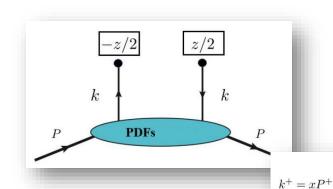
What are GPDs & how to access them in Lattice QCD?

Shohini Bhattacharya RIKEN BNL 29th September 2023

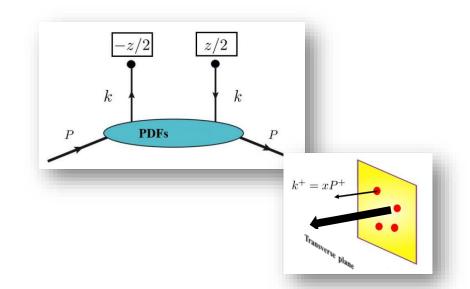
Duke University

Snapshots of the nucleons



Parton Distribution Functions

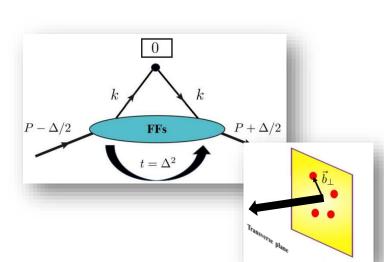
Snapshots of the nucleons



Form Factors

PDFs (x)

FFs (Δ)

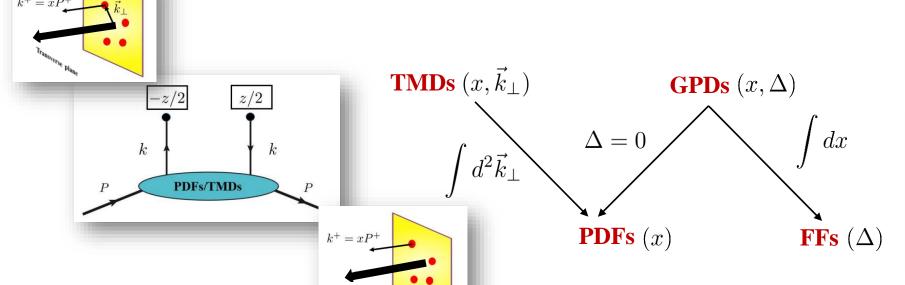


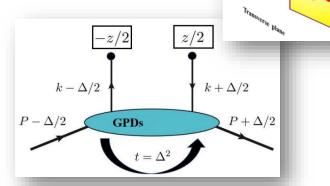
 $k^+ = xP^+$

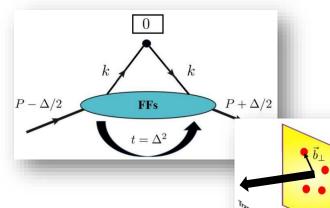
Snapshots of the nucleons

Generalized Parton Distributions

Transverse Momentum-dependent Distributions



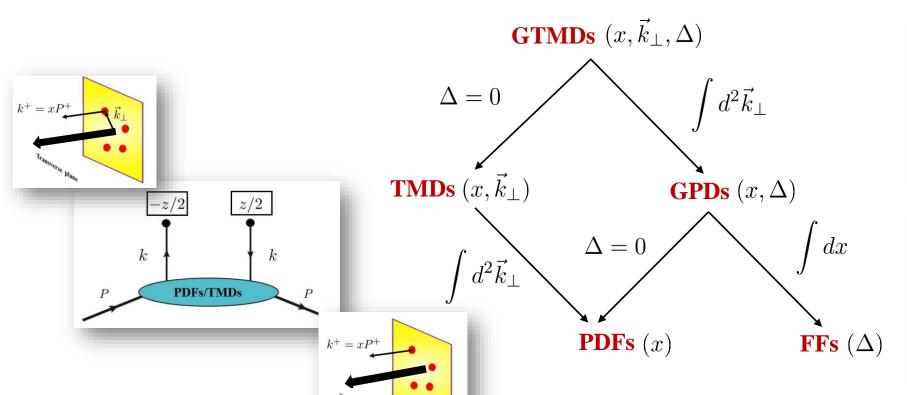


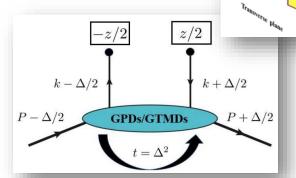


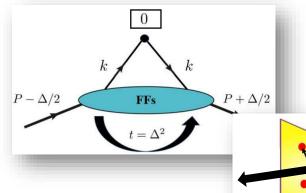
 $k^+ = xP^+$

Snapshots of the nucleons

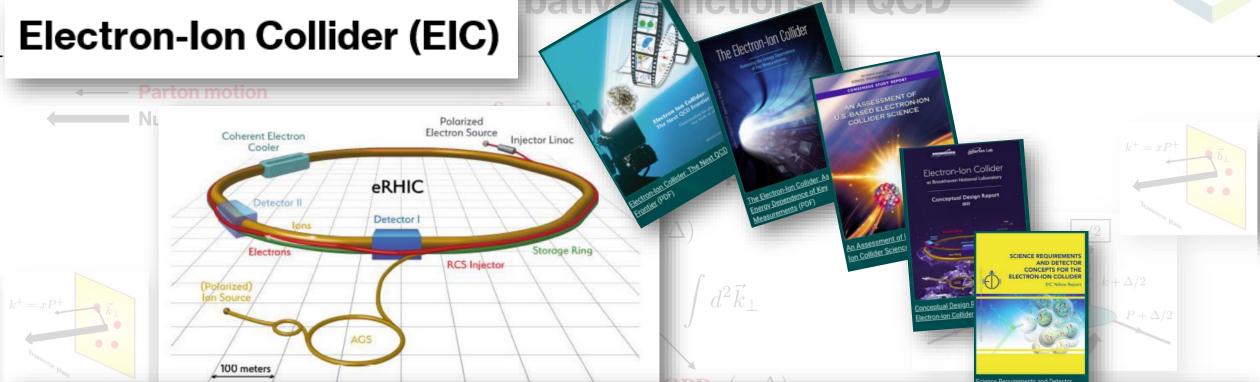
Generalized Transverse Momentum-dependent Distributions







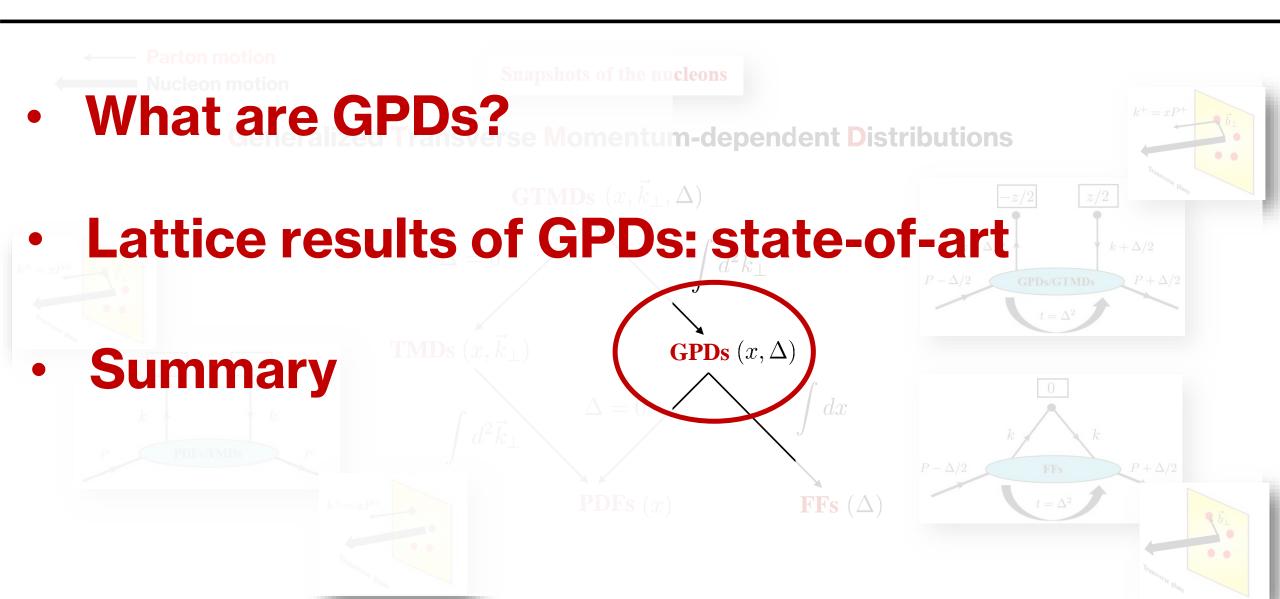
Efforts detailed in a decade worth of reports:



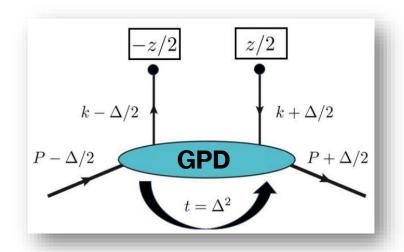
Nucleon tomography (mapping partonic distributions) is one of the major goals of the EIC

Lattice calculations can serve as a valuable complement to the ongoing efforts at the EIC

Non-per tratile etions in QCD



What are Generalized Parton Distributions?



