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What's new?

Two particle angular correlation observed in UPC measurement at LHC
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Ridge correlation with different system size
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Figure: Fig from Schlichting, Tribedy (2016)
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Elliptic flow
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(b) w2 — viscosity

Small viscosity 7/s leads to higher vo. ( Figures from Raimond

Snellings (2011) ) IN
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Ridge correlation in small systems 7

e |f ridge correlation indicates fluid behavior, what is the
smallest collision system to create QGP?

High multiplicity p+p (2010), p+Pb (2012) at LHC
p+Au, d+Au, 3He-+Au at RHIC (2013-2020)

® |s there additional origin of the angular correlation?

Opportunities to probe novel effects

® The smallest projectile is DIS photon!

NC STATE
UNIVERSITY



Ultra-peripheral collisions
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Equivalent photon
approximation

Weizsacker-Williams field
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Origins of the angular correlation in UPC

® Hydrodynamic

Collectivity in Ultra-Peripheral Pb+Pb Collisions at the Large Hadron Collider
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® Color domain effect in the target
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® Quantum correlations (explored in our work)

® Bose-Einstein correlation
¢ HBT(Hanbury Brown and Twiss) effect
® Dominated by the correlations in projectile
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Bose enhancement

Two particle correlator in a free boson gas,
D(x,y) = / e~ P P10 =) (41 (p)a] (q)aa (P (q'))
p.p’,q,q’
There are three different scenarios
—
e p=p., q=q" (al(p)a}(@)a.(p)as(q)), uncorrelated, O(1)

« p=q, q=p" (@ P)a}(@)aap)is(@)), O(1)

e p=gq =q=1p, suppressed by % and %

S -
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HBT

_ ik1-(xy—o) k2 (Yo —Yo)
Dugt(k1, k2 e e
ab z0,2(,Y0,Yy J T1,25,Y3,Y)

X (@l (o) (yo)aa(ah)as(yh))

x G(xo — 21)G(yo — y1)G (x5 — 1)G(yy — y')
X <Ju(ml)']b(yl)']a(mll)']b(yi»

® The "wrong” contraction is enforced by the ensemble average
of the source correlator
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Dipole model (|Q] < Agep)

(S (=

® Dipole model to approximate the photon
Small Q2 suppresses the longitudinal polarization

T Ex

2ee
T (2,7, 81) = —i Qﬂf Soy 5y (22 — 1+ 2Xs1)/2(1 — Z)stm(sfm)

Note: UPC photon is actually linearly polarized (Small correction to the correlation).
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MV model
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® Inspired by Vector Meson Dominance Model

P

® Due to the existence of the high energy fixed point,
p-meson at asymptotically high energy = nucleus

® Valence degrees of freedom p,(x) follow the distribution
defined by McLerran-Venugopalan (MV) model
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Organize the cross section

Organize the cross section X according to the order of p

Y=o+ X3+ 3y
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How cross section calculated

Use X5 as example, in coordinate space,

Yo = 4/d2w/d2:i:fi(ﬁ1 — @) fH(ur — @) f7 (a2 — 1) f7 (w2 — w1) (o (2)palx)) p
([0 )T UV (u2) = U )] [U(@2) - V@)U @)rev@))] , )
where fi(x) = Wgr) 5.
¢ Kinematic factors (Eikonal emission vertices)

® Projectile (photon)

® Target (nucleus)
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Expectation values for projectile and target
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Symmetrization(isolating the signal)

e Symmetrization of ps (MV model)

pa(@in(y) = 5 1pa(@), (@)} + 5 [pa(@), 5o ()

1
= pa(®)pp(y) — 55(2)(90 = yY)Tgppe(T)
® Symmetrization of color factors (Dipole model)
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Target average
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Factorized Dipole Approximation

Phys. Rev. D 96, 074018, Kovner, Rezaeian

Dense target — Saturated

Qi serves the role of correlation

S
length in transverse plane

For the example configuration

Tr [U(x1)UT (22)U (23)UT (24)]

Ngl_l Tr [U(21)UT (22)] Tr [U(z3)UT (%4)]+
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Angular correlation from the cross section

From the cross section of the two gluon production

dN
Y=o
dndgid§dg;

one can extract the angular correlation function

(g, 9)
C(q’ 9) = 1 2
5= Jo E(q,0)do
set |q1| = |g2| = ¢, and 0 is the angle between the two particles
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Back-to-back correlation
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SU™ non-symmetric part, ¢ = Q,
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Also gives us back-to-back correlation. large error bar comes from
the fact that monstrous dipole X*™ is not Monte Carlo friendly.
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As what was done in experimental analysis, we subtract
backgrounds and normalize the signal. The results show similar

correlations in CGC calculation.
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v and v3
Recall,

dN
——— x 1+ 202 cos(nAf)
dq?dg; ;

One first define,

Vinlq) = / o, /0 " g exp(inA@)m
by definition,
e _ | Valpy)
(P.) Vo(pL)
assuming factorization,
va(pL) = Va(p1)/Vo(pL)
NC STATE VVa/Vo
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v9 results
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e Different behavior above 2 Gev due to the lack of HBT
contribution on the left.

