Spin Structure Program at Jefferson Lab

Jian-ping Chen, Jefferson Lab, Virginia, USA

SPIN 2023, Duke University, Sept. 24-29, 2023

- Introduction
- Highlights of JLab12 Spin Program
 - Spin structure in valence region A1n@high-x in Hall C A1p@high-x: RGC@CLAS12
 - quark-gluon correlations, twist-3 matrix element

d2n@medium-high Q² in Hall C

Spin Moments (Sum Rules and Polarizabilities) at Low-Q²

Proton:g2p@Hall A (T) and EG4@Hall B (L)Neutron:SAGDH@Hall A with pol. ³He (both L/T)Bjorken (p-n)Sum and (Effective) Strong Coupling

Summary

Acknowledgment: Thanks to X. Zheng, M. Chen, B. Sawasky, J. Chen, A. Deur, K. Slifer, S. Kuhn, P. Pandey and collaborators for the work in this talk and for providing slides

Introduction

Nucleon Spin Structure and Strong Interaction,

Nucleon Structure and Strong Interaction/QCD

- Nucleon Structure: discoveries
 - -- anomalous magnetic moment (1943 Nobel)
 - -- elastic: form factors (1961 Nobel)
 - -- DIS: parton distributions (1990 Nobel)
 - Strong interaction, running coupling ~1 -- asymptotic freedom (2004 Nobel) perturbation calculation works at high energy
 - -- interaction significant at intermediate energy, quark-gluon correlations
 - -- interaction strong at low energy confinement
- A major challenge in fundamental physics:
 -- Understand QCD in all regions, including strong (confinement) region
- Nucleon: most convenient lab to study QCD
- Theoretical Tools:
 pQCD, Lattice QCD, χEFT, Sum Rules, ...

running coupling "constant"

UNPOLARIZED STRUCTURE FUNCTIONS

POLARIZED STRUCTURE FUNCTIONS

0.4

0.3

0.2

0.1 0.0

-0.1

PDG (online 2023)

Nucleon Spin Structure Study

- 1980s: EMC (CERN) + early SLAC quark contribution to proton spin is very small $\Delta \Sigma = (12+-9+-14)\% !$ 'spin crisis'
- 1990s-2000s: SLAC, SMC (CERN), HERMES (DESY) $\Delta\Sigma = 20-30\%$, the rest: gluon and quark orbital angular momentum $(\frac{1}{2})\Delta\Sigma + Lq + \Delta G + L_G = 1/2$ gauge invariant $(\frac{1}{2})\Delta\Sigma + Lq + J_G = 1/2$ Bjorken Sum Rule verified to <10% level
 - 2000s-2010s: COMPASS (CERN), HERMES (DESY), RHIC-Spin, JLab, ...:
 ΔΣ ~ 30%; ΔG contributes, orbital angular momentum significant
 Needs full spin-flavor separation: valence quarks and sea quarks
 spin moments (sum rules/polarizabilities) → test of QCD theoretic approaches

Reviews: Sebastian, Chen, Leader, arXiv:0812.3535, PPNP 63 (2009) 1; Chen, arXiv:1001.3898, IJMPE 19 (2010) 1893; ...

Summary of Spin Experiments

Observable	H target	D target	³ He target	
g_1, g_2, Γ_1 & Γ_2	SLAC	SLAC	SLAC	JLab12
at high Q^2			JLAB E97-117	A1n
	JLAB SANE		JLAB E01-012	d2n BCC
			JLAB E06-014	RUC
$g_1 \And \Gamma_1$ at high Q^2	SMC	SMC		
	HERMES	HERMES	HERMES	RHIC-Spir
	JLAB EG1	JLAB EG1		
Γ_1 & Γ_2 at low Q^2	JLab RSS	JLab RSS	JLab E94-010	
			JLab E97-103	
Γ_1 at low Q^2	SLAC	SLAC		
	HERMES	HERMES	HERMES	
	JLAB EG1	JLAB EG1		
$\Gamma_1, Q^2 << 1 \mathrm{GeV}^2$	JLab EG4	JLab EG4	JLab E97-110	
$\Gamma_2, Q^2 << 1 \text{ GeV}^2$	JLab E08-027		JLab E97-110	SAGUN
-	gzp			-

