Baryon Number-Violating Amplitudes on a Lattice with Physical Chirally-Symmetric Quarks

Sergey Syritsyn,

with Enrico Rinaldi, Michael Wagman, Jun-Sik Yoo, Taku Izubuchi, Amarjit Soni, Peter Boyle, Yasumichi Aoki

25th International Symposium on Spin Physics Duke University, Durham, NC, USA Sep 26 2023 Neutron-antineutron oscillation amplitudes

Experimental lifetime limits & outlook Nucleon model uncertainties Hadron masses and energies Extraction of matrix elements Operator renormalization

Proton decay amplitudes

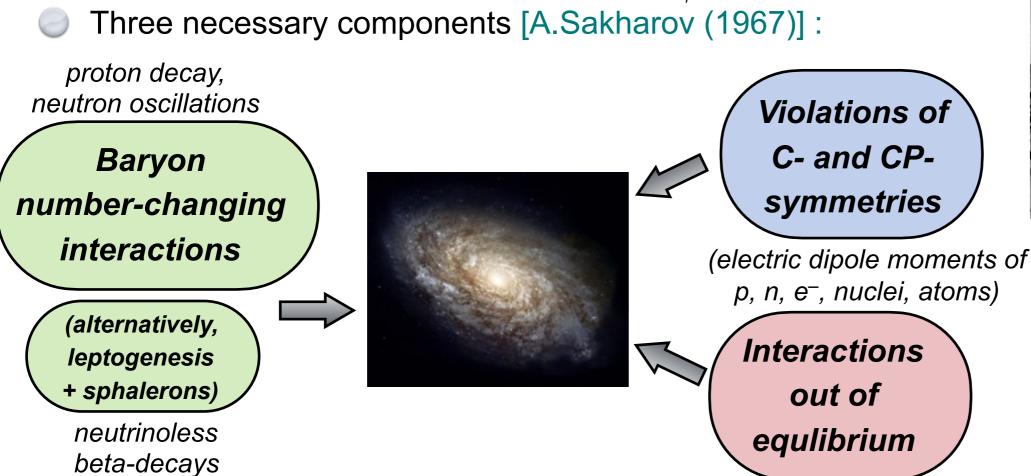
Experimental lifetime limits & outlook Effective operators for $p \rightarrow \pi \ell$, $K\ell$ decays Momentum & continuum extrapolations Proton decay constants ($p \rightarrow 3\ell$)

Summary&Outlook

Baryogenesis and Broken Symmetries

Why More Matter > Antimatter?

$$\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 6 \cdot 10^{-10}$$



Baryon Number: accidental symmetry of SM, violated by sphalerons

- \odot neutron-antineutron oscillations ($\Delta B=2$)
- proton decay (ΔB=1)

Missing piece of Grand-Unified Theories

Limit on nuclear matter stability?

$\Delta B=2$ Number Violation : n- \overline{n} Oscillations

Baryon number not conserved ?⇒ (anti)neutrons are not energy eigenstates:

- (n, $\overline{\bf n}$) Hamiltonian with $\Delta B=2$ ${\cal H}=\left(\begin{array}{c} n \\ \overline{n} \end{array}\right)^{\dagger} \left(\begin{array}{cc} M_n+\frac{1}{2}\Delta M & \delta m \\ \delta m & M_n+\frac{1}{2}\Delta M \end{array}\right) \left(\begin{array}{c} n \\ \overline{n} \end{array}\right)$
- If $t \ll (\Delta M)^{-1}$: $n \to \overline{n}$ transition in $\tau_{n \overline{n}} = (2 \delta m)^{-1}$

current limit

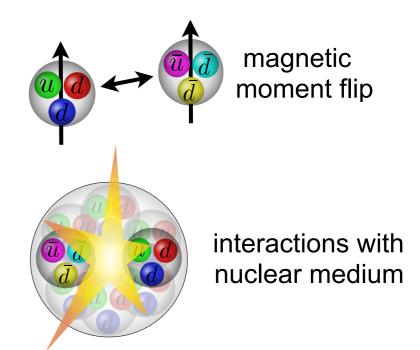
 $\delta m \leq (10^8 \, \text{s})^{-1} \approx \text{O}(10^{-24}) \, \text{eV}$

Medium effects dominate $\Delta M \gg \delta m$

● In vacuum ("quasi-free" n-n̄) B~0.5 Gauss:

$$\Delta M = 2\mu_n B_{\oplus} \approx 6 \cdot 10^{-12} \text{ eV}$$

In nuclei : $\Delta M \sim O(100\,{\rm MeV})$

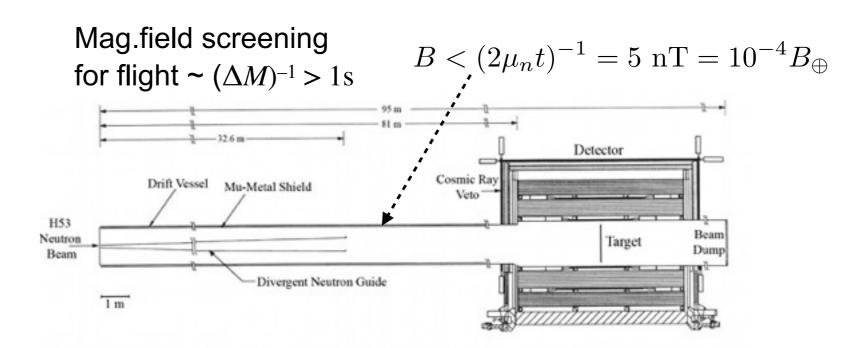


N-N Oscillations: Experimental Status

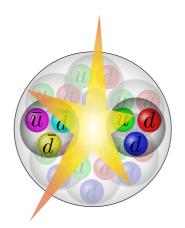
- "Quasi-free" reactor neutrons
 - ILL Grenoble high-flux reactor[M.Baldo-Ceolin et al, 1994)]

$$\tau_{n\bar{n}} \gtrsim 10^8 s$$

$$\delta m \lesssim 6 \cdot 10^{-24} \text{ eV}$$



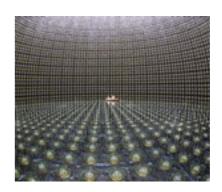
- In nuclei :
 - τ(56Fe) ≈ 0.72·10³² yr ⇒ τN \bar{N} ≈ 1.4·10⁸ s [Soudan]
 - $τ(^{16}O) ≥ 1.77 \cdot 10^{32} yr$ $⇒ τ_{NN̄} ≥ 3.3 \cdot 10^8 s [Super-K]$
 - $\tau(^{2}H) \approx 0.54 \cdot 10^{32} \text{ yr}$ $\Longrightarrow \tau_{N\bar{N}} \approx 1.96 \cdot 10^{8} \text{ s [SNO]}$



Nuclear decays from ($\Delta B=2$) transitions: suppressed by nuclear medium:

$$T_d = R au_{nar{n}}^2$$
 $R \sim 10^{23} \, ext{s}^{-1}$

nuclear model uncertainty ~ 10-15% for ¹⁶O [E.Friedman, A.Gal (2008)]