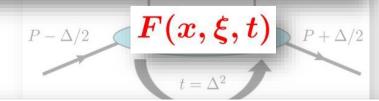
GPD correlator for quarks: Graphical representation

Definition of GPD correlator for quarks:

$$F^{[\Gamma]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p'; \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p; \lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

What are Generalized Parton Distributions?

Correlator parameterized in terms of GPDs



 $oldsymbol{x}$: "average" longitudinal momentum fraction carried by parton

 ξ : skewness parameter; longitudinal momentum transfer to nucleon

 $t\,$: momentum transfer squared

Definition of

$$F^{[\Gamma]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p'; \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p; \lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

Example:

What are Generalized Parton Distributions?

At twist 2 there are 8 GPDs

z/2

 $F(x, \xi, t)$

Twist-2 GPDs			
Γ Pol.	γ^+	$\gamma^+\gamma_5$	$i\sigma^{+j}\gamma_5$
U	H		E_T
Г		\widetilde{H}	\widetilde{E}_T
Т	E	\widetilde{E}	$H_T \widetilde{H}_T$

Definition of GPD correlator for quarks:

$$F^{[\Gamma]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p'; \lambda' | \bar{\psi}(-\frac{\xi}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p; \lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

entation

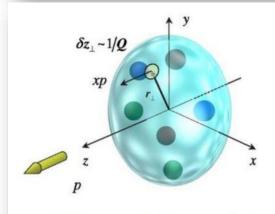
1)

3D imaging (Burkardt, 0005108 ...)

IMPACT PARAMETER SPACE INTERPRETATION FOR GENERALIZED PARTON DISTRIBUTIONS

MATTHIAS BURKARDT*

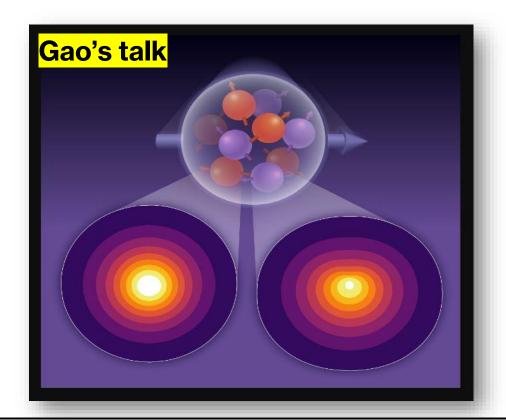
Department of Physics, New Mexico State University Las Cruces, New Mexico 88011, U.S.A. †



$$F(x,\xi=0,\Delta_{\perp}) \xrightarrow{\mathbf{F}\mathbf{J}} f(x,r_{\perp})$$

3D imaging (Burkardt, 0005108 ...)

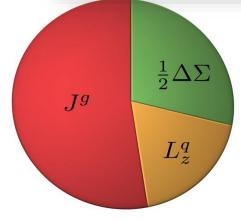
Lattice QCD results of impact-parameter distributions:



Spin sum rule & orbital angular momentum (Ji, 9603249)

GAUGE-INVARIANT DECOMPOSITION OF NUCLEON SPIN AND ITS SPIN-OFF *

Xiangdong Ji



$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma(\mu) + L_z^q(\mu) + J^g(\mu)$$

Example:

$$J^{q} = \int_{-1}^{1} dx \, x (H^{q} + E^{q}) \big|_{t=0}$$

3 Mechanical properties (pressure/shear) inside nucleon (Polyakov, Shuvaev, 0207153 ...)

On "dual" parametrizations of generalized parton distributions M.V. Polyakov a,b , A.G. Shuvaev a

Lorce, Meziani's talk

Exploits relations between GPDs & Gravitational Form Factors:

Gravitational Form Factors:

$$\langle P_2 | \Theta_f^{\mu\nu} | P_1 \rangle = \frac{1}{M} \bar{u}(P_2) \left[P^{\mu} P^{\nu} A_f + (A_f + B_f) \frac{P^{(\mu} i \sigma^{\nu)\rho} l_{\rho}}{2} + \frac{D_f}{4} (l^{\mu} l^{\nu} - g^{\mu\nu} l^2) + M^2 \bar{C}_f g^{\mu\nu} \right] u(P_1)$$

$$A + \xi^2 D = \int_{-1}^1 dx \, xH \qquad B - \xi^2 D = \int_{-1}^1 dx \, xE$$

3 Mechanical properties (pressure/shear) inside nucleon (Polyakov, Shuvaev, 0207153 ...)

On "dual" parametrizations of generalized parton distributions M.V. Polyakov^{a,b}, A.G. Shuvaev^a

LETTER

https://doi.org/10.1038/s41586-018-0060-z

The pressure distribution inside the proton

V. D. Burkert^{1*}, L. Elouadrhiri¹ & F. X. Girod¹

QUARKS FEEL THE PRESSURE IN THE PROTON

Courtesy: JLab media

4) 3D imagin

Mass generations & chiral symmetry breaking

(SB, Hatta, Vogelsang, 2210.13419, 2305.09431)

(Ji, 9603249)

Chiral and trace anomalies in Deeply Virtual Compton Scattering: QCD factorization and beyond

Shohini Bhattacharya, 1, * Yoshitaka Hatta, 2, 1, † and Werner Vogelsang 3, ‡

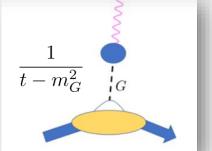


Mechanic

 Unraveled profound & previously undiscovered connections between chiral/trace anomalies & GPDs

Eta meson mass generation:

$$\tilde{E}(x) \sim \frac{1}{t - m_{\eta'}^2}$$



Glueball mass generation:

$$H(x), E(x) \sim \frac{1}{t - m_G^2}$$

4) 3D imagin

Mass generations & chiral symmetry breaking

(SB, Hatta, Vogelsang, 2210.13419, 2305.09431)

(Ji, 9603249)

Chiral and trace anomalies in Deeply Virtual Compton Scattering:

QCD factorization and beyond

Novel avenue of GPD research

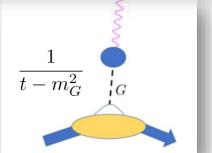
charva. 1, * Yoshitaka Hatta, 2, 1, † and Werner Vogelsang 3,

Profound physical implication of anomaly poles: Touches questions on mass generations, Chiral symmetry breaking, ...

$$\frac{1}{t - m_{\eta'}^2} \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \\$$

Eta meson mass generation:

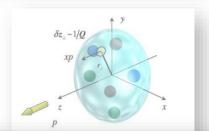
$$\tilde{E}(x) \sim \frac{1}{t - m_{\eta'}^2}$$



Glueball mass generation:

$$H(x), E(x) \sim \frac{1}{t - m_G^2}$$

1) 3D imaging (Burkardt, 0005108 ...)



2) Spin sum rule & orbital angular momentum (Ji, 9603249)

Example:

$$J_q = \int_{-1}^{1} dx \, x \big(H_q + E_q \big) \big|_{t=0}$$

We have numerous compelling reasons to engage in GPD studies!

3) Mechanical properties (pressure/shear) inside nucleon (Polyakov, Shuvaev, 0207153 ...)

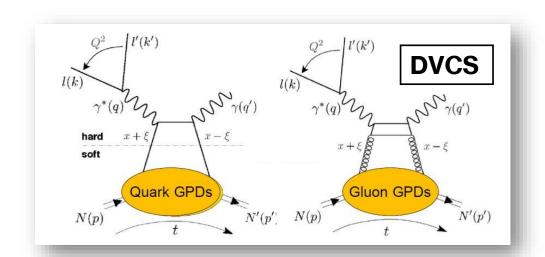
4) Mass generations & chiral symmetry breaking