Highlights of JLab12 Spin Program I Spin Structure in Valence Quark Region

- Preliminary results from A1n(³He)@high-x: spin structure in valence region
- Overview of RGC@CLAS12: A1p (A1d) @high-x spin structure with longitudinally polarized p and d

A₁ at High-x: World Data

a clean domain where QCD (and many other models) can make predictions for (the ratio of) structure functions

Pratios of pol/unpol pdfs at $x \rightarrow 1$ provide unambiguous, scale invariant, non-perturbative features of QCD

Simple Spin-flavor Decomposition at High-x

Reaching Deeper Valence Quarks Region with 12 GeV

Hall C A₁ⁿ Kinematics

CLAS12 Kinematics

RGC@CLAS12 with Longitudinally Polarized proton/deuteron Targets P. Pandey

RGC scheduled for 9 calendar months (240 calender days), data collected for 190 days, 80% of allotted beam time.

Collected data from 06/11/2022 to 03/20/2023 with some breaks due to Magnet power supply failure (firmware issue) and configuration changes.

Proposal ID	Title		
E12-06-109	Longitudinal Spin Structure of the Nucleon		
E12-06-109A	DVCS on the Neutron with Polarized Deuterium Target		
E12-06-119(b)	DVCS on Longitudinally Polarized Proton Target		
E12-07-107	Spin-Orbit Correlations with Longitudinally Polarized Target		
E12-09-007(b)	Study of Partonic Distributions using SIDIS K Production		
E12-09-009	Spin-Orbit Correlations in K Production with Polarized Targets		

See G. Matousek's talk

A1n@High-x: E12-06-110 in Hall C

X. Zheng's talk

Spokespersons: X. Zheng, G. Cates, J. P. Chen, Z. E. Meziani Ph.D Students: M. Chen, M. Rehfuss

30 uA, 85% polarized 10.4 GeV electron beam 40 cm L/T polarized ³He with in-beam polarization reach up to 60% (average ~ 50-55%)

luminosity (2x10³⁶ cm⁻²s⁻¹) and FOM are

a factor of 2 improved over the world record

Further improvement for the ongoing GEn experiment, See C. Jantzi and A. Tadeoalli's talks

A1n@High-x: Preliminary Results

$$A_1 = \frac{A_{\parallel}}{D(1+\eta\xi)} - \frac{\eta A_{\perp}}{d(1+\eta\xi)}$$

with DIS W>2 GeV cut

Credit to Mingyu Chen (UVA)

Highlights of JLab12 Spin Program II Spin Moments @ Intermediate Q²

Preliminary results from d2n(³He) in Hall C: twist-3 matrix element → quark-gluon correlations (color polarizability/color Lorentz force)

6 GeV Results for d2 Moment

10.

Dynamic twist-3 matrix element

```
\int_0^1 x^2 \{2g_1 + 3g_2\} dx = d_2
```

0.03 MIT Bag O Lattice 0.025 CM Bag SLAC 83 Chiral Soliton RSS 0.02 Sum Rules SANE O² = 2.8 GeV² 42 • SANE $Q^2 = 4.3 \text{ GeV}^2$ ······ elastic ٠ 0.015 0.01 0.005 0 -0.005-0.012.5 3.5 2 3 1.5 4.5 5 5.5 4 $Q^2 [GeV^2]$ Proton from SANE, PRL 122, 022002 (2019)

Interpretations of d_2

- Color Polarizabilities (X.Ji 95, E. Stein et al. 95)
- Average Color Lorentz force (M.Burkardt)

proton

12 GeV d₂ⁿ: Color Polarizability/Lorentz Force

Spokesmen: T. Averett, W. Korsch, Z.-E. Meziani, B. Sawatzky PhD Students: J. Chen, M. Roy

