Spin Physics at MAMI and MESA

HIM

PRISMA+

Frank Maas, Institut für Kernphysik and Helmholtz-Institut Mainz **25th International Spin Symposium (SPIN 2023)** Durham, NC, September, 25 - 29, 2023.

Outline

- Selected recent results and plans from MAMI
- Outlook on Spin Physics program at MESA

Selection of topics which are flashed Thanks to T. Kolar, M. Thiel, A. Thomas, M. Ostrick, C. Sfienti, S. Schlimme for the many transparencies

A2 Setup at MAMI

Polarized and unpolarized target available

Proton Polarizabilities

(2022) 132503 PRL 128

Proton Polarizabilities @ A2/MAMI

Photon

Reaction of nucleon under influence of an EM field provides fundamental information of the nucleon; very sensitive test of theories ($H/B\chi PT$, Disp. Rel.).

- Electric Polarizability: α_{F1}
- Magnetic Polarizability: β_{M1}

$$H_{\rm eff}^{(2)} = -4\pi \left[\frac{1}{2} \alpha_{E1} \vec{E}^2 + \frac{1}{2} \beta_{M1} \vec{H}^2 \right]$$

in addition 4 Spin Polarizabilities

Exploit linear beam polarization to measure asymmetry $\Sigma_3 \equiv 1$

(2022)

102501

Talk by D. Hornidge

PRL 129

Scattered

Photon

 $d\sigma^{\perp} - d\sigma^{\parallel}$

Recoil Proton

Compton scattering

Proton

Polarized target which acts as detector (active target)

Mike Biroth (UMainz):

The Mainz Active Polarized Proton Target - Review and Perspectives

Active Target Operated in the Experiment

Photograph of the target part installed in the mixing chamber:

Outer He-vacuum seal

and feedthrough

Recovered photon

• Three-spectrometer setup (A1 hall, MAMI)

Proton generalized Polarizabilities @ A1/MAMI

Accessible via Virtual Compton Scattering:

Virtuality of photon gives access to Generalized Polaribilitiess : $\alpha_E(Q^2)$; $\beta_M(Q^2)$ (+ 4 spin GPs)

- ightarrow mapping out the spatial distribution of the polarization densities
- → Fourier transform of densities of electric charges and magnetization of a nucleon deformed by an applied EM field

in plane

oop (8.5°)

Proton generalized Polarizabilities @ A1/MAMI

Accessible via Virtual Compton Scattering:

Virtuality of photon gives access to Generalized Polaribilitiess : $\alpha_E(Q^2)$; $\beta_M(Q^2)$ (+ 4 spin GPs)

- \rightarrow mapping out the spatial distribution of the polarization densities
- → Fourier transform of densities of electric charges and magnetization of a nucleon deformed by an applied EM field

New MAMI data in two measurement campaigns:

- Detailed understanding of systematics (4 PhD students)
- Out of plane (oop) measurement to access kinematic range, in which higher order terms small and extraction possible
- Final extraction according to LEX (low energy expansion) and DR
- First extration of N-∆ transition FF via gamma channel

in plane oop (8.5°)

SCATTERING PLANE

Polarization transfer in $A(\vec{e}, e'\vec{p})$

Sensitivity to nuclear density, medium modifications and short range correlations

Polarization d.f. in A(e, e'p)

$$\frac{\mathrm{d}^{6}\sigma}{\mathrm{d}E_{e'}\mathrm{d}\Omega_{e'}\mathrm{d}E_{p'}\mathrm{d}\Omega_{p'}} = \frac{|\vec{p}'|E_{p'}}{8\pi^{2}}\frac{E_{e'}}{E_{e}}\frac{\alpha^{2}}{Q^{4}}L_{\mu\nu}W^{\mu\nu} = \Sigma + h\Omega = \frac{\sigma_{0}}{2}\left[1 + \vec{P}\cdot\vec{\sigma} + h(\vec{A} + \vec{P'}\cdot\vec{\sigma})\right]$$

induced
$$A(\vec{e},e'\vec{p})$$

transferred
$$A(\vec{e},e'\vec{p})$$

 $_{\odot}$ Electron analyzing power

 $_{\odot}$ Induced polarization

 $_{\odot}$ Transferred polarization

Polarization transfer in $A(\vec{e}, e'\vec{p})$

 \rightarrow We measured transfer for several target nuclei

 ^{12}C

PLB 769 21 (2017)