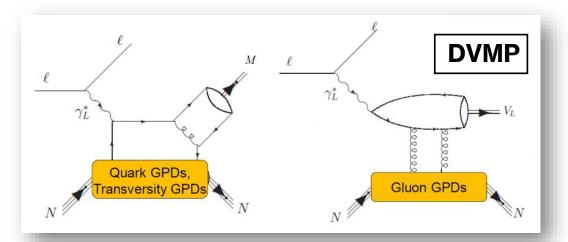
(SB, Hatta, Vogelsang, 2210.13419, 2305.09431)



$$H, E \sim \frac{1}{t - m_G^2}$$

See talks by Silvia, Spencer, Wim

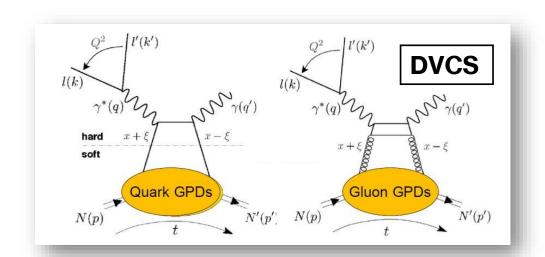


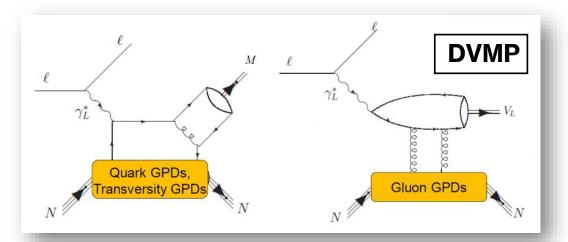


Courtesy: Hyon-Suk Jo, KPS Meeting

No access to x-dependence of GPDs

See talks by Silvia, Spencer, Wim



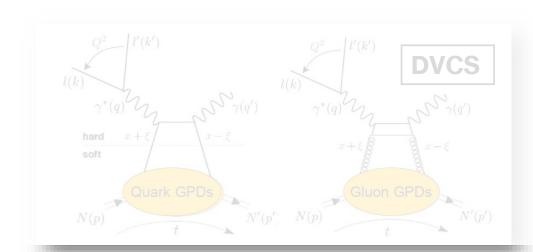


Courtesy: Hyon-Suk Jo, KPS Meeting

No access to x-dependence of GPDs

Complementarity: Lattice results can be integrated into global analysis of experimental data

See talks by Silvia, Spencer, Wim



Exclusive production of a pair of high transverse momentum photons in pion-nucleon collisions for extracting generalized parton distributions

Hard photoproduction of a diphoton with a large invariant mass

A. Pedrak,¹ B. Pire,² L. Szymanowski,¹ and J. Wagner¹

Jian-Wei Qiu a,b Zhite Yu c

(References not exhaustive)

Access to x-dependence of GPDs

See talks by Silvia, Spencer, Wim

We require complementary measurements of the GPDs using Lattice QCD

In recent years, significant breakthroughs have been made in our ability to access the x-dependence of GPDs

extracting generalized parton distributions

Hard photoproduction of a diphoton with a large invariant mass

A. Pedrak, B. Pire, L. Szymanowski, and J. Wagner

Jian-Wei Qiu^{a,b} Zhite Yu^a

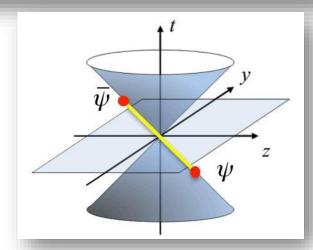
Access to x-dependence of GPDs

"Physical" distributions

Light-cone (standard) correlator $-1 \le x \le 1$

$$F^{[\Gamma]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ik\cdot z} \times \langle p';\lambda'|\bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2})\psi(\frac{z}{2})|p;\lambda\rangle \Big|_{z^{+}=\vec{z}_{\perp}=0}$$

- Time dependence : $z^0 = \frac{1}{\sqrt{2}}(z^+ + z^-) = \frac{1}{\sqrt{2}}z^-$
- Cannot be computed on Euclidean lattice



"Physical" distributions

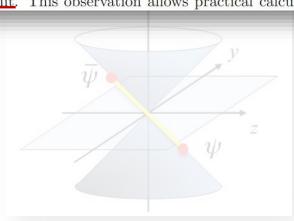
Parton Physics on Euclidean Lattice

Xiangdong Ji^{1, 2}

¹INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China ²Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742, USA (Dated: May 8, 2013)

Abstract

I show that the parton physics related to correlations of quarks and gluons on the light-cone can be studied through the matrix elements of frame-dependent, equal-time correlators in the large momentum limit. This observation allows practical calculations of parton properties on an



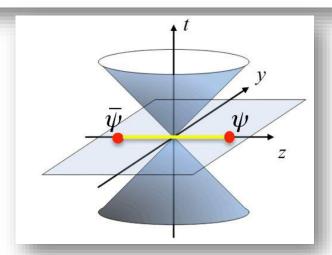
"Auxiliary" distributions

Correlator for quasi-GPDs (Ji, 2013)

$$-\infty \le x \le \infty$$

$$F_{\mathbf{Q}}^{[\Gamma]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2} \int \frac{dz^{3}}{2\pi} e^{ik\cdot z} \times \langle p',\lambda'|\bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}_{\mathbf{Q}}(-\frac{z}{2},\frac{z}{2})\psi(\frac{z}{2})|p,\lambda\rangle \Big|_{z^{0}=\vec{z}_{\perp}=0}$$

- Non-local correlator depending on position z^3
- <u>Can</u> be computed on Euclidean lattice

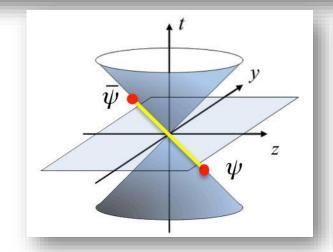


"Physical" distributions

Light-cone (standard) correlator $-1 \le x \le 1$

$$F^{[\Gamma]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ik\cdot z} \times \langle p';\lambda'|\bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2})\psi(\frac{z}{2})|p;\lambda\rangle \Big|_{z^{+}=\vec{z}_{\perp}=0}$$

- Time dependence : $z^0 = \frac{1}{\sqrt{2}}(z^+ + z^-) = \frac{1}{\sqrt{2}}z^-$
- <u>Cannot</u> be computed on Euclidean lattice



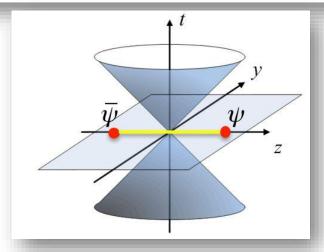
"Auxiliary" distributions

Correlator for quasi-GPDs (Ji, 2013)

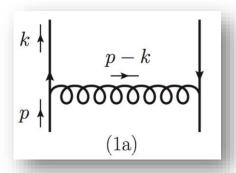
$$-\infty \le x \le \infty$$

$$F_{\mathbf{Q}}^{[\Gamma]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2} \int \frac{dz^{3}}{2\pi} e^{ik\cdot z} \times \langle p',\lambda'|\bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}_{\mathbf{Q}}(-\frac{z}{2},\frac{z}{2})\psi(\frac{z}{2})|p,\lambda\rangle \Big|_{z^{0}=\vec{z}_{\perp}=0}$$

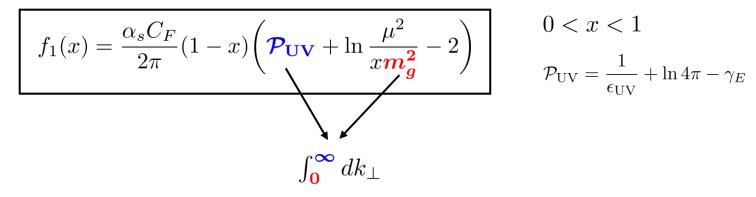
- Non-local correlator depending on position z^3
- Can be computed on Euclidean lattice



Essence of the quasi-distribution approach (Example: PDF)



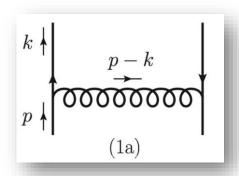
Light-cone PDF:



$$0 < x < 1$$

$$\mathcal{P}_{\mathrm{UV}} = \frac{1}{\epsilon_{\mathrm{UV}}} + \ln 4\pi - \gamma_{\mathrm{H}}$$

Essence of the quasi-distribution approach (Example: PDF)



Light-cone PDF:

Light-cone PDF:
$$f_1(x) = \frac{\alpha_s C_F}{2\pi} (1-x) \left(\frac{\mathcal{P}_{\text{UV}} + \ln \frac{\mu^2}{x m_g^2} - 2}{2\pi} \right) \qquad 0 < x < 1$$

$$\mathcal{P}_{\text{UV}} = \frac{1}{\epsilon_{\text{UV}}} + \ln 4\pi - \gamma_E$$

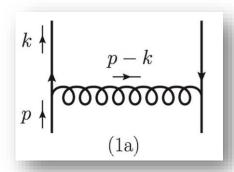
$$0 < x < 1$$

$$\mathcal{D}_{\text{TM}} = \frac{1}{2\pi} + \ln 4\pi - 2\pi$$

Quasi PDF:

$$f_1(x, p^3) = \frac{\alpha_s C_F}{2\pi} \begin{cases} (1-x) \ln \frac{x}{x-1} + 1 & x > 1 \\ (1-x) \ln \frac{4(1-x)p_3^2}{m_g^2} + x & 0 < x < 1 \\ (1-x) \ln \frac{x-1}{x} - 1 & x < 0 \end{cases}$$

Essence of the quasi-distribution approach (Example: PDF)