- Measurement of g₁ and g₂ structure functions and d₂ moments at 3 GeV² < Q² < 5.5 GeV² for the neutron using a polarized ³He target
- Study quark-gluon correlations (twist-3) and provide a benchmark test of LQCD calculations.
- Completed data taking in 2020

Preliminary Results on g2n

Spin Sum Rules and Q² dependence

Sum RulesNucleon Structure ←→Global Propertiesmass, spin, magnetic moment, polarizabilities, ...

How the structure is related (gives rise) to the global properties? How the global properties emerging from the structure?

→ Help understand Strong QCD

GDH Sum Rule and Generalization

Circularly polarized photon on longitudinally polarized nucleon

$$\int_{v_{in}}^{\infty} \left(\sigma_{1/2}(v) - \sigma_{3/2}(v) \right) \frac{dv}{v} = -\frac{2\pi^2 \alpha_{EM}}{M^2} \kappa^2$$

- A fundamental relation between the nucleon spin structure and its anomalous magnetic moment
- Based on general physics principles
 - Lorentz invariance, gauge invariance \rightarrow low energy theorem
 - unitarity \rightarrow optical theorem
 - casuality → unsubtracted dispersion relation applied to forward Compton amplitude
 - Generalized GDH Sum Rule. (Ji and Osborne (J. Phys. G27, 127, 2001): Compton Amplitude S_1

$$S_1(Q^2) = 4 \int_{el}^{\infty} \frac{G_1(Q^2, v) dv}{v}$$

Bjørken Sum Rule

$$\Gamma_1^p(Q^2) - \Gamma_1^n(Q^2) = \int \{g_1^p(x,Q^2) - g_1^n(x,Q^2)\} dx = \frac{1}{6}g_A C_{NS}$$

 $\begin{array}{ll} g_A: & \mbox{axial charge (from neutron β-decay)} \\ C_{NS}: & Q^2\mbox{-dependent QCD corrections (for flavor non-singlet)} \end{array}$

- A fundamental relation relating an integration of spin structure functions to axial-vector coupling constant (axial charge)
- Based on Operator Product Expansion within QCD or Current Algebra
- Valid at large Q² (higher-twist effects negligible)
- Data are consistent with the Bjørken Sum Rule at 5-10 % level

Connecting GDH with Bjorken Sum Rules

- Q²-evolution of GDH Sum Rule provides a bridge linking strong QCD to pQCD
 - Bjorken and GDH sum rules are two limiting cases

High Q², Operator Product Expansion : $S_1(p-n) \sim g_A \rightarrow Bjorken$ Q² $\rightarrow 0$, Low Energy Theorem: $S_1 \sim \kappa^2 \rightarrow GDH$

- High Q² (> ~1 GeV²): Operator Product Expansion
- All Q² region: Lattice QCD calculations
- Low Q² region (< ~0.1 GeV²): Chiral Effective Field Theory (χ EFT)

Calculations: $B\chi PT$: Ji, Kao,...,Vanderhaeghen,...

Lensky, Alarcon & Pascalutsa

Bernard, Hemmert, Meissner

Spin Polarizabilities Sum Rules

Spin polarizability sum rules involve higher moments:

Generalized forward spin polarizability:

$$\gamma_0 = \frac{4e^2M^2}{\pi Q^6} \int x^2 (g_1 - \frac{4M^2}{Q^2} x^2 g_2) dx$$

Longitudinal-Transverse polarizability:

$$\delta_{LT} = \frac{4e^2 M^2}{\pi Q^6} \int x^2 (g_1 + g_2) dx$$

We do not know how to measure directly generalized spin polarizabilities. The spin polarizability sum rules are used to access them. They can be calculated with χEFT and Lattice QCD

News: Lattice QCD started calculations with 4-point functions on polarizabilities F. Lee *et al.* (U. George Washington); X. Feng *et al.* (Peking U.)