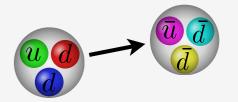


Super Kamiokande

SNO

Sensitivity is limited by atmospheric neutrinos

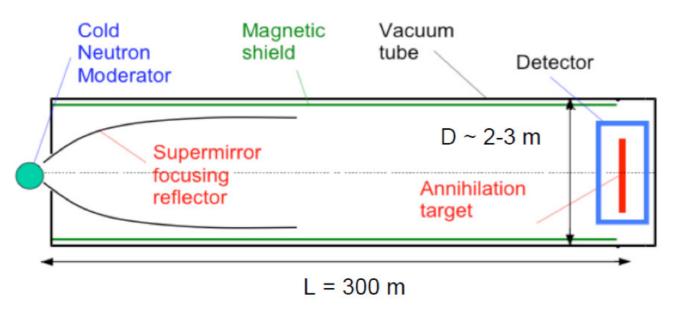
N-N: Experimental Outlook



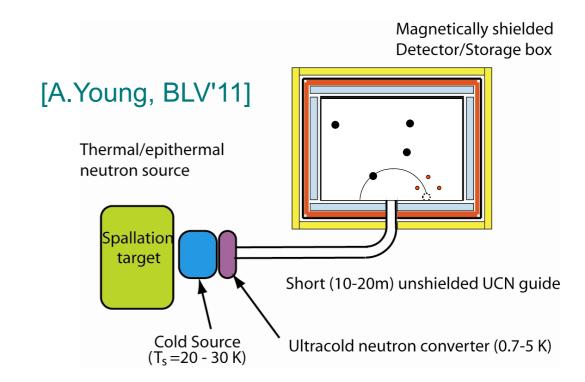
Maximize Probability of oscillation $\sim N_n \ (T_{\rm free})^2$

- Shielded beam (similar to ILL): Expected sensitivity x10²-10³ ILL τ_{n-π} ≥109-10¹0 s
 - ♦ Spallation sources: x12 flux @ESS
 - → Elliptic focussing mirror
 - ♦ Better magnetic shielding (B < 1 nT)</p>

[Phillips et al, arXiv:1410.1100]



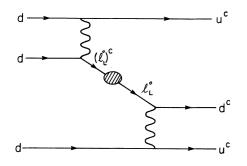
stored ultra-cold neutrons $\tau_{n-\bar{n}} \gtrsim 2.2 \cdot 10^8 \text{ s}$

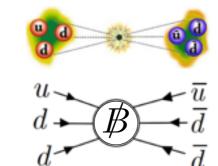


- Further improvements
 - ◆ Larger vessels
 - ♦ Better magnetic shielding (B < 1 nT)</p>
 - ◆ Parabolic floor concentrators
 - → Multiple coherent reflections

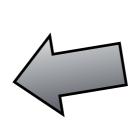
BSM Models and QCD Input

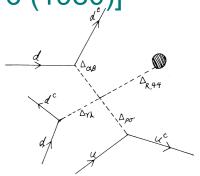
GUT + massive Majorana lepton [T.K.Kuo, S.T.Love, PRL45:93 (1980)]





partial unification and (B-L) viol. [R.N.Mohapatra, R.E.Marshak, PRL44:1316 (1980)]





Effective $\Delta B=2$ interaction

$$\mathcal{L}_{\text{eff}} = \sum_{i} \left[c_i \mathcal{O}_i^{6q} + \text{h.c.} \right]$$

oscillation rate

$$(2\tau_{n\bar{n}})^{-1} = \delta m = -\langle \bar{n}| \int d^4x \, \mathcal{L}_{\text{eff}} |n\rangle = -\sum_{i} \frac{c_i}{M_X^5} \sqrt{\langle \bar{n}|\mathcal{O}_i^{6q}|n\rangle}$$
BSM scale suppression

 $M_X \approx (200-300) \text{ TeV}$

n– \overline{n} amplitude $\sim \int d^3x \, (
ho_q)^3$ from NP QCD

sensitive to spatial quark distribution

ΔB=2 Operators

Classification of all $\Delta I=1$ 6-quark operators

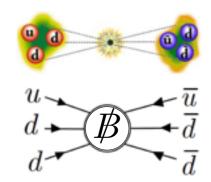
- Light-flavor SU(2)_f multiplets
 [T.Kuo, S.Love, PRL45:93 (1980);
 S.Rao, R.Shrock, PLB116:238 (1982)]
- 2-loop perturbative running [Buchoff, Wagman, PRD93:016005(2015)]

$$Q_{1} = -4 (ud)_{R}^{A_{1}} (ud)_{R}^{A_{2}} (dd)_{R}^{S_{3}} T^{A_{1}A_{2}S_{3}}$$

$$(\mathbf{1}_{L}, \mathbf{3}_{R})$$

$$Q_{2} = -4 (ud)_{L}^{A_{1}} (ud)_{R}^{A_{2}} (dd)_{R}^{S_{3}} T^{A_{1}A_{2}S_{3}}$$

$$Q_{3} = -4 (ud)_{L}^{A_{1}} (ud)_{L}^{A_{2}} (dd)_{R}^{S_{3}} T^{A_{1}A_{2}S_{3}}$$



$$egin{aligned} (q_1q_2) &\doteq (q_1^T C q_2) \ &(q_1q_2)^A \in \left(\overline{\mathbf{3}}_{ ext{color}}, \mathbf{1}_{ ext{flavor}}
ight) \ &(q_1q_2)^S \in \left(\mathbf{8}_{ ext{color}}, \mathbf{3}_{ ext{flavor}}
ight) \end{aligned}$$

$$(\mathbf{1}_{L}, \mathbf{7}_{R}) \qquad Q_{4} = -\frac{4}{5} \left[(uu)(dd) + 4(ud)_{R}(ud) \right]_{RR}^{S_{1}S_{2}} (dd)_{R}^{S_{3}} T^{S_{1}S_{2}S_{3}}$$

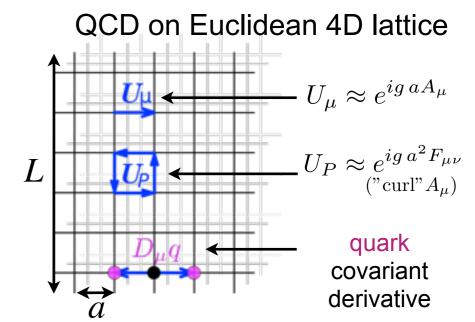
$$({f 3}_L,{f 5}_R)$$
 $Q_5=(uu)_R^{S_1}\,(dd)_L^{S_2}\,(dd)_L^{S_3}\,T^{S_1S_2S_3}$ (not SU(2)_L-symmetric) (and also ${m Q}_{6,7}$ related by Wigner-Eckart thm)

Must have chiral symmetry to protect the operators from mixing

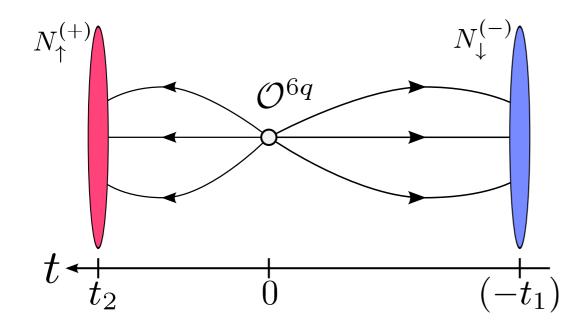
Fundamental Theory: QCD on a Lattice

Lattice Field Theory ⇔ Numerical evaluation of the Path Integral

$$\langle q_x \bar{q}_y \ldots \rangle = \int \mathcal{D} \Big(Glue \Big) \int \mathcal{D} \Big(Quarks \Big) \ e^{-S_{Glue} - \bar{q} \Big(\not \!\! D + m \Big) q} \ \left[q \not \!\! q_y \ldots \right]$$
 Grassmann integration
$$= \int \mathcal{D} \Big(Glue \Big) \ e^{-S_{Glue}} \ \mathrm{Det} \Big(\not \!\! D + m \Big) \ \left[\Big(\not \!\! D + m \Big)_{x,y}^{-1} \ldots \right]$$
 Hybrid Monte Carlo sampling of gluon background of Motion



