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What’s new?

Two particle angular correlation observed in UPC measurement at LHC

(a) PHYSICAL REVIEW C 104,
014903 (2021), ATLAS

(b) Backgrounds & signals
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Ridge correlation with different system size

Figure: Fig from Schlichting, Tribedy (2016)
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Elliptic flow

(a) Peripheral collision for AA (b) v2 → viscosity

Small viscosity η/s leads to higher v2. ( Figures from Raimond
Snellings (2011) )

dN

dq21dq
2
2

∝ 1 +
∑
n

2v2n cos(n∆θ)
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Ridge correlation in small systems ?

• If ridge correlation indicates fluid behavior, what is the
smallest collision system to create QGP?

• High multiplicity p+p (2010), p+Pb (2012) at LHC
• p+Au, d+Au, 3He+Au at RHIC (2013-2020)

• Is there additional origin of the angular correlation?
• Opportunities to probe novel effects

• The smallest projectile is DIS photon!
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Ultra-peripheral collisions

• b > RA +RB

• Equivalent photon
approximation

• Weizsäcker-Williams field

• Q2 ≲ (60Mev)2 for A=16
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Origins of the angular correlation in UPC

• Hydrodynamic

• Color domain effect in the target

• Quantum correlations (explored in our work)
• Bose-Einstein correlation
• HBT(Hanbury Brown and Twiss) effect
• Dominated by the correlations in projectile
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Bose enhancement

Two particle correlator in a free boson gas,

D(x,y) =

∫
p,p′,q,q′

e−ix·(p′−p)e−iy·(q′−q)⟨â†a(p)â
†
b(q)âa(p

′)âb(q
′)⟩

There are three different scenarios

• p = p′, q = q′: ⟨â†a(p)â
†
b(q)âa(p

′)âb(q
′)⟩, uncorrelated, O(1)

• p = q′, q = p′: ⟨â†a(p)â
†
b(q)âa(p

′)âb(q
′)⟩, O( 1

N2
c
)

• p = q′ = q = p′, suppressed by 1
N2

c
and 1

V
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HBT

DHBT(k1,k2) =
∑
a,b

∫
x0,x′

0,y0,y′
0

∫
x1,x′

2,y3,y′
4

eik1·(x′
0−x0)eik2·(y′

0−y0)

× ⟨â†a(x0)â
†
b(y0)âa(x

′
0)âb(y

′
0)⟩

×G(x0 − x1)G(y0 − y1)G(x′
0 − x′

1)G(y′
0 − y′

1)

× ⟨Ja(x1)Jb(y1)Ja(x
′
1)Jb(y

′
1)⟩

• The ”wrong” contraction is enforced by the ensemble average
of the source correlator

⟨Ja(x1)Jb(y1)Ja(x
′
1)Jb(y

′
1)⟩
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Dipole model (|Q| < ΛQCD)

• Dipole model to approximate the photon
Small Q2 suppresses the longitudinal polarization

ΨT
λ (z, r, s1) = −i

2eef

2π
δs1,−s2 (2z − 1 + 2λs1)

√
z(1− z)

r · ϵλ
|r|

εfK1(εf |r|)

Note: UPC photon is actually linearly polarized (Small correction to the correlation).
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MV model

• Inspired by Vector Meson Dominance Model

• Due to the existence of the high energy fixed point,
ρ-meson at asymptotically high energy ≡ nucleus

• Valence degrees of freedom ρa(x) follow the distribution
defined by McLerran-Venugopalan (MV) model

W (ρa) = exp

{
−

∫
x

ρa(x)ρa(x)

2µ2

}
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Organize the cross section

Organize the cross section Σ according to the order of ρ

Σ = Σ2 +Σ3 +Σ4

(a) Σ2(ρ
2) (b) Σ3(ρ

3) (c) Σ4(ρ
4)
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How cross section calculated

Use Σ2 as example, in coordinate space,

Σ2 = 4

∫
d2x

∫
d2x̄f i(ū1 − x)f i(u1 − x̄)fj(ū2 − ū1)f

j(u2 − u1)⟨ρd′ (x̄)ρd(x)⟩P〈[
[U†(u1)T

aU(u1)][U
†(u2)− U†(u1)][U(ū2)− U(ū1)][U

†(ū1)T
aU(ū1)]

]
d′d

〉
T

where f i(x) = g
(2π)2

xi
x2 .