Low-Q Spin Experiments @ JLab

- Hall B EG4: proton g₁: Spokespeople: M. Ripani, M. Battaglieri, A. Deur, R. de Vita Students: H. Kang, K. Kovacs
 X. Zheng et al., Nature Physics, vo. 17 736-741 (2021)
- Hall A g2p: proton g₂: Spokespeople: K. Slifer, J. P. Chen, A. Camsonne, D. Crabb Students: D. Ruth, R. Zielinski, C. Gu, M. Allada (Cummings), T. Badman, M. Huang, J. Liu, P. Zhu D. Ruth et al, Nature Physics 18, 1441 (2022)
- Hall A SAGDH: neutron g₁ and g₂ with L/T polarized ³He

Spokespeople: J. P. Chen, A. Deur, F. Garibaldi.

Students: V. Sulkosky, C. Peng, J. Singh, V. Laine, N. Ton, J. Yuan.
V. Sulkosky et al., Nature Phys., 17 687 (2021)
V. Sulkosky et al., PLB 805 135428 (2020)

Combining EG4 and SAGDH to form Bjorken Sum: A. Deur et al., Phys. Lett. B 825 (2022) 136878Extracting effective coupling a_{g1} :A. Deur, et al., Particles, 5-171 (2022)

Talk by A. Deur on Wednesday Low-Q workshop at Crete, Greece, May 2023 (https://sites.temple.edu/lowq/) Measurement of Low-q Spin Sum Γ_1 and Γ_2 for proton and neutron

Testing χEFT and study strong QCD

X. Zheng et al., Nature Physics, 17, 736-741 (2021) V. Sulkosky et al., Physics Letter B 805, 135428 (2020)

Previous world Γ_1 data before low-Q experiments

Proton

Neutron

Precise mapping of spin structure function moments in intermediate Q^2 region PQCD, models and data agree. How about χEFT predictions? Not clear.

EG4: new low-Q data on Γ_1 for proton

A. Deur's talk

nature physics

Explore content 👻 About the journal 👻 Publish with us 🛩

nature > nature physics > articles > article

Article | Published: 12 April 2021

Measurement of the proton spin structure at long distances

•Slight tension between EG4 and EG1 above $Q^2 \sim 0.1$ GeV².

•EG4 and χEFT agree up to $Q^2 \sim 0.04 \ GeV^2$ (Bernard et al) or $Q^2 > 0.2 \ GeV^2$ (Alarcón et al.)

• Phenomenological models (Pasechnik et al, Burkert-Ioffe) agree well.

SAGDH: new low-Q data on Γ_1 for neutron

V. Sulkosky et al., Physics Letter B 805, 135428 (2020)

Measurement of the ³He spin-structure functions and of neutron (³He) spindependent sum rules at $0.035 \le Q^2 \le 0.24$ GeV²

• E97-110 agree with existing data at larger Q^2 (EG1b, E94-010).

•E97-110 and χEFT agree up to $Q^2 \sim 0.06 \text{ GeV}^2$ (Bernard et al) or $Q^2 > 0.08 \text{ GeV}^2$ (Lensky et al.) •Some phenomenological models (Burkert-Ioffe) agree well with data, other (MAID, Pasechnik et al) not as much.

Generalized Spin Polarizibilities: γ_0 and δ_{LT}

Testing χEFT and study strong QCD

X. Zheng et al., Nature Physics, 17, 736-741 (2021) V. Sulkosky et al., Nature Physics, 17, 736-741 (2021) D. Ruth et al, Nature Physics 18, 1441 (2022)

Previous JLab spin polarizabilities data before low-Q experiments

Strong disagreement with χ EFT predictions available at that time: " δ_{LT} puzzle"

EG4 results on $\gamma_0^p(Q^2)$

A. Deur's talk

•χEFT result of Alarcón et al agrees with data.
 •Remard et al. xPT calculation agrees for lawest Ω²

•Bernard et al. χ PT calculation agrees for lowest Q² points.

