaller

- but the glasma exists for a very short time ...

 \rightarrow contro of pre-equilibrium phase to jet quenching usually ignored

an estimate:

 \hat{q} decreases from \hat{q}_{\max} until hydrodynamic evolution takes over

A. Ipp, D. I. Müller and D. Schuh, Phys. Lett. B 810, 135810 (2020)

assume hydro evolution from $t_0=0.6$ fm, $\mathcal{T}_0{=}0.45$ GeV and $\hat{q}_0=1.4 {\rm GeV}^2/{\rm fm}$

$$\frac{\Delta p_T^2 \text{[non-equib]}}{\Delta p_T^2 \text{[equib]}} \approx 0.93$$

 \Rightarrow glasma plays an important role in jet quenching

(日本) (日本) (日本)

- 1. 8th order τ expansion can be trusted to $\tau\approx$ 0.07 fm
- 2. glasma moves towards equilibrium
- 3. correlation btwn elliptic flow coef v_2 / spatial eccentricity
 - spatial asymmetry introduced by initial geometry is effectively transmitted to azimuthal distribution of gluon momentum field
 - \rightsquigarrow this behaviour mimics hydrodynamics
- 4. most of the angular momentum of the intial system not transmitted to glasma
 - contradicts picture of a rapidly rotating initial glasma state
- 5. glasma plays an important role in jet quenching

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・