Light-cone PDF:

$$\begin{array}{c|c}
\hline
 & p-k \\
\hline
 & 000000000
\end{array}$$

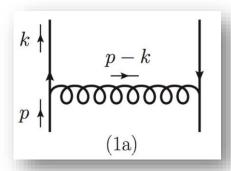
$$\begin{array}{c|c}
f_1(x) = \frac{\alpha_s C_F}{2\pi} (1-x) \left(\frac{\mathbf{P_{UV}} + \ln \frac{\mu^2}{x m_g^2} - 2}{2\pi} \right) \\
\hline
 & 0 < x < 1 \\
\hline
 & \mathcal{P}_{UV} = \frac{1}{\epsilon_{UV}} + \ln 4\pi - \gamma_E
\end{array}$$

$$\begin{array}{c|c}
\int_0^\infty dk_\perp
\end{array}$$

$$\mathcal{P}_{\rm UV} = \frac{1}{\epsilon_{\rm UV}} + \ln 4\pi - \gamma_E$$

Quasi PDF:

Essence of the quasi-distribution approach (Example: PDF)



Light-cone PDF:

$$f_1(x) = \frac{\alpha_s C_F}{2\pi} (1 - x) \left(\frac{\mathcal{P}_{UV} + \ln \frac{\mu^2}{x m_g^2}}{1 - 2} \right) \qquad 0 < x < 1$$

$$\mathcal{P}_{UV} = \frac{1}{\epsilon_{UV}} + \ln 4\pi - \gamma_E$$

$$0 < x < 1$$

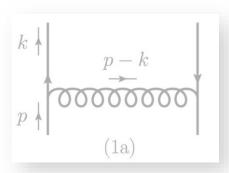
$$\mathcal{P}_{UV} = \frac{1}{\epsilon} + \ln 4\pi - \gamma_E$$

Quasi PDF:

Absence of UV divergence: They manifest only after $\int dx$

$$f_1(x, p^3) = \frac{\alpha_s C_F}{2\pi} \begin{cases} (1-x) \ln \frac{x}{x-1} + 1 & x > 1 \\ (1-x) \ln \frac{4(1-x)p_3^2}{m_g^2} + x & 0 < x < 1 \\ (1-x) \ln \frac{x-1}{x} - 1 & x < 0 \end{cases}$$

Essence of the quasi-distribution approach (Example: PDF)



Light-cone PDF:

$$f_1(x) = \frac{\alpha_s C_F}{2} (1-x) \left(\mathcal{P}_{\text{UV}} + \ln \frac{\mu^2}{2} - 2 \right)$$
 $0 < x < 1$

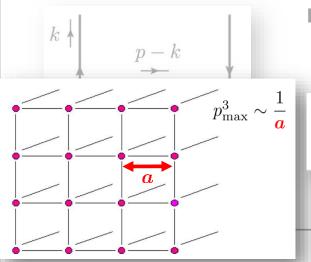
By construction, if one boosts the quasi-observable to infinite-momentum frame, then it reduces to the light-cone observable

 $\int_0^\infty dk$

Quasi PDF:

Absence of UV divergence: They manifest only after $\int dx$

Essence of the quasi-distribution approach (Example: PDF)



Light-cone PDF:

$$f_1(x) = \frac{\alpha_s C_F}{(1-x)} \left(P_{\text{HV}} + \ln \frac{\mu^2}{2} - 2 \right)$$
 $0 < x < 1$

By construction, if one boosts the quasi-observable to infinite-momentum frame, then it reduces to the light-cone observable

 $\int_0^\infty dk_\perp$

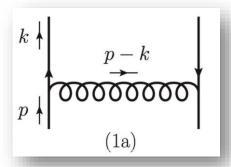
Absence of UV divergence: They manifest only after $\int dx$

In lattice computations, UV cut-offs (Λ) are given by the finite lattice spacing a ($\Lambda \sim a^{-1}$), and one (naturally) deals with UV renormalization before taking the limit $P^3 \to \infty$. The limits $\Lambda \to \infty$ and $P^3 \to \infty$ do not commute, which leads to non-trivial differences in the UV behavior of the quasi-PDFs and light-cone PDFs.

$$f_1(x, p^3) = \frac{\alpha_s C_F}{2\pi} \left\{ (1 - x) \ln \frac{4(1 - x)p_3^2}{m_g^2} + x \quad 0 < x < 1 \right\}$$

$$\left((1 - x) \ln \frac{x - 1}{x} - 1 \right) \quad x < 0$$

Essence of the quasi-distribution approach (Example: PDF)



Light-cone PDF:

$$f_1(x) = \frac{\alpha_s C_F}{2\pi} (1 - x) \left(\frac{\mathcal{P}_{UV}}{2\pi} + \ln \frac{\mu^2}{x m_g^2} + 2 \right)$$

$$\mathcal{P}_{UV} = \frac{1}{\epsilon_{UV}} + \ln 4\pi - \gamma_E$$

$$\mathcal{P}_{\rm UV} = \frac{1}{\epsilon_{\rm UV}} + \ln 4\pi - \gamma_I$$

Quasi PDF:

Absence of UV divergence: They manifest only after $\int dx$

Support outside physical region 0 < x < 1

$$f_1(x, p^3) = \frac{\alpha_s C_F}{2\pi} \left\{ \underbrace{(1-x) \ln \frac{4(1-x)p_3^2}{m_g^2}}_{x=1} + x \quad 0 < x < 1 \right\}$$

$$(1-x) \ln \frac{x-1}{x} -$$

 $(1-x) \ln \frac{x-1}{x}$ - IR pole structure of light-cone & quasi-PDFs are same

Matching formula: (PDF) ribution appromatching coefficient

$$p-k$$

$$\tilde{q}(x,\mu,P^3) = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y}, \frac{\mu}{P^3}\right) q(y,\mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{(P^3)^2}, \frac{M_N^2}{(P^3)^2}\right)$$

Xiong, Ji, Zhang, Zhao/ Stewart, Zhao/ Izubuchi, Ji, Jin, Stewart, Zhao ...

$$=rac{1}{\epsilon_{\mathrm{HV}}}+\ln 4\pi-\gamma_{E}$$

Essence of the quasi-PDF approach

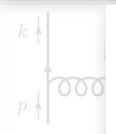
IR pole structure of light-cone & quasi-PDFs are same

Quasi PDF:

Absence of UV divergence: They manifest only after $\int dx$

$$f_1(x,p^3) = \frac{\alpha_s C_F}{2\pi} \left\{ \begin{array}{cccc} (1-x) \ln \frac{4(1-x)p_3^2}{m_g^2} + x & 0 < x < 1 \\ (1-x) \ln \frac{x-1}{x} - & \text{IR pole structure of light-cone \& quasi-PDFs are same} \end{array} \right.$$

Matching formula: (GPD) ribution appro Matching coefficient



$$\tilde{q}(x,\xi,t,\mu,P^3) = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\xi}{y},\frac{\mu}{P^3}\right) q(y,\xi,t,\mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{(P^3)^2},\frac{M_N^2}{(P^3)^2},\frac{t}{(P^3)^2}\right)$$

GPD matching known up to one-loop order (non-singlet & singlet)

References: (not exhaustive)

Connecting Euclidean to light-cone correlations: From ||x>1|flavor nonsinglet in forward kinematics to flavor singlet in non-forward kinematics

One-Loop Matching for Generalized Parton Distributions

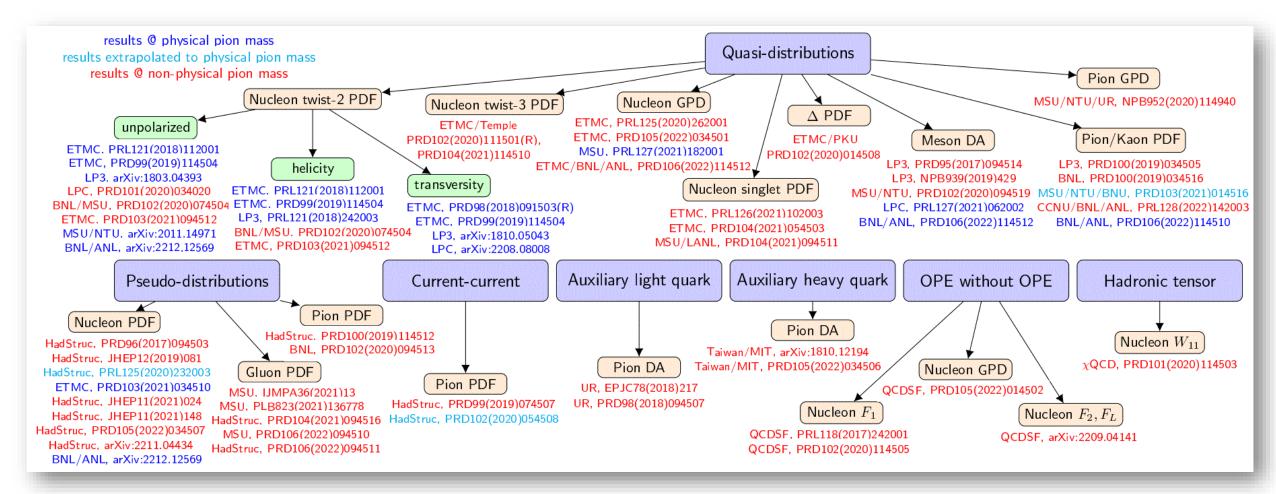
Absence of UV divergence: They manifest only after $\int dx$