Generalized forward spin polarizability γ_0^n from SAGDH

V. Sulkosky et al., Nature Physics, 17, 736-741 (2021)

nature physics

Explore content V About the journal V Publish with us V

<u>nature</u> > <u>nature physics</u> > <u>letters</u> > article

Letter Published: 31 May 2021

Measurement of the generalized spin polarizabilities of the neutron in the low- Q^2 region

- •E97-110 agree with older data at larger Q² (EG1b, E94-010). Maid disagrees with the data.
 •χEFT result of Alarcón et al disagrees with data.
- •Bernard et al. χ PT calculation agrees for lowest Q^2 points.

Generalized Interference Spin Polarizability δ_{LT} from SAGDH

- Good agreement with older data at larger Q^2 and with $\chi EFT \& MAID$ there.
- Disagreement at lower Q^2 (opposite trend)
- " $\delta_{LT}^n(Q^2)$ puzzle" remains!

δ_{LT} for Proton from g2p

D. Ruth et al, Nature Physics 18, 1441 (2022)

nature physics

Explore content v About the journal v Publish with us v

nature > nature physics > articles > article

Article Published: 13 October 2022

Proton spin structure and generalized polarizabilities in the strong quantum chromodynamics regime

• Comparisons with χEFT calculations: favor Alarcon *et al.*, strong disagreement with Bernard *et al.*

Bjorken Sum at Low-Q and Effective α_s

A. Deur, *et al.* Physics Letter B 825 (2022) 136878 A. Deur, V. Burkert, J. P. Chen and W. Korsch Particles, 5-171 (2022)

Bjorken Sum: Γ_1 of *p-n* (EG4 and SAGDH)

α_{g1} Extracted from the Bjorken Sum data

Bjorken sum Γ_{Γ}^{p-n} measurements

Effective Coupling and Impact

Featured as Cover Featured in JLab News https://phys.org/news/2022-08strength-strong.html Featured in YouTube <u>https://www.youtube.com/watch?v=8BT</u> <u>ZOz850GI&t=497s</u>

Base for understanding of emergence of hadron properties
Impact on: hadron spectroscopy
PDFs and GPDs
quark mass functions
pion decay constant
scale of QCD, Λs
QCD Phase/Hot QCD A. Deur, V. Burkert, J. P. Chen and W. Korsch Particles, 5-171 (2022)

Volume 5 - Issue 2 | June 2022

Summary and Outlook

• Highlights of Spin structure study @ JLab12:

Preliminary results on A1n @ high-x in Hall C: valence behavior Data taking complete for $A_1(p/D)$ @CLAS12

Preliminary results on d2n in Hall C: twist-3, q-g correlations, LQCD calculations

Generalized Spin Sum Rules/Polarizabilities

 \rightarrow clean means to study of QCD over full range of Q2

• Exciting results from 3 JLab low-Q spin experiments

 Γ_1 , Γ_2 , γ_0 , δ_{LT} for proton and neutron

results in 3 nature physics, 1 PRL, 1 PLB, + more

combined results (Bjorken sum) in 1 PLB, α_{g1} extraction in 1 Particle

- Extensive tests of χ EFT calculations Lattice QCD predictions becoming available
- Future: real photon GDH@Hall D, d2n@SoLID, ...

g2p2 (spin moments/d2p) proposal in Hall C Bjorken sum and α_s extraction @ JLab22 (A. Deur, JLab22 whitepaper)

SAGDH: new Γ_2 data for neutron: Burkhardt–Cottingham sum rule

E97-110 verifies the B-C sum rule at low Q^2 . Older experiments at higher Q^2 also verify it.

g2p: new Γ_2 data on proton: **BC** Sum Rule