Lattice correlation fcn. for $\langle \overline{n}|Q_{\alpha}|n\rangle$ matrix elements [M.Buchoff, C.Schroeder, J.Wasem PRD93:016005(2015)]



Systematic effects

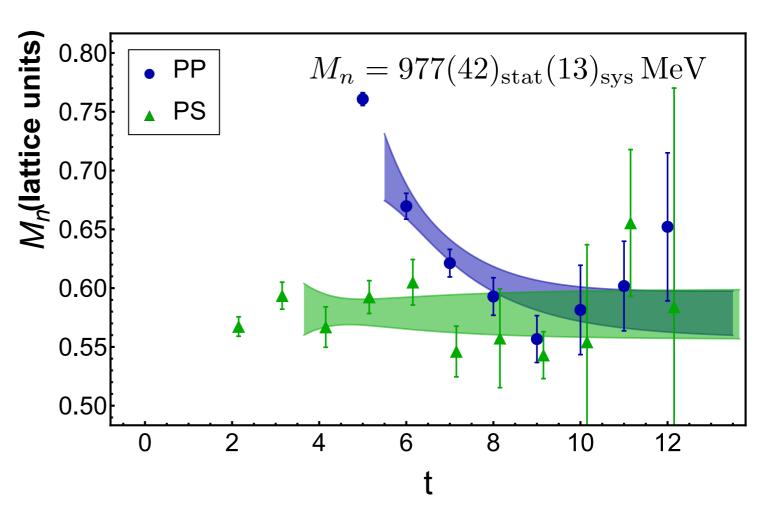
- discretization errors
- finite volume
- unphysical heavy pion(quark) mass
- chiral symmetry breaking
- excited states
- renormalization / MS matching

Lattice Details

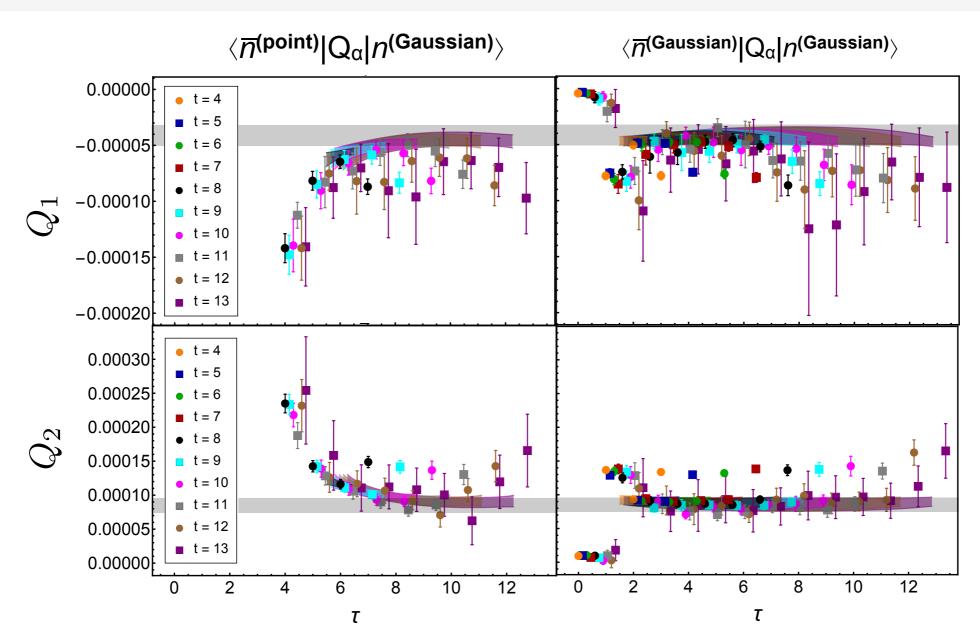
- Physical quark masses, m_{π} = 140 MeV [T.Blum et al (RBC/UKQCD), PRD93:074505 arXiv:1411.7017]
 - $48^3 \times 96 = 5.5^3 \times 10.9 \text{ fm}$ lattice
 - spacing $a = 0.1392(4) \text{ fm}, \delta(a^{-6}) \approx 1.7\%$
- chiral (Möbius Domain Wall Fermions)
- 2268 (28 x 81) MC samples

Nucleon effective mass
$$M_n^{\rm eff}(t) = \frac{1}{a}\log\frac{C_{nn}(t)}{C_{nn}(t+a)}$$
 lata

- lattice data
- Variational analysis on quark w.f.'s: point-like vs. Gaussian(smeared)
- \bullet fits $C_{nn}(t) \sim C_0 e^{-E_0 t} + C_1 e^{-E_1 t}$ sim. PP+PS with $t \approx 0.5 \dots 1.5$ fm



n⇔n Amplitudes: Ground and Excited States

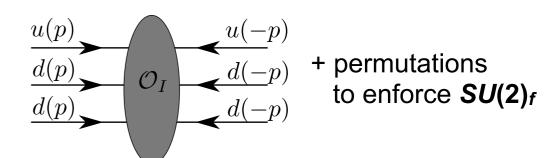


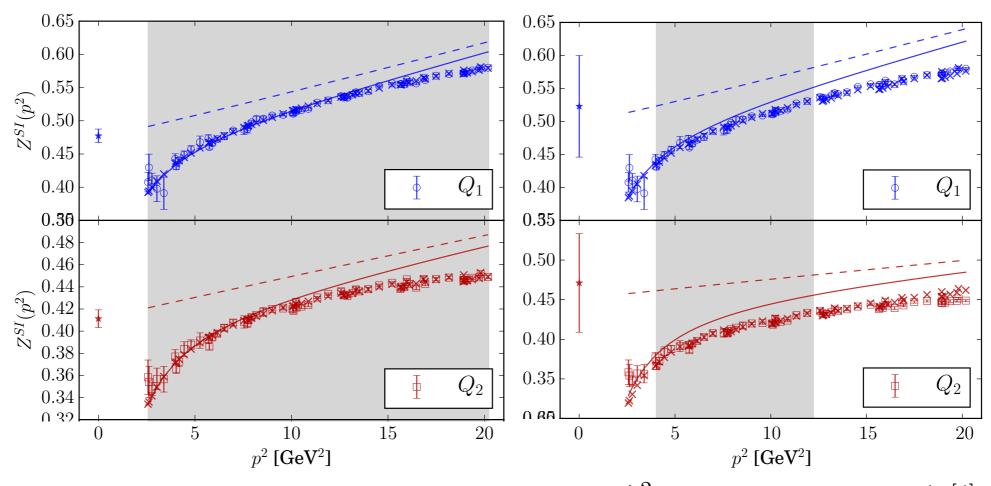
Excited state analysis:

- Variational analysis: point-like vs. Gaussian-like quark w.f.'s in (anti)neutrons
- Data points: ratios of lattice correlators $C_{3pt}(T)/C_{2pt}(T) \rightarrow \langle N|Q|\overline{N}\rangle$
- Bands: 2-state fits of lattice data with Tsep ≈ 0.5 ... 1.5 fm
- Variance across fits → systematic uncertainty

Nonperturbative Operator Renormalization

 6-Quark Green's functions on a lattice quark momentum scheme for 2-loop pQCD [Buchoff, Wagman PRD93:016005(2015); Rinaldi, SS, Wagman, et al PRD99:074510 (2019)]