Xiangdong Ji,^{1,2,3} Andreas Schäfer,⁴ Xiaonu Xiong,^{5,6} and Jian-Hui Zhang^{1,4}

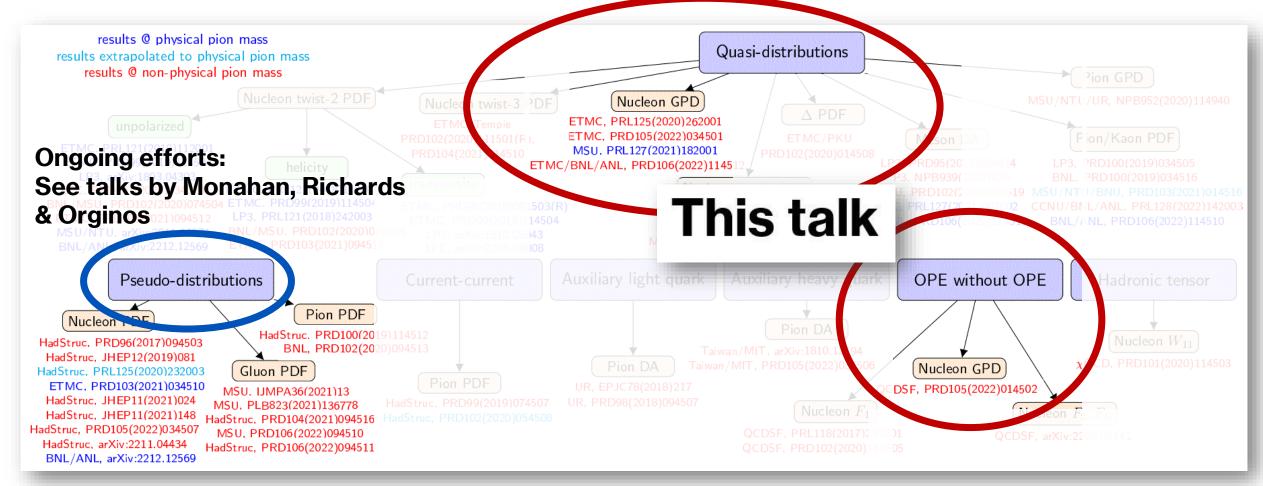
Yao Ji,^a Fei Yao^b and Jian-Hui Zhang^{c,b}

Dynamical Progress of Lattice QCD calculations of PDFs/GPDs

<u>Lattice QCD calculations of x-dependence of PDFs & related quantities using Euclidean correlators:</u>

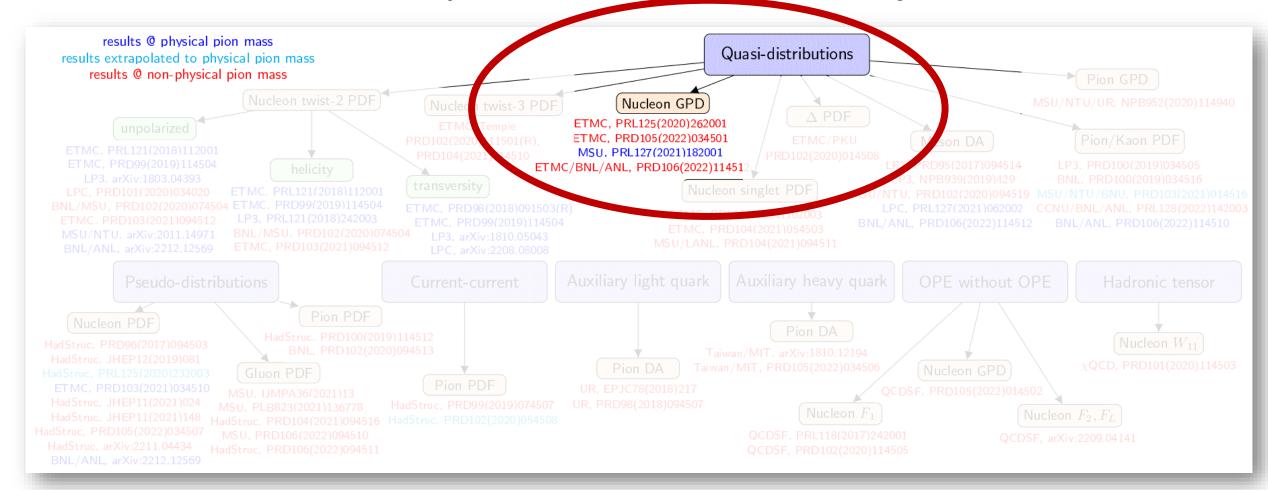


Lattice QCD calculations of x-dependence of PDFs & related quantities using Euclidean correlators:

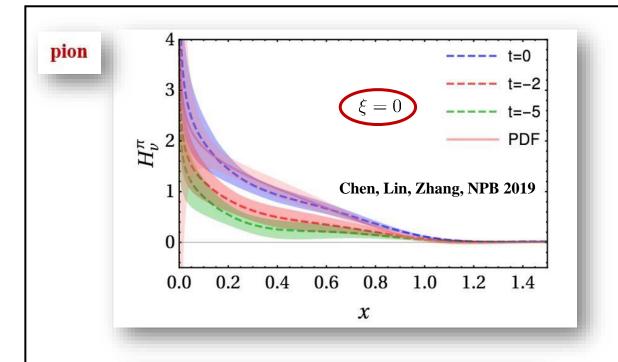


Dynamical Progress of Lattice QCD calculations of PDFs/GPDs

<u>Lattice QCD calculations of x-dependence of PDFs & related quantities using Euclidean correlators:</u>

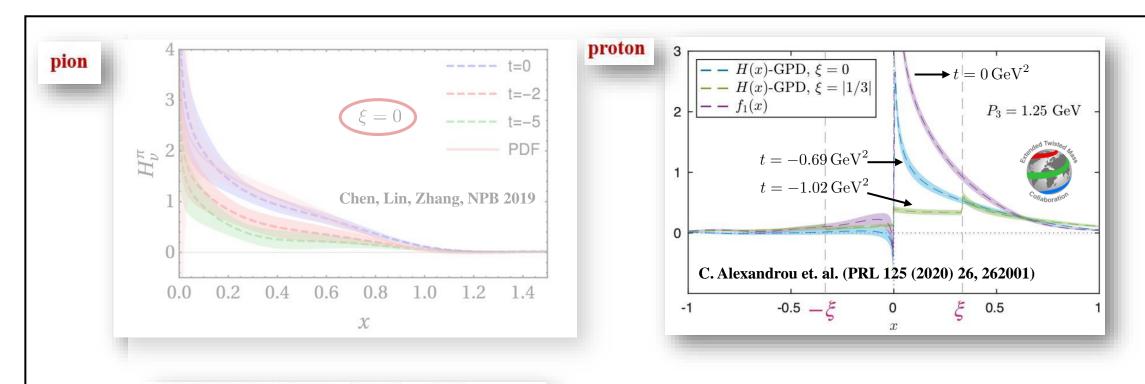


First Lattice QCD results of the x-dependent GPDs



As t increases, the distribution flattens

First Lattice QCD results of the x-dependent GPDs

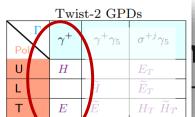


ERBL/DGLAP: Qualitative differences

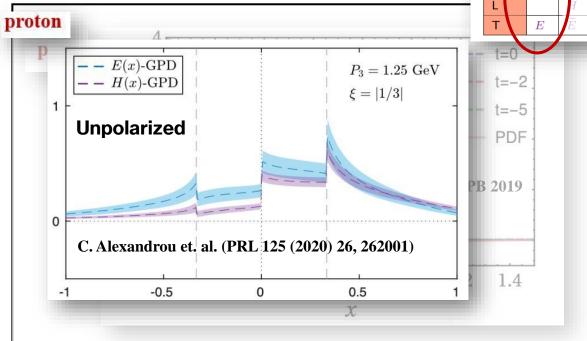
As $\,x
ightarrow 1$, qualitative behavior in agreement with power counting analysis

(F. Yuan, 0311288)

