Future Studies of Dihadron Production in SIDIS

• Kinematics and Cross Section for SIDIS Dihadrons

- Distribution and Fragmentation Functions
- Partial Waves, Vector Mesons, Fracture Functions
- Ongoing and Future Studies

Disclaimer: Focusing on CLAS and ePIC

 $e^{-}(\ell) + p(P) \rightarrow e^{-}(\ell') + h_1(P_1) + h_2(P_2) + X$

Dihadron Kinematics

Inclusive:

$$x_B = \frac{Q^2}{2P \cdot q}, \quad y = \frac{P \cdot q}{P \cdot l}$$
$$\gamma = \frac{2Mx_B}{Q}$$

 ϕ_h , ϕ_R , and θ figures produced from CD, c-dilks/diagrams (Github repository) ϕ_s figure adapted from A. Bachetta, et al., Phys.Rev.D 70 (2004) 117504

Dihadrons:

momentum: $P_h = P_1 + P_2$ kinematics: M_h , z, p_T angles: ϕ_h , ϕ_R , ϕ_S , θ

Dihadron Kinematics

Azimuthal modulations of cross section (and asymmetries)

$$f\left(\phi_{h},\phi_{R_{\perp}},\phi_{S}\right)$$

 ϕ_h , ϕ_R , and θ figures produced from CD, c-dilks/diagrams (Github repository) ϕ_s figure adapted from A. Bachetta, et al., Phys.Rev.D 70 (2004) 117504

Dihadron Kinematics

Azimuthal modulations of cross section (and asymmetries)

$$f\left(\phi_h,\phi_{R_\perp},\phi_S\right)$$

Partial Wave Expansion

$$P_{\ell,m}\left(\cos\theta\right)$$

 ϕ_h , ϕ_R , and θ figures produced from CD, c-dilks/diagrams (Github repository) ϕ_s figure adapted from A. Bachetta, et al., Phys.Rev.D 70 (2004) 117504

Dihadron Structure Functions → TMD PDF x DiFF

Beam and Target Polarization: $X, Y \in \{U, L, T\}$

Modulations:

 $P_{\ell,m}(\cos\theta) f(\phi_h, \phi_{R_\perp}, \phi_S)$

Dihadron Structure Functions \rightarrow **TMD PDF x DiFF**

Twist 3

Target Polarization

Target Polarization

Twist 2

		U	L	Т
n Polarization	U	$\begin{array}{c} f_1 D_1 \\ h_1^{\perp} H_1 \end{array}$	$\begin{array}{c} h_{1L}^{\perp}H_1\\ g_{1L}G_1 \end{array}$	$egin{array}{c} f_{1T}^{\perp}D_1 \ g_{1T}G_1 \ h_1H_1 \ h_{1T}^{\perp}H_1 \end{array}$
Bea	L	f_1G_1	$g_{1L}D_1$	$g_{1T}D_1$ $f_{1T}^{\perp}G_1$

Bacchetta, Alessandro, and Marco Radici. "Partial-Wave Analysis of Two-Hadron Fragmentation Functions." Physical Review D 67, no. 9 (May 6, 2003): 094002. https://doi.org/10.1103/PhysRevD.67.094002.

Bacchetta, Alessandro, and Marco Radici. "Two-Hadron Semi-Inclusive Production Including Subleading Twist." Physical Review D 69, no. 7 (April 27, 2004): 074026. https://doi.org/10.1103/PhysRevD.69.074026.

Gliske, Stephen, Alessandro Bacchetta, and Marco Radici. "Production of Two Hadrons in Semi-Inclusive Deep Inelatic Scattering." Physical Review D 90, no. 11 (December 23, 2014): 114027. https://doi.org/10.1103/PhysRevD.90.114027. Beam Polarization

	U	\mathbf{L}	Т			
U	$hH_1 f_1\tilde{D}$	$h_L H_1 \ g_{1L} \tilde{G}$	$f_T D_1 h_1 \tilde{H}$			
	$f^{\perp}D_1 \ h_1^{\perp}\tilde{H}$	$f_L^{\perp} D_1 \ h_{1L}^{\perp} \tilde{H}$	$h_T H_1 g_{1T} \tilde{G}$			
			$h_T^\perp H_1 \ f_{1T}^\perp \tilde{D}$			
			$f_T^\perp D_1 \ h_{1T}^\perp \tilde{H}$			
\mathbf{L}	$eH_1 f_1\tilde{G}$	$e_L H_1 g_{1L} \tilde{D}$	$g_T D_1 h_1 \tilde{E}$			
	$g^{\perp}D_1 \ h_1^{\perp}\tilde{E}$	$g_L^\perp D_1 \ h_{1L}^\perp \tilde{E}$	$e_T H_1 g_{1T} \tilde{D}$			
			$e_T^\perp H_1 \ f_{1T}^\perp \tilde{G}$			
			$g_T^\perp D_1 \ h_{1T}^\perp \tilde{E}$			
	1					