- p-dependence fit: $(\text{window } \Lambda_{\text{QCD}} \ll p \ll \frac{\pi}{a} \)$
- $Z^{SI}(p^{2}) = Z_{\text{final}} + \underbrace{c_{NP} \frac{\Lambda_{QCD}^{2}}{p^{2}}}_{\text{nonpert.}} + \underbrace{c_{2}(ap)^{2} + c_{[4]} \frac{a^{4}p^{[4]}}{(ap)^{2}}}_{\text{discretization}}$

• Variation with p^2 fits ranges, pQCD 1-,2-loop matching \rightarrow systematic uncertainty

Lattice QCD Result: Enhanced N⇔N

Lattice QCD with physical-mass, chiral-symmetric quarks:

x(5-10) larger N-Nbar oscillation vs. nucleon Bag model

[E.Rinaldi, S.S., M.Wagman, et al, PRD99:074510 (2019)]

[E.Rinaldi, S.S., M.Wagman, et al, PRL122:162(2018)]

	$\mathcal{O}^{\overline{MS}(2 \; \mathrm{GeV})}$	Bag "A"	EQCD Bag "A"	Bag "B"	LQCD Bag "B"
$[(RRR)_{3}]$	0	0		0	
$\overline{[(RRR)_{1}]}$	45.4(5.6)	8.190	(5.5)	6.660	6.8
$[R_{1}(LL)_{0}]$	44.0(4.1)	7.230	6.1	6.090	7.2
$[(RR)_{1}L_{0}]$	-66.6(7.7)	-9.540	7.0	-8.160	$\left[8.1\right]$
$(RR)_{2}L_{1}]^{(1)}$	-2.12(26)	1.260	-1.7	-0.666	3.2
$[(RR)_{2}L_{1}]^{(2)}$	0.531(64)	-0.314	-1.7	0.167	3.2
$[(RR)_{2}L_{1}]^{(3)}$	-1.06(13)	0.630	-1.7	-0.330	3.2
	$[10^{-5} \mathrm{GeV}^{-6}]$	$[10^{-5} \mathrm{GeV}^{-6}]$]	$[10^{-5} \mathrm{GeV}^{-6}]$	

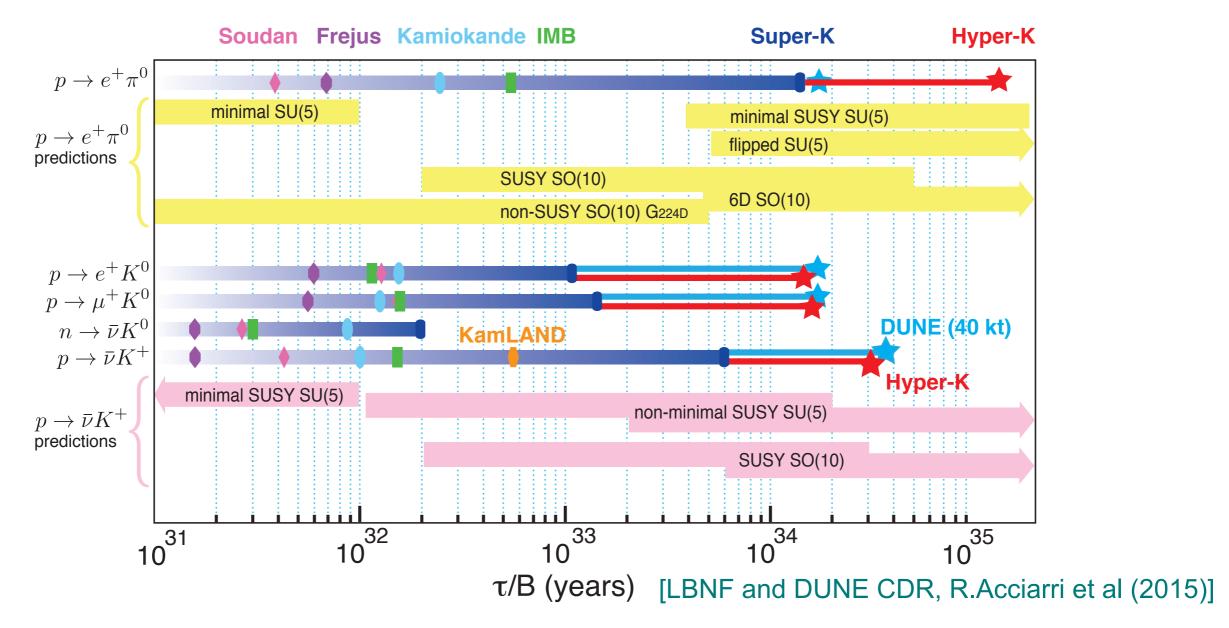
comparison to MIT Bag model [S.Rao, R.Shrock, PLB116:238 (1982)]

Next steps:

- Fully quantify systematic uncertainties : finite volume, continuum limit
- "Crossed" amplitudes : 2-neutron annihilation (vac|O^{6q}|nn)
- Nuclear medium effects $\langle A-2 | O^{6q} | A \rangle$

Searches for Proton Decays

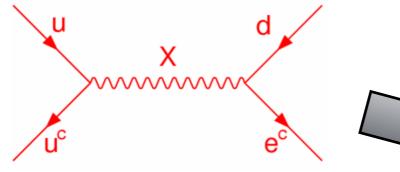
- Missing piece of Grand-Unified Theories
- Limits on stability of nuclear matter

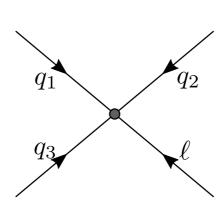


- Expect x10 improvement on lifetime limit from Hyper-K and DUNE
- Better sensitivity to $p \rightarrow \overline{\nu} K^+$ that affects supersymmetric GUT models

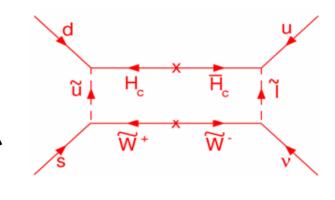
Proton Decay Amplitudes and Rate

ordinary GUT





supersymmetric GUT



Effective interaction

$$\mathcal{L}_{\text{eff}} = \sum_{I} C_{I} \mathcal{O}_{I} + \text{h.c.}$$

$$\mathcal{O}_{I} = \epsilon^{abc} (\bar{q}_{1}^{aC} P_{\chi_{I}} q_{2}^{b}) (\bar{\ell}^{C} P_{\chi'_{I}} q_{3}^{c}) = \bar{\ell}_{\alpha}^{C} \mathcal{O}_{I,\alpha}^{3q}$$

$$q_{1,2,3} \in \{u, d, s\}, \quad P_{\chi_{I}^{(\prime)}} = \frac{1 \pm \gamma_{5}}{2}$$

Decay width $p \to \Pi \overline{\ell}$ $(\Pi = \pi, K, \eta)$

$$\Gamma(p \to \Pi \bar{\ell}) = \frac{m_N}{32\pi} \left[1 - \left(\frac{m_\Pi}{m_N} \right)^2 \right]^2 \left| \sum_I C_I W_{\bar{\ell}}^I \right|^2$$

$$\Gamma(p \to \Pi \bar{\ell}) = \frac{m_N}{32\pi} \Big[1 - \Big(\frac{m_\Pi}{m_N}\Big)^2 \Big]^2 \big| \sum_I C_I W_{\bar{\ell}}^I \big|^2 \qquad \textit{where} \quad W_{\bar{\ell}} = \Big[W_0 + \underbrace{W_1 \cdot O(m_{\bar{\ell}}/m_N)}_{\text{negligible for } e^+} \Big]_{q^2 = m_{\bar{\ell}}^2}$$
 negligible for e^+ \$\approx 10\% for \$\mu^+\$