® In the ATLAS analysis, Pyax = 2 Gev
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Theoretical calculation
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Figure: The elliptic flow vy for three different kinematic ranges of the
trigger particle. Here as in the previous figure, Qs = 2 GeV. The size of
the projectile is set by R =1/GeV.
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Average in momentum bins

0.20 0.20
A MV Model 0.4 GeV < p | < 0.9 GeV A Divole Model 0.4 GV < p | < 0.9 GV
@ MV Modd 04GV <, <2 GeV 004GV < p, <2 GV
0.15 @ MV Moddd 09 GV < p | < 2GeV 0.15 )
. ATLAS 0.4 GeV < p | < 0.9 GeV' :
ATLAS 0.4 GeV <y <20 GoV ATLAS04GeV< p | <20 GaV
0.10 P ATLAS 0.4 GeV < p | < 09 GeV 0.10 ATLAS 04 GeV < 5, <09 GV
Uy : o Uy :
2 rS e
A _
& i A
005 %, 0051 ¢
h A ° 4
° * o & *
0.00 L 0.00
1 2 3 4 5 1 2 3 4 5
D GeV D GeV

Figure: Parameters are the same as previous slides but binned with the
same bin choice as the ATLAS analysis.

Binning the particles decreases the differences between the models.
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Summary and outlook

® We analytically derived inclusive two gluon production in UPC
at mid-rapidity.
® To estimate systematic uncertainty originated from the poor

knowledge of the real photon wave function, we studied two
limiting cases.

® Both models result in qualitatively similar correlation.
Quantitatively, the amplitude of azimuthal anisotropy for MV
model is about two times the dipole model.

® Qur results show similar correlation as experimental data.
® Further developments

Phenomenology
To extend to EIC physics (large Q2, work in progress)
To incorporate rapidity dependence
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Gluon production
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Create gluons within initial states

One account for the emission of the gluons using coherent
operators

; - i T
O = petV2S Padeb] (& @) [al (6@)ta;a(6)]

with the background field

7i 9 2 (—y)' ,
b =2 [4
sem = [P
® MYV model classical source pg
® 5% (x) = blo(x1)t Zgbﬂcr(ml)cs(m(m —21) — dho (x2)t%, dgo (22)0 (x — 22)

® pq(Cﬁ”) = (lb 777 ac 77,

SEESES
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Eikonal scattering through the shock wave

“0000Q00E0008000800060006000000000N

x+
B ———

U(x) = Pexp{ig/oo dx+T“Ag(x+,w)}

— o0

The strong gluon field A, (T, x) is a functional of the valance
source in the target.

15, 1
Nc STATENCZl<Tr(UT(T)U(O))>T = exp [—ZQST ln(A2r2 +e>:| .
UNIVERSITY
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The cross section

AN _
dndq% d€ dq% (

1 . _ . _
=T /d2u1d2UQd2ﬁ1d2ﬁ2671q1(“17“”67“12(“27“2) >

and
2 = (v[CT8TCal ,(n,u1)al (€ u2)aia(n, @1)ay b (€, T2)CTSCly™)
where C' = C¢C};, and > ¢,
Gy =21+ V2 [ duibly, (1) [alf (0,01) + ol (n,01)]
Ce :1+i\/§/d2v2 (b (02) + 6] (1, 2)) [0 (6, v2) + ) (€, v2)]
e (C'|v*) Initial state
e S S-matrix

® Ca;j,(&, us)CT dressed gluons in the final state
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Dipole expectation values

® Expectation values for ¢g

§dd’
5 (Jz(i —2z1) —8%(& — 22)) (52(:1: —2z1) — 8% (x — 22))

(9dlpar (®)pa(w)|qq) =

(aalp® (@1)p" (@2)p° (x3)]qq)

_fabe 2 2 2 2
7T <(5( >($2 — Zl) + (S( )(:122 — ZQ)> il_ll?’ (5( )(il:z — z1) — (5( )(931 — Z2))

21, zo are the transverse coordinates of quark and anti-quark.

® Average over different dipole size r = z1 — 29

va@pa(@)) p =3 [ [ ErvL s G taaloa @)pat@la)
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MV model projectile average

® MV model describes the distribution of classical color source

not quantum operators.

W (pa) =eXp{, /m % }

2 z?
pu”(x) = Nexp [
® Two and three point correlators

(pa(@) b))y = (pa(®)pp())mv = 128 (@ — y)das

(bal@)pp@)pe(2) iy = — 35 (@ — )6y — 2)Ti 4
® Symmetrization of ps

pa@)pn(v) = 5 {Pal@), ()} + 5 [Pa(@), po(v)]

NC STATE o
UNIVERSITY = pa(@)pp(y) = 507 (2 — ) Tppe(®)
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