• Kinematic factors (Eikonal emission vertices)

• Projectile (photon)

• Target (nucleus)
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Expectation values for projectile and target
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Symmetrization(isolating the signal)

• Symmetrization of ρ̂s (MV model)

ρ̂a(x)ρ̂b(y) =
1

2
{ρ̂a(x), ρ̂b(y)}+

1

2
[ρ̂a(x), ρ̂b(y)]

= ρa(x)ρb(y)−
1

2
δ(2)(x− y)T c

abρc(x)

• Symmetrization of color factors (Dipole model)

tatb =
1

2

{
ta, tb

}
+

1

2
ifc

abt
c

Figure: The color structure for the correction term
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Target average

• Factorized Dipole Approximation
Phys. Rev. D 96, 074018, Kovner, Rezaeian

• Dense target → Saturated

• 1
Qs

serves the role of correlation
length in transverse plane

• For the example configuration

Tr
[
U(x1)U†(x2)U(x3)U†(x4)

]
≈

1
N2

c−1
Tr

[
U(x1)U†(x2)

]
Tr

[
U(x3)U†(x4)

]
+

...
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Angular correlation from the cross section

From the cross section of the two gluon production

Σ =
dN

dηdq21dξdq
2
2

one can extract the angular correlation function

C(q, θ) =
Σ(q, θ)

1
2π

∫ 2π
0 Σ(q, θ)dθ

set |q1| = |q2| = q, and θ is the angle between the two particles
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Σ2, q = Qs

(a) Dipole (b) MV

As expected, a strong back-to-back correlation.
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Σ3, q = Qs

(a) Dipole (b) MV

Back-to-back correlation
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Σnsym
4 , non-symmetric part, q = Qs

(a) Dipole (b) MV

Also gives us back-to-back correlation. large error bar comes from
the fact that monstrous dipole Σnsym

4 is not Monte Carlo friendly.
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Σsym
4 , symmetric part,q = Qs

As what was done in experimental analysis, we subtract
backgrounds and normalize the signal.The results show similar
correlations in CGC calculation.
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v2 and v22
Recall,

dN

dq2
1dq

2
2

∝ 1 +
∑
n

2v2n cos(n∆θ)

One first define,

Vn(q1) =

∫
dθ1

∫ pmax
⊥

0
d2q2 exp(in∆θ)

dN

dq2
1dq

2
2dηdξ

by definition,

v
(2)
2 (p⊥) =

√
V2(p⊥)

V0(p⊥)

assuming factorization,

v2(p⊥) =
V2(p⊥)/V0(p⊥)√

V2/V0

.
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v2 results

• Different behavior above 2 Gev due to the lack of HBT
contribution on the left.

• In the ATLAS analysis, PMax = 2 Gev
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Factorization test
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Theoretical calculation

Figure: The elliptic flow v2 for three different kinematic ranges of the
trigger particle. Here as in the previous figure, Qs = 2 GeV. The size of
the projectile is set by R = 1/GeV.
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Average in momentum bins

Figure: Parameters are the same as previous slides but binned with the
same bin choice as the ATLAS analysis.

Binning the particles decreases the differences between the models.
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Summary and outlook

• We analytically derived inclusive two gluon production in UPC
at mid-rapidity.

• To estimate systematic uncertainty originated from the poor
knowledge of the real photon wave function, we studied two
limiting cases.

• Both models result in qualitatively similar correlation.
Quantitatively, the amplitude of azimuthal anisotropy for MV
model is about two times the dipole model.