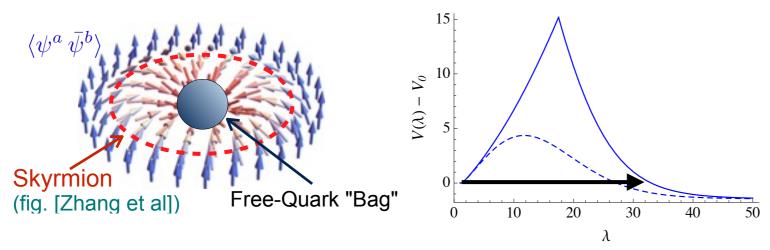
Decay matrix elements $(W_{0,1})_I$ [S.Aoki et al, PRD62:014506 (2000)]

$$\langle \bar{\ell}(q)\Pi(p)|\mathcal{O}^{\chi'}|N(k)\rangle = \bar{v}_{\ell\alpha}^C(q)\,P_{\chi'}\left[W_0(-q^2) - \frac{i\not q}{m_N}W_1(-q^2)\right]u_N(k)$$

Proton Decay Matrix Elements

Is proton inherently stable?

Conjecture [A.Martin, G.Stavenga '12] Topological stability of "Chiral Bag" proton:



Lattice calculations:

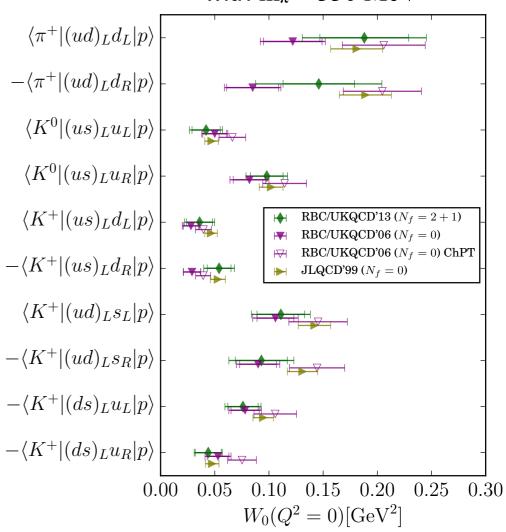
- "direct" $p \to \pi \overline{\ell}$, $K\overline{\ell}$ decay matrix elements prior work at m $\pi \approx 300$ MeV:[S.Aoki et al (2000)] [Y.Aoki et al (2006), (2013), (2017)]
- "indirect" p → vacuum proton "decay constants" + LO-ChPT

Topological stability may strongly depend on quark mass, chiral symmetry

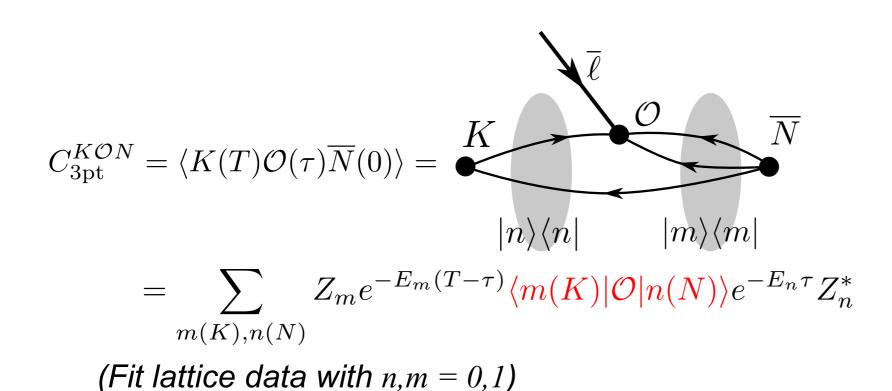
⇒ Realistic physical-point calculation is necessary

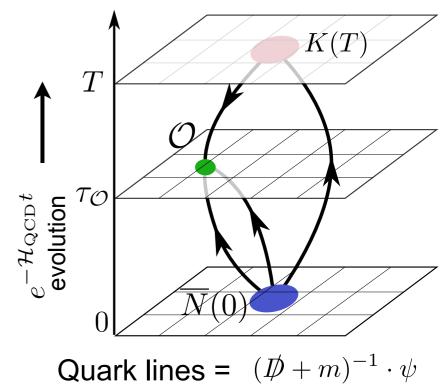
Nucleon-to-meson amplitudes $(p \to \pi \overline{\ell}, K\overline{\ell}, \text{ decays})$