Jefferson Lab

• Kinematics and Cross Section for SIDIS Dihadrons

Distribution and Fragmentation Functions

• Partial Waves, Vector Mesons, Fracture Functions

Ongoing and Future Studies

Transverse Momentum Dependent (TMD) PDFs

Figure from S.J. Brodsky, et al., Int.J.Mod.Phys.E 29 (2020) 08, 2030006

- TMD PDFs from previous slide are all twist-2
- Probabilistic interpretations
- Quark-quark correlators
- PDFs and FFs are better constrained

<u>Twist 3</u> ("Sub-leading Twist")

- Harder to interpret probabilistically
- Semi-classical interpretation via x-moments
- Multi-parton correlators
- Not as well known

There is also Twist 4 and beyond

◆ JLab kinematic phase space is *ideal* for studying subleading-twist effects

Semi-classical interpretation via x-moments

e(x)

- Pion-nucleon σ term: $m_{q} \rightarrow m_{N}$
- "Boer-Mulders Force": <u>Transverse force</u> exerted by color field on a transversely polarized struck quark in an unpolarized nucleon

M. Burkardt, Phys.Rev.D 88 (2013) 114502

g_T(x)

Average <u>transverse force</u> on an **unpolarized** struck quark in a **transversely** polarized nucleon

M. Abdallah, M. Burkardt, Phys.Rev.D 94 (2016) 9, 094040

h_L(x)

Average longitudinal <u>gradient</u> of the <u>transverse force</u> on a **transversely** polarized struck quark in a **longitudinally** polarized nucleon

$$\mathcal{L}^q_{\rm JM} - L^q_{\rm Ji} = \Delta L^q_{\rm FSI}$$

Expressible in terms of the change in quark OAM as it leaves the target

- M. Abdallah, M. Burkardt, Phys.Rev.D 94 (2016) 9, 094040
- M. Burkardt, Phys.Rev.D 66 (2002) 114005
- P.J. Mulders, R.D. Tangerman, Nucl.Phys.B 461 (1996) 197-237

CLAS Beam Spin Asymmetry \rightarrow e(x) Extraction

Flavor Separation from Different Targets

2 equations and 2 unknowns: decouple flavor dependence of e(x)

$e^{u_V}(x)$ $e^{d_V}(x)$

CLAS12 Analysis in Progress CD, Transversity 2022

C. Dilks, SIDIS Dihadrons

Dihadron Fragmentation Functions (DiFFs)

Twist 3

Thought to be small... see, for example:

W. Yang, et al., Phys.Rev.D 99 (2019) 5, 054003S. Pereira, PoS DIS2014 (2014) 231A. Courtoy, e-Print: 1405.7659 [hep-ph]

T.B. Hayward, C. Dilks, et al., Phys.Rev.Lett. 126 (2021) 152501

Jefferson Lab

X. Luo, H. Sun, Y.L. Xie, Phys.Rev.D 101 (2020) 5, 054020

 $\begin{aligned} |\pi^{+}\pi^{-}X\rangle &= e^{i\delta_{s}}|(\pi\pi)_{s}X\rangle + e^{i\delta_{p}}|(\pi\pi)_{p}X\rangle + \dots \\ \text{Partial Wave} \quad & f_{s} \propto \sin \delta_{s} \\ \text{Amplitudes:} \quad & f_{p} \propto \sin \delta_{p} \qquad f_{sp} \propto \sin(\delta_{s} - \delta_{p}) \end{aligned}$ "s- and *p*-wave production channels interfere strongly in the mass region around the *p*, *K**, and *φ* resonances"

R.L. Jaffe, Can Transversity Be Measured? 2nd Topical Workshop on Deep Inelastic Scattering off Polarized Targets: Theory Meets Experiment (SPIN 97)

C. Dilks, SIDIS Dihadrons

• Kinematics and Cross Section for SIDIS Dihadrons

- Distribution and Fragmentation Functions
- Partial Waves, Vector Mesons, Fracture Functions

Ongoing and Future Studies

Partial Waves

• Expand DiFFs into spherical harmonics

 Correlations of angular momentum of dihadrons with that of fragmenting quark

• Infinitely many terms (typically truncate $\ell \le 2$)

 $|2,2\rangle$

TT

m = +2

Image from Wikipedia: Spherical Harmonics

Bacchetta, Alessandro, and Marco Radici. "Partial-Wave Analysis of Two-Hadron Fragmentation Functions." Physical Review D 67, no. 9 (May 6, 2003): 094002. https://doi.org/10.1103/PhysRevD.67.094002.