• Our results show similar correlation as experimental data.
• Further developments

• Phenomenology
• To extend to EIC physics (large Q2, work in progress)
• To incorporate rapidity dependence
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Backup slides
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Gluon production

29



Create gluons within initial states

One account for the emission of the gluons using coherent
operators

C = Pe
i
√
2
∫
d2xdξ b̂ia(ξ,x)

[
a
†
i,a(ξ,x)+ai,a(ξ,x)

]

with the background field

b̂ia(ξ,x) =
g

2π

∫
d2y

(x− y)i

|x− y|2
ρ̂aP(ξ,y)

• MV model classical source ρa

• ρ̂aD(x) = b†ασ(x1)taαβbβσ(x1)δ(2)(x− x1)− d†ασ(x2)taβαdβσ(x2)δ(2)(x− x2)

• ρ̂ag(ζ,x) = ai†b (η,x)Ta
bcac(η,x)
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Eikonal scattering through the shock wave

U(x) = P exp

{
ig

∫ ∞

−∞
dx+TaA−

a (x+,x)

}

The strong gluon field A−
a (x

+,x) is a functional of the valance
source in the target.

1

N2
c − 1

⟨Tr
(
U†(r)U(0)

)
⟩T = exp

[
−
1

4
Q2

sr
2 ln

(
1

Λ2r2
+ e

)]
.
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The cross section

dN
dηdq21dξdq

2
2

=
1

(2π)4

∫
d2u1d

2u2d
2ū1d

2ū2e
−iq1(u1−ū1)e−iq2(u2−ū2) Σ

and

Σ = ⟨γ∗|C†Ŝ†Ca†i,a(η,u1)a
†
j,b(ξ,u2)ai,a(η, ū1)aj,b(ξ, ū2)C

†ŜC|γ∗⟩

where C = CξCη, and η ≫ ξ,

Cη ≃1 + i
√
2

∫
d2v1b̂

i
Da(v1)

[
ai†a (η,v1) + aia(η,v1)

]
Cξ ≃1 + i

√
2

∫
d2v2

(
b̂jDb(v2) + δb̂jb(η,v2)

) [
aj†b (ξ,v2) + ajb(ξ,v2)

]
• C|γ∗⟩ Initial state
• Ŝ S-matrix

• Caj,b(ξ, ū2)C
† dressed gluons in the final state
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Dipole expectation values

• Expectation values for qq̄

⟨qq̄|ρ̂d′ (x̄)ρ̂d(x)|qq̄⟩ =
δdd

′

2

(
δ2(x̄− z1)− δ2(x̄− z2)

) (
δ2(x− z1)− δ2(x− z2)

)
⟨qq̄|ρ̂a(x1)ρ̂

b(x2)ρ̂
c(x3)|qq̄⟩

=
ifabc

4

(
δ(2)(x2 − z1) + δ(2)(x2 − z2)

) ∏
i=1,3

(
δ(2)(xi − z1)− δ(2)(xi − z2)

)
z1, z2 are the transverse coordinates of quark and anti-quark.

• Average over different dipole size r = z1 − z2

⟨ρd′ (x̄)ρd(x)⟩P ≈
∑
s1

∫
z

∫
d2rΨT∗

λ (z, r, s1)Ψ
T
λ (z, r, s1)⟨qq̄|ρd′ (x̄)ρd(x)|qq̄⟩
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MV model projectile average
• MV model describes the distribution of classical color source
not quantum operators.

W (ρa) = exp

{
−

∫
x

ρa(x)ρa(x)

2µ2

}
•

µ2(x) = N exp

{
−

x2

R2

}
.

• Two and three point correlators

⟨ρ̂a(x)ρ̂b(y)⟩MV = ⟨ρa(x)ρb(y)⟩MV = µ2δ(2)(x− y)δab

⟨ρ̂a(x)ρ̂b(y)ρ̂c(z)⟩MV = −
1

2
δ(2)(x− y)δ(2)(y − z)Ta

bc µ
2

• Symmetrization of ρ̂s

ρ̂a(x)ρ̂b(y) =
1

2
{ρ̂a(x), ρ̂b(y)}+

1

2
[ρ̂a(x), ρ̂b(y)]

= ρa(x)ρb(y)−
1

2
δ(2)(x− y)T c

abρc(x)
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