lattice calculations with $m_{\pi} \gtrsim 330 \ MeV$



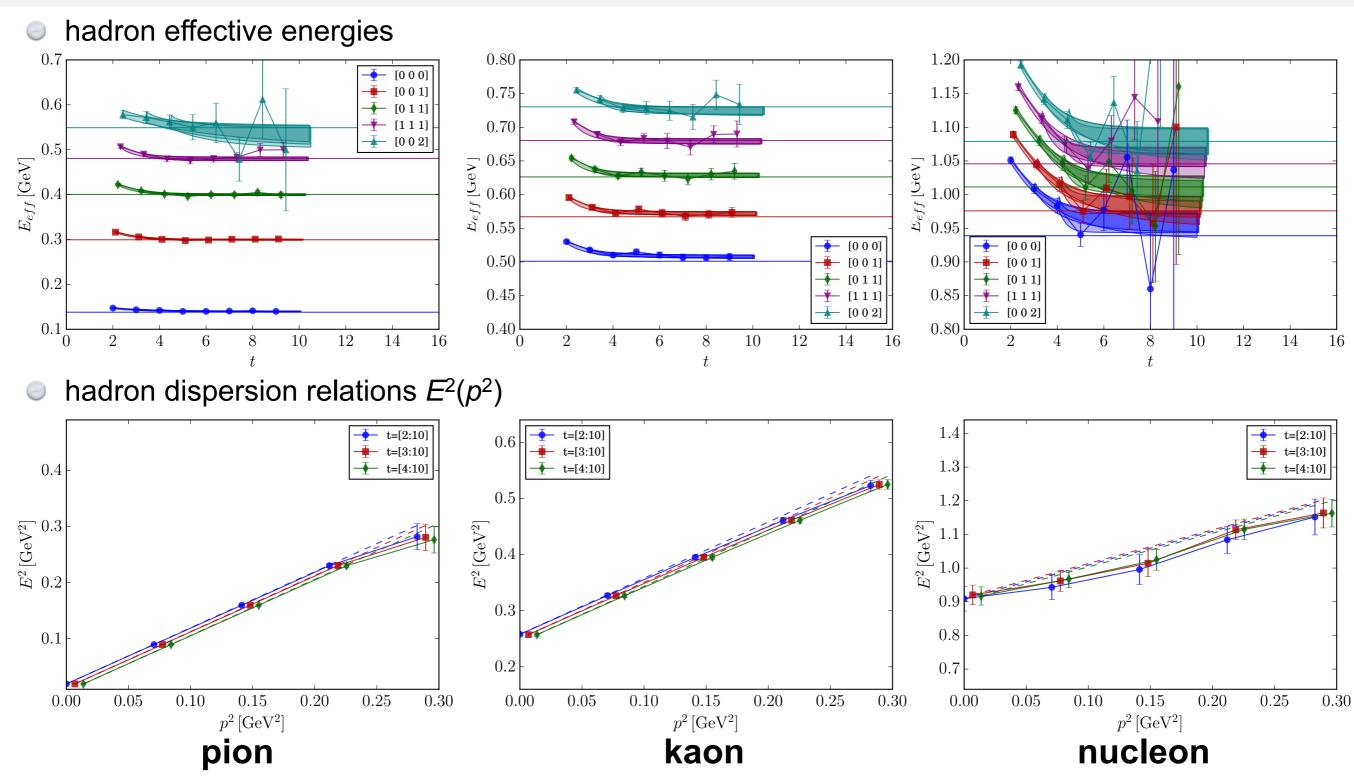
Proton→Meson Correlators in Lattice QCD





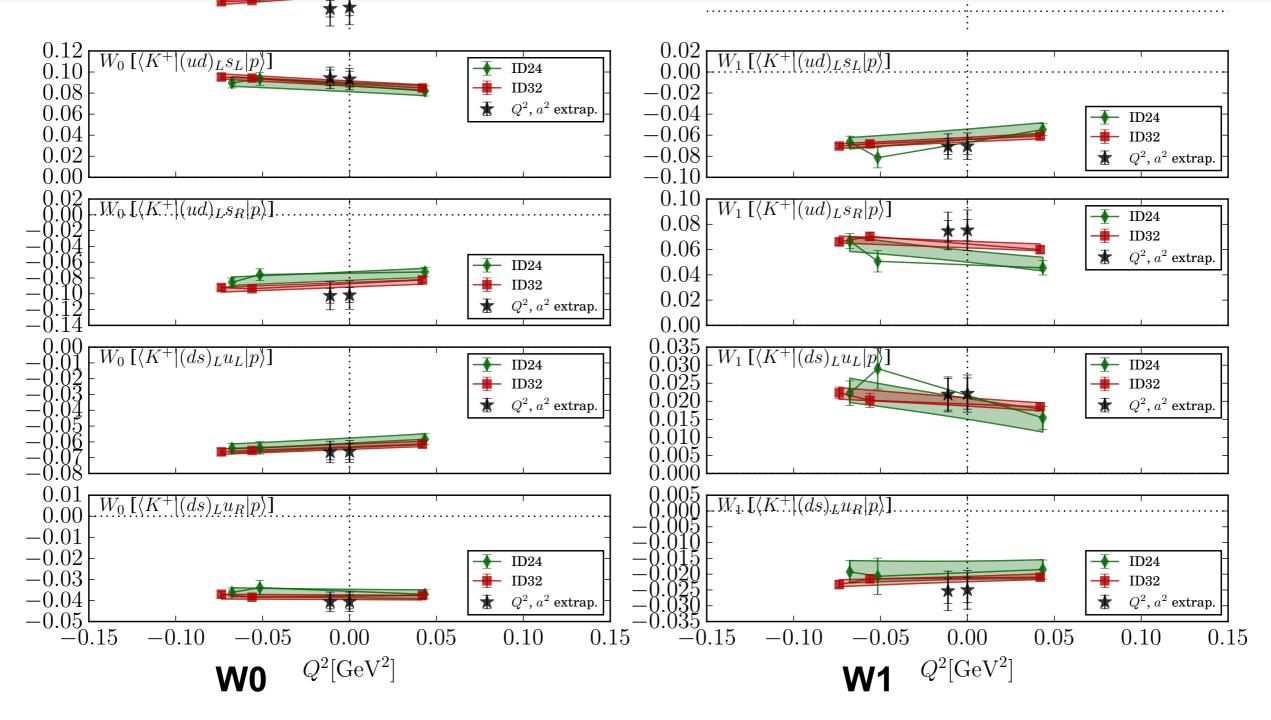
- Two lattice field ensembles:
 - $32^3 \times 64 (a=0.14 \text{ fm}) [32ID]$
 - $24^3 \times 64 (a=0.20 \text{ fm}) [24\text{ID}]$
- Chirally-symmetric (Mobius-)Domain Wall fermion action with physical light and strange quark masses
- Iwasaki gauge action+ Dislocation-supp. det.ratio (DSDR)

Proton and Meson Spectrum



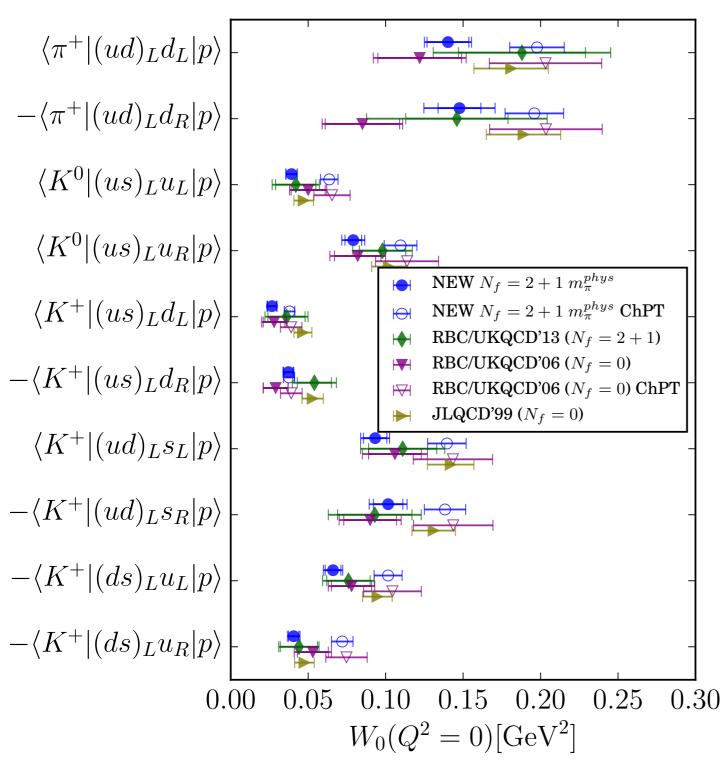
- 24ID ensemble (lattice spacing a=0.20 fm, a⁻¹ ≈ 1 GeV)
- Two-state fits + priors from large-t_{min} one-state fits

Momentum and Continuum Extrapolation



- linear momentum extrapolation $Q^2 \rightarrow m_e^2$, m_μ^2 to the decay kinematics
- Continuum extrapolation $A(a^2) \sim (A_0 + A_2 a^2)$; sys.error = $|A_0 A_{[a=0.14fm]}|$

Comparison to Previous Work

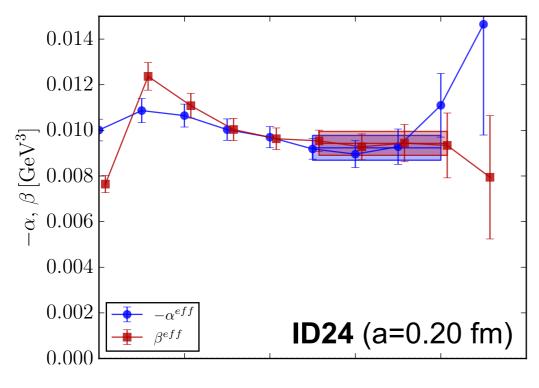


- New results:conservative sys. errors(stat+sys) precision ~ 10-20%
- No FVE study, $m\pi$ L~3.4
- physical-point results agree with prev. calculations at mπ ≥300 MeV

[S.Aoki et al (2000)] [Y.Aoki et al (2006)] [Y.Aoki et al (2013)]