Gliske, Stephen, Alessandro Bacchetta, and Marco Radici. "Production of Two Hadrons in Semi-Inclusive Deep Inelatic Scattering." Physical Review D 90, no. 11 (December 23, 2014): 114027. https://doi.org/10.1103/PhysRevD.90.114027.

C. Dilks, SIDIS Dihadrons

CLAS12 Partial Waves in Beam Spin Asymmetries

Jeff

Vector Meson Contributions

CD, Transversity 2022

Current and Target Fragmentation Region Correlations

Fracture Functions:

- Conditional probability to produce a target-fragmentation hadron
- Similar to TMDs, different fracture functions for different combinations of guark and nucleon polarizations

See T. Hayward's talk

Exploring fracture functions with semi-inclusive target- and doublespin asymmetries in the target fragmentation region with CLAS12

0.1

0.3

 $P_{T1}P_{T2}$ (GeV²)

0.4

0.5

0.6

0.2

-0.08

0.0

• Kinematics and Cross Section for SIDIS Dihadrons

- Distribution and Fragmentation Functions
- Partial Waves, Vector Mesons, Fracture Functions
- Ongoing and Future Studies

CLAS12 Opportunities with a Longitudinally Polarized Target

Target Spin Asymmetry Aul

- Access twist-3 distribution $h_{L}(x)$
- Kotzinian-Mulders (wormgear) TMD PDF
- Other twist-3 TMDs (or at least their integrals)?

Double Spin Asymmetry ALL

- Unpolarized DiFF D₁ partial waves
 - cf. access from multiplicity modulations
- Constrain twist-3 DiFFs
 - Maybe small; needed for e(x) and $h_{L}(x)$ extraction
 - Additional leverage from A_{LU} / A_{UL}

TFR/CFR Correlations (DSIDIS)

More Fracture Functions

h_L(x)

Average longitudinal <u>gradient</u> of the <u>transverse force</u> on a **transversely** polarized struck quark in a **longitudinally** polarized nucleon

$$\mathcal{L}^q_{\rm JM} - L^q_{\rm Ji} = \Delta L^q_{\rm FSI}$$

Expressible in terms of the change in quark OAM as it leaves the target

- M. Abdallah, M. Burkardt, Phys.Rev.D 94 (2016) 9, 094040
- M. Burkardt, Phys.Rev.D 66 (2002) 114005
- P.J. Mulders, R.D. Tangerman, Nucl.Phys.B 461 (1996) 197-237

See G. Matousek's talk:

Spin observables in Deep Processes with CLAS12 at Jefferson Lab

H. Avakian, C. Dilks, O. Soto, et al., E12-09-007A (PAC 48 Proposal)

C. Dilks, SIDIS Dihadrons

Opportunities with Future Experiments: CLAS at 22 GeV

- CLAS has the ideal phase space for studying twist-3 effects: e(x), $h_{L}(x)$, $g_{T}(x)$
 - Especially asymmetries that require a *longitudinally* polarized electron beam
- Improve overlap in the region between EIC and CLAS12
 - Wide range in Q^2 and p_T combined with high luminosity and superior resolution
 - Evolution studies, complementary to other experiments

Sep 29, 2023, 5:00 PM

Novel permanent magnet

New 650 MeV

650 MeV

recirculating injector

number of passes

New FFA arcs to increase

Opportunities with Future Experiments: Electron-Ion Collider (EIC)

- A_{UT} and A_{UL} at higher Q^2 and lower $x \rightarrow$ evolution studies
 - Transversity, Sivers, $h_{L}(x)$, DiFF partial waves, and more
 - Back-to-back suppression in *ep* vs. *eA*: probe saturation effects

Complementary between all the experiments is critical to continue to broaden our understanding of the nucleon (and nuclei)

Proton Spin at EIC

📰 Sep 25, 2023, 4:00 PM

The ePIC Detector and Physics

B. Schmookler

🧱 Sep 28, 2023, 12:00 PM

Measuring Transversity in Di-Hadron Correlations with the ePIC Detector

📰 Sep 28, 2023, 7:00 PM

S. Reiman

Dihadron Impact on Transversity at the EIC

x h₁(x)