PLB 781 107 (2018)

PLB 795 599 (2019)

PLB 781 95 (2018) PRC 101, 064615 (2020) PLB 811 135903 (2020)

⁴⁰Ca

 ^{2}H

(arXiv:2306.05565, submitted to PLB)

 \rightarrow Virtuality measures how far of its mass shell is proton $\nu = (m_p^2)_{\text{bound}} - m_p^2$

• The double ratio is sensitive to other many-body effects such as final state interaction

supersonic Gas-Jet Target (a1/MAMI, later Magix/MESA)

 e^{-}

Construction of a high-density gas jet target in cooperation with University of Münster (A. Khoukaz)

- Future MAGIX experiment at MESA: combination of light gas jet target with ERL electron beam
- Commissioning at A1/MAMI already now
 - → Measurement of electron-proton scattering (proton EM factors = flagship project @ Mainz)
 - \rightarrow Most precise determination of proton radius in electron scattering (Bernauer et al. 2010); accuracy limited by scattering of electrons at walls of liquid hydrogen target
- New measurement of G_F with gas jet target via Initial state radiation
 - \rightarrow access low momentum transfer 0.01 GeV²/c²

Phys.Rev.C 106 (2022) 4, 044610

-2.5

0.0

2.5

14

window-less, thin, point-like target !

Electrons for neutrinos A1

Interpretation of current and future generation of **neutrino experiments** (DUNE,T2K, Hyper-K, Mini-Boone, ...) requires knowledge of **neutrino-nucleus interaction**: ¹²C, ¹⁶O, ⁴⁰Ar

→ Check and calibrate MC-generators via dedicated program of electron-nucleus measurements

 \rightarrow MAMI energy range complementary to program at JLAB

Two photon exchange in elastic electron scattering

high-precision experiments

interference of one- and two-photon exchange causes

beam-normal single spin asymmetry A_n

De Rújula et al., Nucl. Phys. B35, 365 (1971)

Talk by M. Thiel and P. Blunden

\blacksquare allows access of imaginary part of 2γ exchange amplitude

Two photon exchange on elastic electron scattering

- Many observables: Target normal spin asymmetry, Beam normal spin asymmetry
- Different physics for proton target or nut target

the whole nuclear chart in a small band

A. Esser et al., PRL 121, 022503 (2018)

results – A dependence

A. Esser et al., PLB 808, 135664 (2020)

Mesa accelerator

Key parameters MESA:

- Two operation modes: extracted beam (EB) or energy recovering (ERL)
- Max. beam energy 155 MeV (EB), 105 MeV (ERL)

Cryomodules successfully tested

- Beam current 150 μA (EB), 1 mA (ERL)
- Superconducting cavities
- Start commissioning 2024
- New research building (par. 91b GG)
- Can run in parallel to MAMI

IESA cryo-modu

Polarized Source Test Setup

New underground experimental hall (par. 91b GG)

ERLs world-wide (status fall 2022)

→ MESA is one of few ongoing ERL activities
→ The **first** facility which will have a thin target and be used for physics experiments

MESA experiments

MAGIX experiment

- Operated in ERL mode of MESA
- **Double-arm spectrometers**
- Internal gas target experiment
- Gas jet target commissioned at A1/MAMI already

Main components of MAGIX and P2 presently constructed in industry and assembled in house (funding via major research instrumentation program of federal government) Phase 1 detector for DarkMESA almost ready.

DarkMESA

P2

- Extracted beam mode
- Parity violation experiment
- 10²² Electrons / a
- $\sin^2 \theta_{\rm W}$ and neutron skin

Nuclear physics in P2: Equation of state?