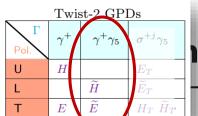
First Lattice QCI



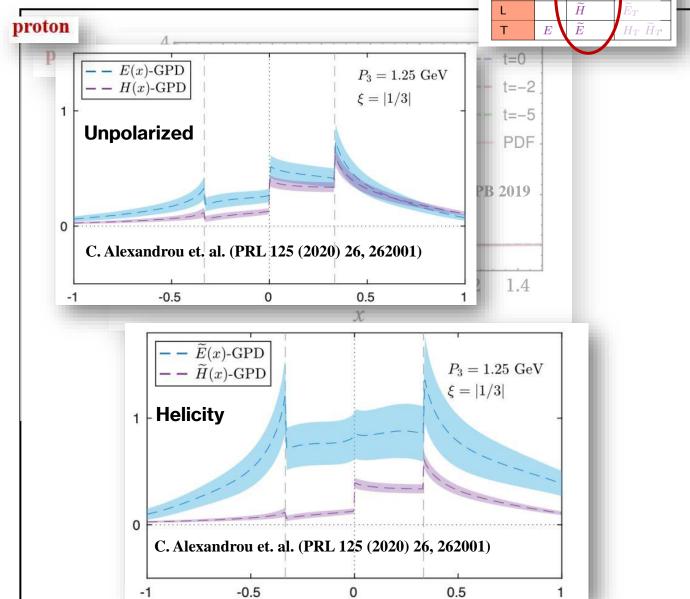
ne x-dependent GPDs



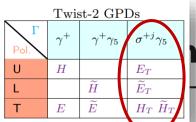
First Lattice QCI



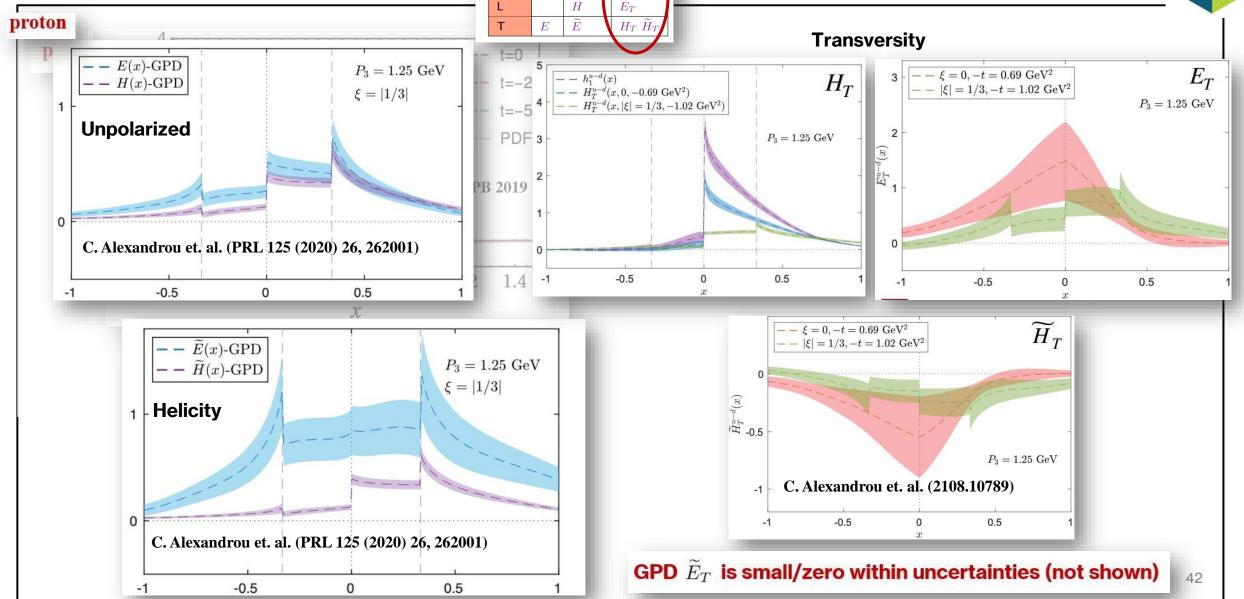
e x-dependent GPDs



First Lattice QCI



ne x-dependent GPDs



First exploration of twist-3 GPDs

Why twist 3?

- As sizeable as twist 2
- Contain information about quark-gluon-quark correlations inside hadrons ...

First exploration of twist-3 GPDs

Definition:

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]

[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

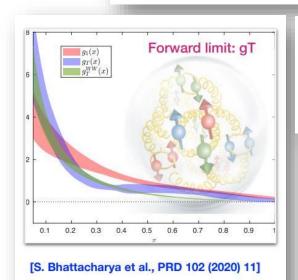
First exploration of twist-3 GPDs

Definition:

$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3}) + \Delta^{\mu}_{\perp}\frac{\gamma_{5}}{2m}F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) + \Delta^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]

[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]



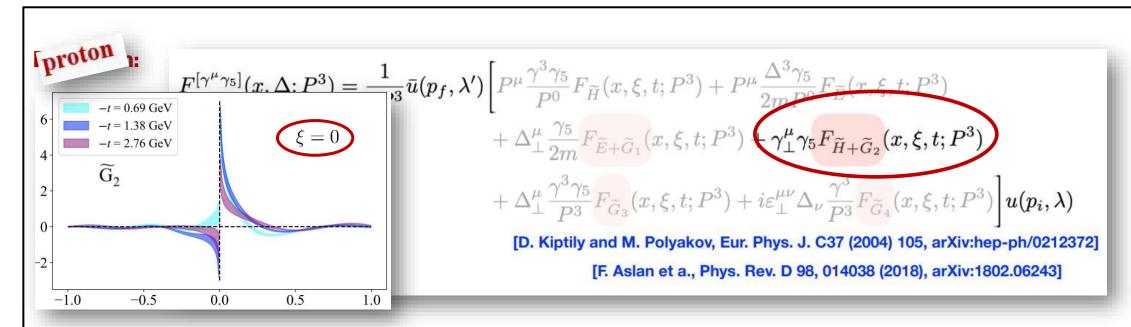
PRD 102 (2020) 11, 111501 [Editor's suggestion]

New insights on proton structure from lattice QCD: the twist-3 parton distribution function $g_T(x)$

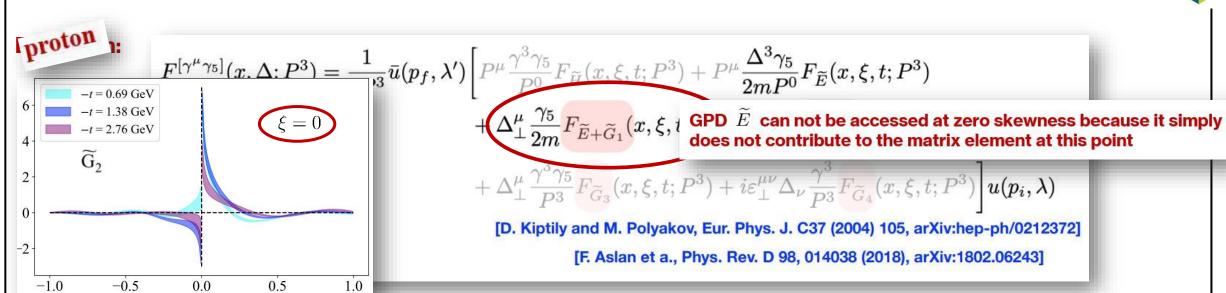
Shohini Bhattacharya, Krzysztof Cichy, Martha Constantinou, Andreas Metz, Aurora Scapellato, and Fernanda Steffens

Twist-	3 PDF	Processes	Data
$g_T($	(x)	e Q P X	For instance: Hall A, 2016/ Hall C, 2018

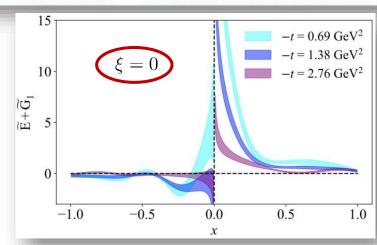
First exploration of twist-3 GPDs



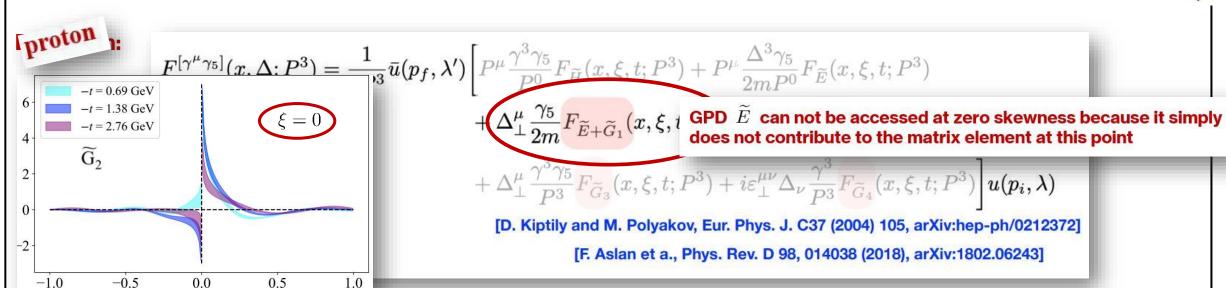
First exploration of twist-3 GPDs



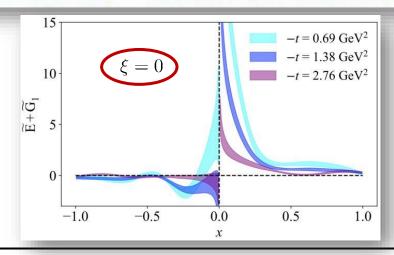
Glimpse into GPD \widetilde{E} through twist 3 at zero skewness:



First exploration of twist-3 GPDs



Glimpse into GPD $\widetilde{E}\,$ through twist 3 at zero skewness:



First indication of pion pole from Lattice QCD!