▲(Pavia18+EIC)/▲(Pavia18)

- Complementary to single-hadron SIDIS and hadrons in jets
- Complementarity reduces systematic uncertainties overall
- Additional advantages from dihadrons:
 - Expect little contribution from twist-3 FFs
 - Acceptance effects tend to "average out" between the two hadrons, which is especially good for F_{UU} measurements (Boer-Mulders function)

Transversity

0.6 Pavia18 Pavia18 + EIC (ep) 0.8 0.4 Pavia18 + EIC (ep + $e^{3}He$) J 0.6 0.2 U 0.4 0.2 -0.4 -0.3-0.2-0.1 0.0 δd d -0.2cf. single-1.2 U I I ^I hadron impact 🚽 1.0 Ŧ ΞŦ Ŧ p*Q*−n*Q* = 0.6 lattice 0.5 Phys.Lett.B 816 (2021) 136255 0 δd 6 0.4 Pavia18 + EICPavia18 + EIC (ep) JAM20 0.5 0.2 Pavia18 + EIC (ep + e³He) +SoLID +EIC+SoLID 00 10^{-2} [1] [2] [3] [4] [5] [6] [7] [8] 10-3 10^{-1} -0.10**EIC Yellow Report** $0.75\,0.85\,0.95\,1.05$ X -0.15Alexandrou et al (2019)

1.0

Tensor Charge $\delta q = \int_{-1}^{1} dx h(x) = \int_{0}^{1} dx \left[h(x) - \bar{h}(x) \right]$

 $h_1 =$

0.75

Gupta et al (2018

 $\overline{{}^{0.80}}\,oldsymbol{\delta} oldsymbol{u}$

-0.20

0.65

0.70

Dihadron Impact on Transversity

Need for New Data

- Unpolarized data for di-hadron production in SIDIS and pp collision would help to constrain $D_1^{\pi^+\pi^-/a}$
- (Precise) data for A_{UT} at any x would better constrain $h_1^{q_v}(x)$, $h_1^{ar q}(x)$
- For the tensor charge δq , (new) data for $x\gtrsim 0.2$ seems most important

From <u>A. Metz's talk:</u>

New Developments in Di-Hadron Theory and Phenomenology

(Andreas Metz, Temple University)

Dihadron Impact on Collinear Twist-3 e(x) at the EIC

- e(x) is accessible in beam spin asymmetry A_{LU}
- Cleaner access in dihadrons, compared to single-hadron SIDIS (which involves additional unknowns)
- \bullet Caveat: depolarization for A_{LU} favors high y

A. Courtoy, et al., Phys.Rev.D 106 (2022) 1, 014027

Jefferson Lab

Dihadron Impact on Collinear Twist-3 $g_{T}(x)$ at the EIC

- $g_{T}(x)$ is also accessible in double spin asymmetry A_{LT} in semi-inclusive dihadrons
 - Caveat: depolarization for A_{LT} favors high y...

Dihadrons for Gluon Saturation at the EIC

- \bullet Away-side peak in $\Delta \phi$ de-correlates when non-linear QCD effects set in
- Sensitive to gluon TMDs
- Measure suppression J_{eAu}, the relative e+Au to e+p back-to-back dihadron yields
 - Scaled by A^{1/3}
 - J_{eAu} ~1 if no collective nuclear effects

Asymmetries & Multiplicity

(different combinations of PDFs and DiFFs)

Vector Mesons (Spin-1 effects)

Partial Waves

(Spin/Orbit effects in Fragmentation)

TFR / CFR Correlations (Fracture Functions)

Dihadron Channels

(DiFFs for each Hadron Pair)

Proton vs. Deuteron Target

(Flavor separation of PDFs)

... and so much to learn!

		Quark polarization				
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
Nucleon Polarization	U	$f_1 = \bigcirc$	*	$h_1^\perp = (\dagger - 4)$		
	L	*	$g_1 = -$	$h_{1L}^{\perp} = {} \bullet - {} \bullet$		
	т	$f_{1T}^{\perp} = \underbrace{\bullet}^{\bullet} - \underbrace{\bullet}_{\dagger}$	$g_{1T} = \stackrel{*}{\underbrace{\bullet}} - \stackrel{*}{\underbrace{\bullet}}$	$h_1 = \overset{\bullet}{\underbrace{}} - \overset{\bullet}{\underbrace{}}$		
				$h_{1T}^{\perp} = \bigodot \ - \ \bigodot$		

e

 h_L

Ν

Ν

... and possibly more to discover

Ν