Neutron Stars are bound by gravity NOT by the strong force

▶ Neutron Stars satisfy the Tolman-Oppenheimer-Volkoff equation (vesc/c \approx 1/2)

$$\frac{dP}{dr} = -G \frac{(\epsilon/c^2 + P/c^2)(M + 4\pi r^3 P/c^2)}{r^2(1 - 2GM/rc^2)}$$
$$\frac{dM}{dr} = 4\pi r^2 \epsilon/c^2, \ P = P(\epsilon) \ (EOS)$$

Only Physics that the TOV equation is sensitive to: Nuclear equation of State

P2-Detector ...we call it:

JG

Direct observation versus precision measurements

seen in indirect searches before their direct production

P2: High precision determination of the weak mixing angle at low energy

-0.72

-0.715

-0.71

14.5

15

12

12.5

13.5

 $R_{\star}^{1.4}$ (km)

14

Physics sensitivity from contact interaction (LEP2 convention, g²= 4pi)

	precision	$\Delta \sin^2 \overline{\Theta}_{W}(0)$	Λ_{new} (expected)
APV Cs	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	I9 %	0.0030	17.0 TeV
Qweak final	4.5 %	0.0008	33 TeV
PVDIS	4.5 %	0.0050	7.6 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV

Effective field theory approach (EFT)

JGU

Future wEFT constraints from APV and PVES

Adam Falkowski at Mainz MITP workshop: Impact on low energy measurements Current QWEAK, PVDIS, and APV cesium experiments:

$$\begin{pmatrix} \delta g_{AV}^{eu} \\ \delta g_{AV}^{ed} \\ 2\delta g_{VA}^{eu} - \delta g_{VA}^{ed} \end{pmatrix} = \begin{pmatrix} 0.74 \pm 2.2 \\ -2.1 \pm 2.5 \\ -39 \pm 54 \end{pmatrix} \times 10^{-3}$$

Projections from combined P2, SoLID, and APV radium experiments:

$$\begin{pmatrix} \delta g_{AV}^{eu} \\ \delta g_{AV}^{ed} \\ 2\delta g_{VA}^{eu} - \delta g_{VA}^{ed} \end{pmatrix} = \begin{pmatrix} 0 \pm 0.70 \\ 0 \pm 0.97 \\ 0 \pm 7.4 \end{pmatrix} \times 10^{-3}$$

$$\mathcal{L}_{\text{wEFT}} \supset -\frac{1}{2v^2} \sum_{q=u,d} g^{eq}_{AV} (\bar{e}\,\bar{\sigma}_{\rho}e - e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q + q^c\sigma^{\rho}\bar{q}^c) -\frac{1}{2v^2} \sum_{q=u,d} g^{eq}_{VA} (\bar{e}\,\bar{\sigma}_{\rho}e + e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q - q^c\sigma^{\rho}\bar{q}^c)$$

AA, Grilli Di Cortona, Tabrizi 1802.08296

AA, Gonzalez-Alonso in progress

Three PV experiments with three different probes for new physics

DarkMesa: beam dump experiment, search for dark photon

Magix: Magnetic spectrometer and Cluster Jet target (selection of topics)

1.02

1.01

0.99

0.98

0.97

0.96

1e-05

efficiency, ...

G_E and Proton Radius, projected stat. errors

MAGIX E = 20 MeV

MAGIX E = 45 MeV

MAGIX E = 105 MeV

Bernauer (Mainz 2010)

0.0001

Dominated by systematic error

Windowless target, negligible

background, high resolution, high

Coverage from Q2 = 1.10-5 to 0.03

0.001

Xiong (JLab 2019)

Data until 1980

 $GeV^2 \Rightarrow proton radius!$

0.01

Nuclear Astrophysics, S-Factor measurement

¹²C + $\alpha \rightarrow$ ¹⁶O + γ :

one of most important reactions to describe nucleosynthesis in burning of a star:

MESA Physics program

36

Summary and outlooK

- MAMI beam and experiment resultrs
- Diverse past and future program at MAMI with results at A1 and A2 (only small fraction in this talk, Hypernuclei, Pion transition FF in virtual Primakoff kinematics, FF ...)
- Test beam at MAMI for MESA detectors and accelerator components instrumental
- Construction of MESA accelerator and MESA experiments MAGIX, P2, DarkMESA continuing successfully
- Exciting experimental program at MESA in nuclear, hadron and particle physics
- Staged approach for construction, commissioning and first measurements with MESA experiments
- Very rich results expected from all MESA experiments
- First experiments Q1/2025