$$\tilde{E}_u - \tilde{E}_d \sim \frac{1}{l^2 - m_\pi^2}$$

(Penttinen, Polyakov, Goeke)

-0.5

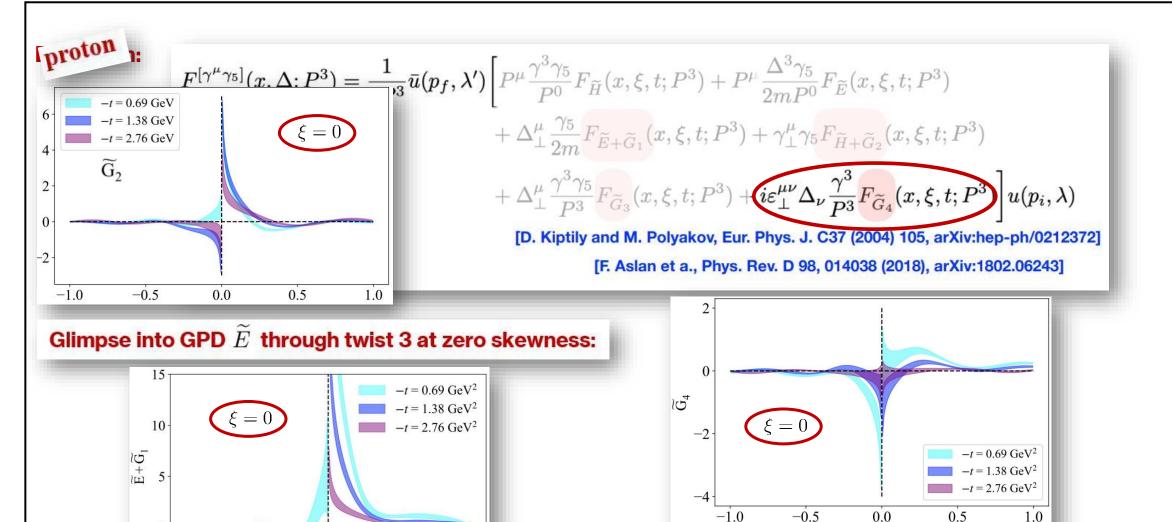
0.0

0.5

1.0

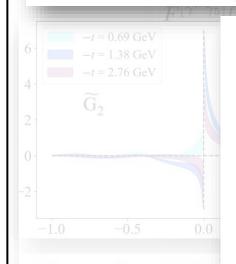
-1.0

First exploration of twist-3 GPDs



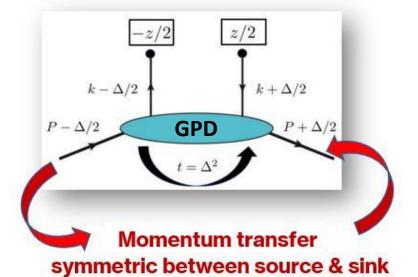
GPD \widetilde{G}_3 is zero within uncertainties (not shown)

Traditionally, GPDs have been calculated from "symmetric frames"



Glimpse into GPD

Practical drawback



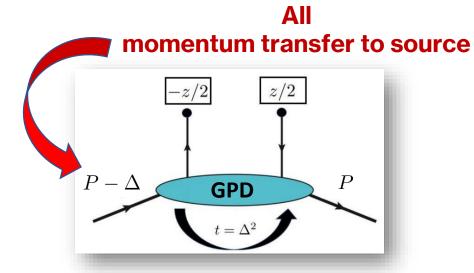
Lattice QCD calculations of GPDs in symmetric frames are expensive

 p^3 $u(p_i,\lambda)$ $u(p_i,\lambda)$ Xiv:hep-ph/0212372] Xiv:1802.06243]

 $= 0.69 \text{ GeV}^2$ = 1.38 GeV²

In symmetric frame, full new calculation required for each momentum transfer (Δ)

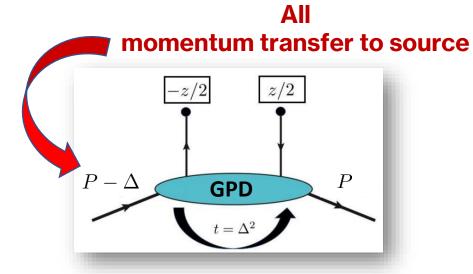
Resolution:



Perform Lattice QCD calculations of GPDs in asymmetric frames: Constantinou's talk

- Reduction in computational cost
- Access to broad range of t (enabling creation of high-resolution partonic maps)

Resolution:



Major theoretical advances (2209.05373):

- Lorentz covariant formalism for calculating quasi-GPDs in any frame
- Elimination of power corrections potentially allowing faster convergence to light-cone GPDs

Resolution:

Major theoretical advances:

- Lorentz covariant formalism for calculating quasi-GPDs in any frame
 - Elimination of power corrections potentially allowing faster convergence to light-cone GPDs

Example

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

$$F^{\mu}(z,P,\Delta) = \bar{u}(p_f,\lambda') \left[\frac{P^{\mu}}{m} \mathbf{A_1} + mz^{\mu} \mathbf{A_2} + \frac{\Delta^{\mu}}{m} \mathbf{A_3} + im\sigma^{\mu z} \mathbf{A_4} + \frac{i\sigma^{\mu \Delta}}{m} \mathbf{A_5} + \frac{P^{\mu}i\sigma^{z\Delta}}{m} \mathbf{A_6} + mz^{\mu}i\sigma^{z\Delta} \mathbf{A_7} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{m} \mathbf{A_8} \right] u(p_i,\lambda)$$

$$\mbox{ Vector operator } F^{\mu}_{\lambda,\lambda'} = \langle p',\lambda'|\bar{q}(-z/2)\gamma^{\mu}q(z/2)|p,\lambda\rangle \Bigg|_{z=0,\vec{z}_{\perp}=\vec{0}_{\perp}}$$

Features:

- 8 linearly-independent Dirac structures
- 8 Lorentz-invariant (frame-independent) amplitudes $A_i \equiv A_i(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2)$

Example

Lorentz covariant formalism

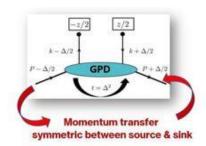
Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

$$F^{\mu}(z,P,\Delta) = \bar{u}(p_f,\lambda') \left[\frac{P^{\mu}}{m} \mathbf{A_1} + mz^{\mu} \mathbf{A_2} + \frac{\Delta^{\mu}}{m} \mathbf{A_3} + im\sigma^{\mu z} \mathbf{A_4} + \frac{i\sigma^{\mu \Delta}}{m} \mathbf{A_5} + \frac{P^{\mu}i\sigma^{z\Delta}}{m} \mathbf{A_6} + mz^{\mu}i\sigma^{z\Delta} \mathbf{A_7} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{m} \mathbf{A_8} \right] u(p_i,\lambda)$$

Vecto

Traditional definition (symmetric frame):

Featu



$$\begin{aligned} F_{\lambda,\lambda'}^{0}\big|_{s} &= \langle p_{s}', \lambda' | \bar{q}(-z/2) \gamma^{0} q(z/2) | p_{s}, \lambda \rangle \bigg|_{z=0, \vec{z}_{\perp} = \vec{0}_{\perp}} \\ &= \bar{u}_{s}(p_{s}', \lambda') \bigg[\gamma^{0} H_{\mathbf{Q}(0)}(z, P_{s}, \Delta_{s}) \big|_{s} + \frac{i \sigma^{0\mu} \Delta_{\mu, s}}{2M} E_{\mathbf{Q}(0)}(z, P_{s}, \Delta_{s}) \big|_{s} \bigg] u_{s}(p_{s}, \lambda) \end{aligned}$$

Quasi-GPDs are intrinsically frame-dependent

Lorentz covariant formalism

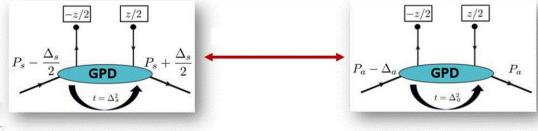
Novel para Main point: passa matrix alamant: (Inspired from Meissner, Metz, Schlegel, 2009)

$$F^{\mu}(z, P, \Delta) = \bar{u}(p_f, \lambda') \left[\frac{P^{\mu}}{m} \mathbf{A_1} + mz^{\mu} \right]$$

$$H_{\mathbf{Q}(0)}^s = \sum_i A_i$$

$$H^{s}_{\mathbf{Q}(\mathbf{0})} = \sum_{m{i}} A_{m{i}} \left[\frac{P^{\mu}}{m} \mathbf{A_1} + mz^{\mu} \right] H^{s}_{\mathbf{Q}(\mathbf{0})} = \sum_{m{i}} A_{m{i}} \left[\frac{P^{\mu}i\sigma^{z\Delta}}{m} \mathbf{A_6} + mz^{\mu}i\sigma^{z\Delta} \mathbf{A_7} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{m} \mathbf{A_8} \right] u(p_i, \lambda) \right]$$

Calculate quasi-GPD in symmetric frame through matrix elements of asymmetric frame



