Extracting Two-Photon Exchange using Positrons at CLAS12

Axel Schmidt

Positron Working Group Meeting

December 7, 2022

Goal of producing a PAC proposal to measure two-photon exchange at CLAS12 with positrons

Spokespeople: J. C. Bernauer, V. D. Burkert, E. Cline, **A. Schmidt**, Y. Sharabian, T. Kutz

Based on PWG White paper article:
"Determination of two-photon exchange via e⁺p/e⁻p scattering with CLAS12"
J. C. Bernauer et al., EPJA 57:144 (2021)

Experimental details:

- e^+ , e^- beams at 2.2., 3.3, 4.4, 6.6 GeV, unpolarized, ≈ 60 nA
- Unpolarized H₂ target
- \blacksquare \approx 55 PAC days

Measurements of the proton's form factors are discrepant.

The one "missing" radiative correction is hard two-photon exchange.

The standard set

Hard two-photon exchange

TPE produces an asymmetry between electron and positron scattering.

Recent measurements lacked the kinematic reach to be decisive.

Recent measurements lacked the kinematic reach to be decisive.

CLAS12 is ideal for mapping TPE over a wide phase space.

J. C. Bernauer et al., Eur.Phys.J.A 57, p. 144 (2021)

Current CLAS12 equipment lack the means to trigger on a central e^{\pm} .

Proposed solution: replace CLAS CND with new "Central Electron Calorimeter"

- Design based on previous CLAS12 CEC concept
 - Some proof-of-concept work done by group in Paris-Saclay
- Tungsten powder calorimeter
- Light collected by fiber, sent to SiPMs

Summary

- **TPE** calls for measurements e^+p/e^-p over wide kinematic range.
- CLAS12's large acceptance makes it advantageous
- Problem to overcome: triggering central e^{\pm}
- Plan to submit a PAC proposal this spring

Back Up

Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Ahmed, Blunden, Melnitchouk, PRC 102, 045205 (2020)

Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Ahmed, Blunden, Melnitchouk, PRC 102, 045205 (2020)

Partonic Approaches

- Treat interaction of $\gamma\gamma$ with quarks, distributed by GPDs.
- e.g. A. Afanasev et al., PRD 72, 013008 (2005)

Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Ahmed, Blunden, Melnitchouk, PRC 102, 045205 (2020)

Partonic Approaches

- Treat interaction of $\gamma\gamma$ with quarks, distributed by GPDs.
- e.g. A. Afanasev et al., PRD 72, 013008 (2005)

Phenomenology

- Assume the discrepancy is caused by TPE, estimate the effect.
- e.g. A. Schmidt, JPG 47, 055109 (2020)

Hadronic Approaches

- Treat off-shell propagator as collection of hadronic states.
- e.g. Ahmed, Blunden, Melnitchouk, PRC 102, 045205 (2020)

Partonic Approaches

- Treat interaction of $\gamma\gamma$ with quarks, distributed by GPDs.
- e.g. A. Afanasev et al., PRD 72, 013008 (2005)

Phenomenology

- Assume the discrepancy is caused by TPE, estimate the effect.
- e.g. A. Schmidt, JPG 47, 055109 (2020)

Alternate Approaches

e.g., E. A. Kuraev et al., Phys. Rev. C 78, 015205 (2008)

Theory predictions for $\sigma_{e^+p}/\sigma_{e^-p}$ are not in agreement.

Theory predictions for $\sigma_{e^+p}/\sigma_{e^-p}$ are not in agreement.

Three recent experiments measured hard TPE.

OLYMPUS observed a small TPE effect.

Henderson et al., PRL 118, 092501 (2017)