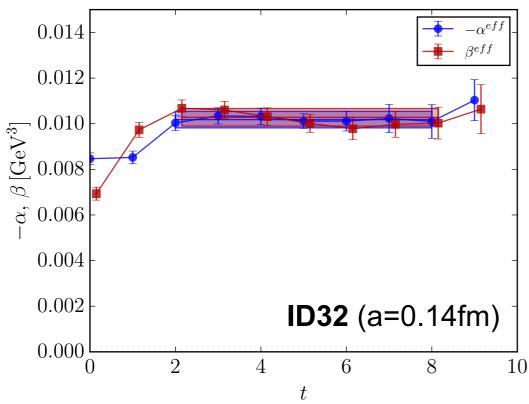
No suppression of nucleon decay due to chiral skyrmion topology

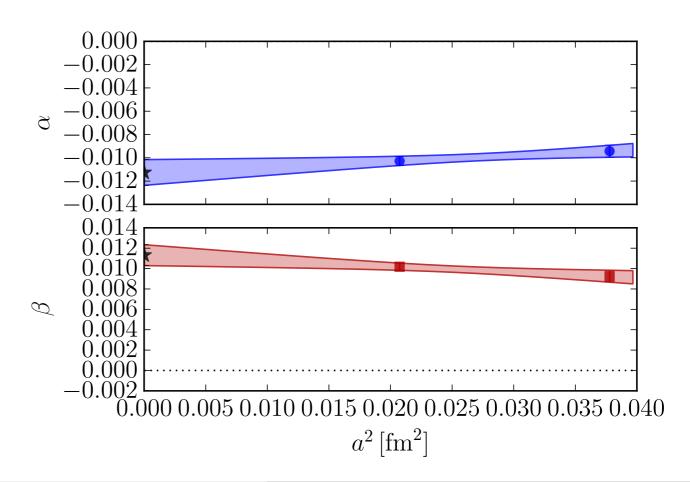
Proton Annihilation Amplitudes



$$\langle \operatorname{vac} | \epsilon^{abc} (\bar{u}^{aC} d^b)_R u_L^c | N \rangle = \alpha P_L U_N$$
$$\langle \operatorname{vac} | \epsilon^{abc} (\bar{u}^{aC} d^b)_L u_L^c | N \rangle = \beta P_L U_N$$

- $\langle \pi/K | O^{3q} | N \rangle$ with soft-pion theorem
- nonpert.QCD component of $p \rightarrow 3\ell$





Summary & Conclusions

- Amplitudes of quark BNV operators computed in lattice QCD with realistic, chirally-symmetric quarks
- Neutron-antineutron oscillation Amplitudes × (6 ... 8) larger than from pheno.models Continuum limit study pending NEXT: nn→vacuum amplitudes, n→n in nuclear medium
- Proton decays p→π/K, p→leptons
 No topological suppression of nucleon decay found; confirm limits on GUTs Finer spacing, larger volume calculations desirable
 Need NLO ChPT for p→π/K: cross-check vs. p→vacuum amplitude
 NEXT: p→ρ→ππ, p→K*→πK amplitudes

BACKUP

This Work: Lattice Setup

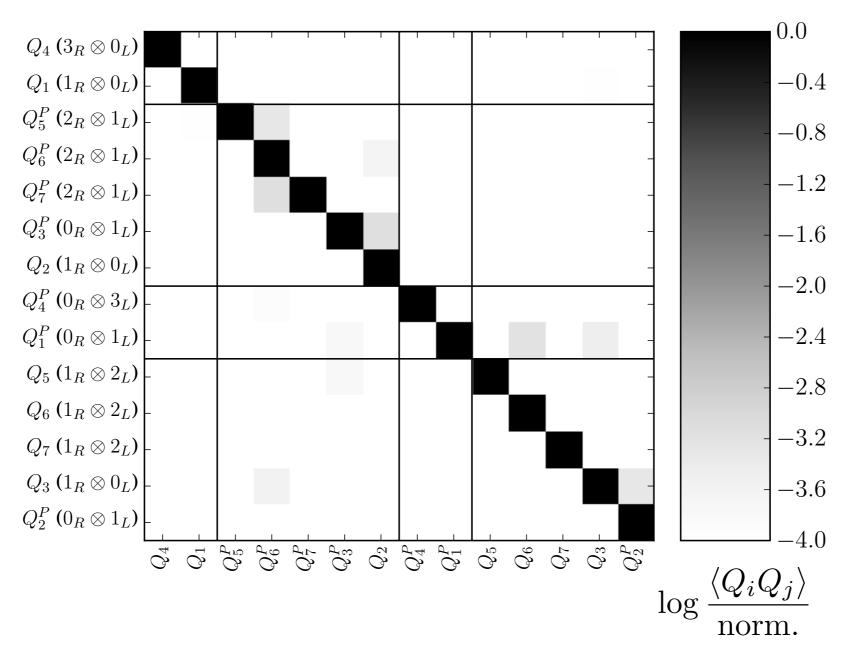
- Two ensembles: [32ID] $32^3 \times 64(a=0.14 \text{ fm})$ and [24ID] $24^3 \times 64(a=0.20 \text{ fm})$
- Iwasaki gauge action+ Dislocation-supp. det.ratio (DSDR)
- N_f = 2+1 Chirally-symmetric (Mobius-)Domain Wall fermion action with physical light and strange quark masses
- Multigrid deflation of z-Mobius operator + AMA
- "Direct" ($p \rightarrow \pi, K$ matrix elements) and "Indirect" ($p \rightarrow vacuum + ChPT$)
- Nonperturbative renormalization
- Two state-fit analysis of π, K, N spectrum and $p \to \pi, K$ matrix elements
- a² Continuum extrapolation

	24ID	32ID
	$24^3 \times 64$	$32^3 \times 64$
β	1.633	1.75
a, fm	0.20	0.14
a^{-1} , GeV	1.02	1.37
$m_\pi L$	3.4	3.3
N_{conf}	134	94
N_{samp}	4288	3008

• three kinematic (Q^2) points to interpolate matrix elements to decay kinematic $Q^2 = -(m\bar{\ell})^2$

Π	$ec{n}_\Pi$	$ec{n}_N$	$Q^2(\mathrm{Ge}$,
			(24c)	(32c)
π	$[1\ 1\ 1]$	$[0 \ 0 \ 0]$		-0.012
	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	$[0 \ 1 \ 0]$	0.113	0.095
	$[0\ 0\ 2]$	$[0 \ 0 \ 0]$	-0.116	-0.140
\overline{K}	$[0 \ 1 \ 1]$		-0.034	-0.042
	$[0 \ 1 \ 1]$	$[0 \ 1 \ 0]$	0.058	0.056
	$[0 \ 0 \ 1]$		0.075	0.074

Nonperturbative Mixing of (n|Q|n) Operators

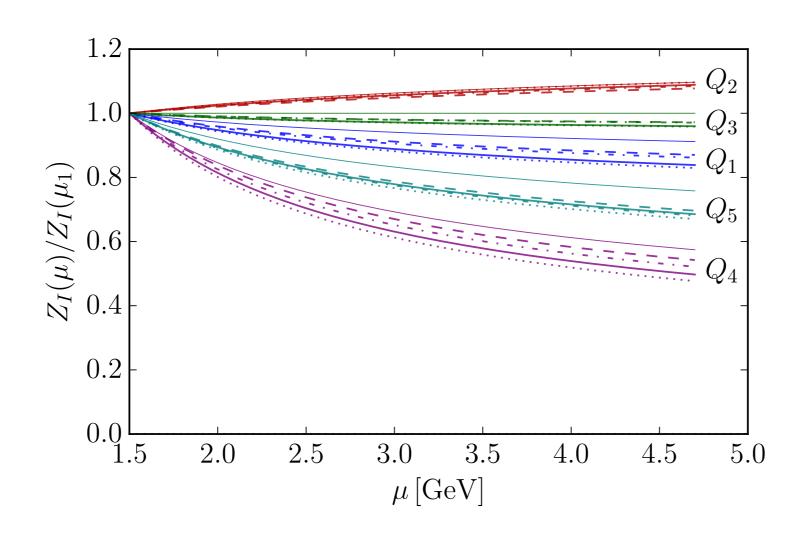


Nonperturbative mixing, normalized by diagonal $\langle Q_i | Q_i \rangle$ correlators

- RI-MOM scheme: N_f=3 (solid) and N_f=4 (dotted)
- MSbar scheme: N_f=3 (dashed) and N_f=4 (dash-dotted)

Negligible mixing due to chiral symmetry of quark action

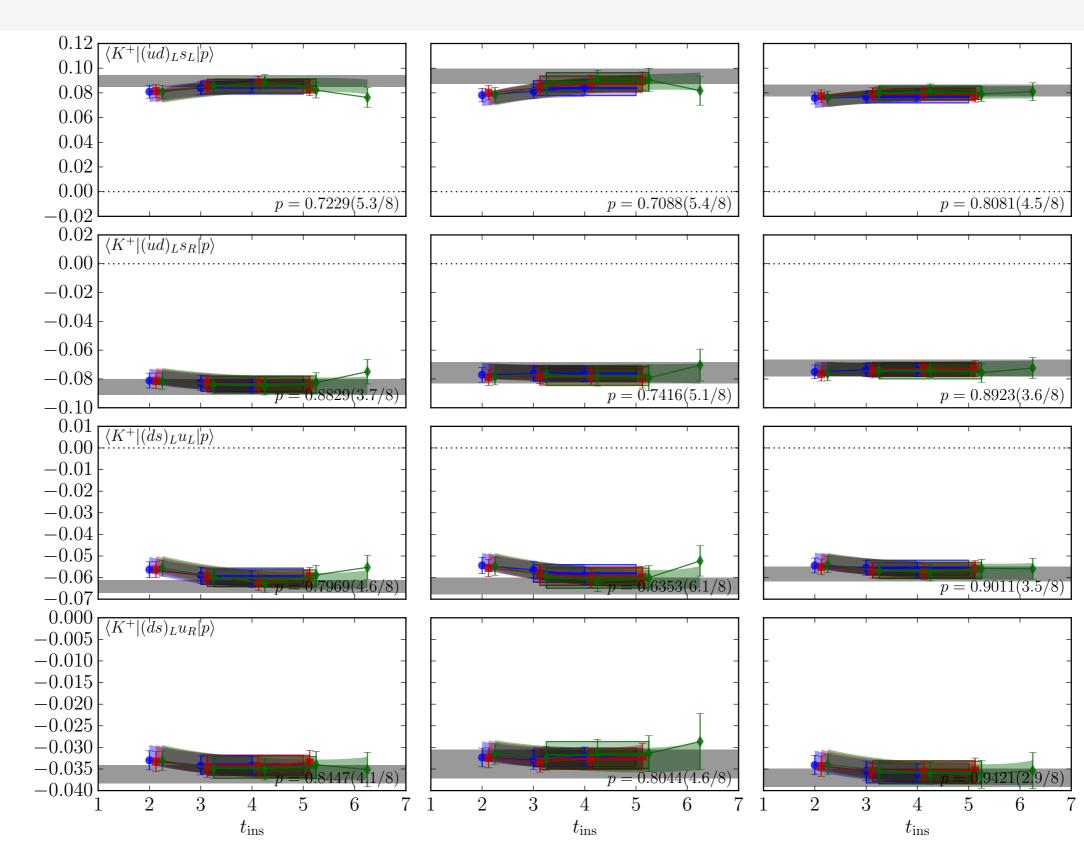
Perturbative Running of (n|Q|n) Operators



Perturbative running

- RI-MOM scheme: N_f=3 (solid) and N_f=4 (dotted)
- MSbar scheme: N_f=3 (dashed) and N_f=4 (dash-dotted)

Extraction of Watrix Elements



Two-state fits with energies fixed from spectrum fits

32ID

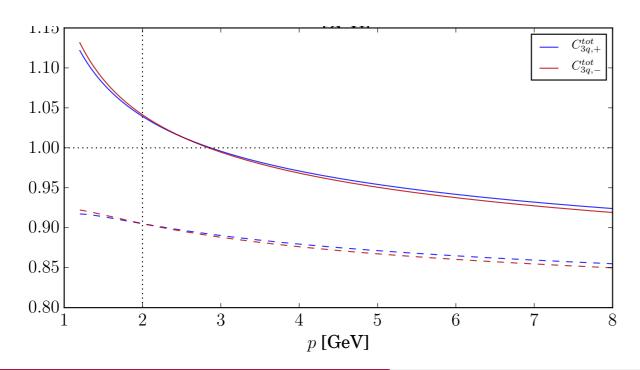
 W_0

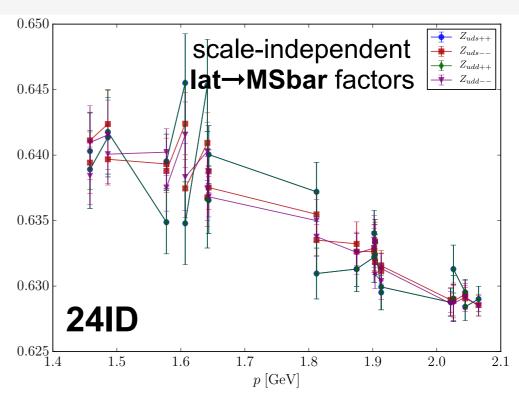
Nonperturbative Renormalization

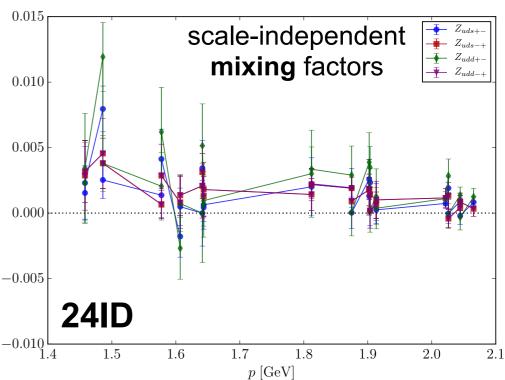
symmetry-allowed mixing

	S = -1	S = +1
$\mathcal{P} = -1$	SS, PP, AA	VV, TT
$\mathcal{P} = +1$	SP, PS, AV	VA, TQ

- symmMOM scheme : p+q+r=0, $p^2=q^2=r^2=\mu^2$ $Z_{IK}^{3q}(\mu) \operatorname{Proj}_J \left[\langle \bar{q}_1(p)\bar{q}_2(q)\bar{q}_3(r) \, \mathcal{O}_K^{3q} \rangle_{\mathrm{amp}} \right] = \delta_{IJ}$
- symmMOM(p)→MSbar(2 GeV)
 perturbative conversion at O(α³)
 [J.Gracey, JHEP09:052 (2012)]







chiral symmetry suppresses
 mixing of L⇔R fields & operators