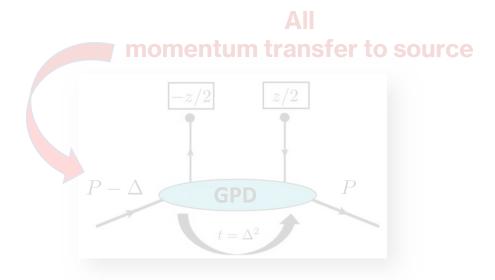
8 Lorentz

Symmetric frame

Asymmetric frame

 $A_i(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2)$

Resolution:

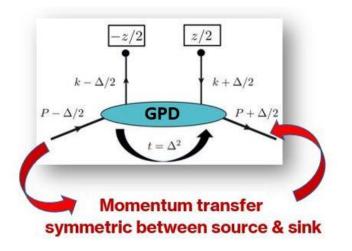


Major theoretical advances:

- Lorentz covariant formalism for calculating quasi-GPDs in any frame
- Elimination of power corrections potentially allowing faster convergence to light-cone GPDs

Relations between GPDs & amplitudes

Example: Symmetric frame



Quasi-GPD:

$$\begin{split} H_{\mathrm{Q}(0)}^{s}(z,P^{s},\Delta^{s}) &= A_{1} + \frac{\Delta^{0,s}}{P^{0,s}}A_{3} - \frac{m^{2}\Delta^{0,s}z^{3}}{2P^{0,s}P^{3,s}}A_{4} + \left[\frac{(\Delta^{0,s})^{2}z^{3}}{2P^{3,s}} - \frac{\Delta^{0,s}\Delta^{3,s}z^{3}P^{0,s}}{2(P^{3,s})^{2}} - \frac{z^{3}(\Delta^{s}_{\perp})^{2}}{2P^{3,s}}\right]A_{6} \\ &+ \left[\frac{(\Delta^{0,s})^{3}z^{3}}{2P^{0,s}P^{3,s}} - \frac{(\Delta^{0,s})^{2}\Delta^{3,s}z^{3}}{2(P^{3,s})^{2}} - \frac{\Delta^{0,s}z^{3}(\Delta^{s}_{\perp})^{2}}{2P^{0,s}P^{3,s}}\right]A_{8}\,, \end{split}$$

Relations between GPDs & amplitudes

Light-cone GPD: (Lorentz-invariant)

$$H(z \cdot P^{s/a}, z \cdot \Delta^{s/a}, (\Delta^{s/a})^2) = A_1 + \frac{\Delta^{s/a} \cdot z}{P^{s/a} \cdot z} A_3$$

Quasi-GPD: (Symmetric frame)

$$\begin{split} H_{\mathrm{Q}(0)}^{s}(z,P^{s},\Delta^{s}) &= A_{1} + \frac{\Delta^{0,s}}{P^{0,s}}A_{3} - \frac{m^{2}\Delta^{0,s}z^{3}}{2P^{0,s}P^{3,s}}A_{4} + \left[\frac{(\Delta^{0,s})^{2}z^{3}}{2P^{3,s}} - \frac{\Delta^{0,s}\Delta^{3,s}z^{3}P^{0,s}}{2(P^{3,s})^{2}} - \frac{z^{3}(\Delta^{s}_{\perp})^{2}}{2P^{3,s}}\right]A_{6} \\ &+ \left[\frac{(\Delta^{0,s})^{3}z^{3}}{2P^{0,s}P^{3,s}} - \frac{(\Delta^{0,s})^{2}\Delta^{3,s}z^{3}}{2(P^{3,s})^{2}} - \frac{\Delta^{0,s}z^{3}(\Delta^{s}_{\perp})^{2}}{2P^{0,s}P^{3,s}}\right]A_{8}\,, \end{split}$$

Relations between GPDs & amplitudes

Light-cone GPD: (Lorentz-invariant)

$$H(z \cdot P^{s/a}, z \cdot \Delta^{s/a}, (\Delta^{s/a})^2) = A_1 + \frac{\Delta^{s/a} \cdot z}{P^{s/a} \cdot z} A_3$$

Contamination from additional amplitudes or explicit power corrections

Quasi-GPD: (Symmetric frame)

$$H_{\mathbf{Q}(0)}^{s}(z, P^{s}, \Delta^{s}) = A_{1} + \frac{\Delta^{0,s}}{P^{0,s}} A_{3} \left(\frac{m^{2} \Delta^{0,s} z^{3}}{2P^{0,s} P^{3,s}} A_{4} + \left[\frac{(\Delta^{0,s})^{2} z^{3}}{2P^{3,s}} - \frac{\Delta^{0,s} \Delta^{3,s} z^{3} P^{0,s}}{2(P^{3,s})^{2}} - \frac{z^{3} (\Delta^{s}_{\perp})^{2}}{2P^{3,s}} \right] A_{6}$$

$$+\left[rac{(\Delta^{0,s})^3z^3}{2P^{0,s}P^{3,s}}-rac{(\Delta^{0,s})^2\Delta^{3,s}z^3}{2(P^{3,s})^2}-rac{\Delta^{0,s}z^3(\Delta_{\perp}^s)^2}{2P^{0,s}P^{3,s}}
ight]\!A_8\,,$$

Relations between GPDs & amplitudes

Light-cone GI

You can think of eliminating additional amplitudes by the addition of other operators

$$(\gamma^1,\gamma^2)$$

Contamination from additional amplitudes or explicit power corrections

Quasi-GPD: (Symmetric frame)

$$H_{\mathrm{Q}(0)}^{s}(z,P^{s},\Delta^{s}) = A_{1} + \frac{\Delta^{0,s}}{P^{0,s}}A_{3} \left(\frac{m^{2}\Delta^{0,s}z^{3}}{2P^{0,s}P^{3,s}}A_{4} + \left[\frac{(\Delta^{0,s})^{2}z^{3}}{2P^{3,s}} - \frac{\Delta^{0,s}\Delta^{3,s}z^{3}P^{0,s}}{2(P^{3,s})^{2}} - \frac{z^{3}(\Delta^{s}_{\perp})^{2}}{2P^{3,s}}\right]A_{6}$$

$$+ \left[\frac{(\Delta^{0,s})^3 z^3}{2P^{0,s} P^{3,s}} - \frac{(\Delta^{0,s})^2 \Delta^{3,s} z^3}{2(P^{3,s})^2} - \frac{\Delta^{0,s} z^3 (\Delta_{\perp}^s)^2}{2P^{0,s} P^{3,s}} \right] A_8,$$

Relations between GPDs & amplitudes

Lig

Main finding

Schematic structure of (operator-level) Lorentz-invariant definition of quasi-GPD:

$$H_{\rm Q} \to c_0 \langle \bar{\psi} \gamma^0 \psi \rangle + c_1 \langle \bar{\psi} \gamma^1 \psi \rangle + c_2 \langle \bar{\psi} \gamma^2 \psi \rangle$$

Qua

Here, c's are frame-dependent kinematic factors that cancel additional amplitudes such that quasi-GPD has the same functional form as light-cone GPD (Lorentz invariant)

$$H_{\mathrm{Q}(0)}^{s}(z, P^{s}, \Delta^{s}) = A_{1} + \frac{\Delta^{s,s}}{P^{0,s}} A_{3} \left[\frac{m^{2}\Delta^{s,s}z^{s}}{2P^{0,s}P^{3,s}} A_{4} + \left[\frac{(\Delta^{s,s})^{2}z^{s}}{2P^{3,s}} - \frac{\Delta^{s,s}\Delta^{s,s}z^{s}P^{s,s}}{2(P^{3,s})^{2}} - \frac{z^{s}(\Delta^{s}z^{s})^{2}}{2P^{3,s}} \right] A_{6}$$

$$+ \left[\frac{(\Delta^{0,s})^3 z^3}{2P^{0,s}P^{3,s}} - \frac{(\Delta^{0,s})^2 \Delta^{3,s} z^3}{2(P^{3,s})^2} - \frac{\Delta^{0,s} z^3 (\Delta_{\perp}^s)^2}{2P^{0,s}P^{3,s}} \right] A_8,$$

New definition of quasi-GPDs

Light-cone GPD:

$$H(z \cdot P^{s/a}, z \cdot \Delta^{s/a}, (\Delta^{s/a})^2) = A_1 + \frac{\Delta^{s/a} \cdot z}{P^{s/a} \cdot z} A_3$$

$$A_i \equiv A_i(z^2 = 0)$$

Lorentz-invariant definition of quasi-GPD:

$$\mathcal{H}(z \cdot P^{s/a}, z \cdot \Delta^{s/a}, (\Delta^{s/a})^2, z^2) = A_1 + \frac{\Delta^{s/a} \cdot z}{P^{s/a} \cdot z} A_3$$

$$A_i \equiv A_i (z^2 \neq 0)$$

Same functional forms

New definition of quasi-GPDs

Light-cone GPD:

$$H(z \cdot P^{s/a}, z \cdot \Delta^{s/a}, (\Delta^{s/a})^2) = A_1 + \frac{\Delta^{s/a} \cdot z}{P^{s/a} \cdot z} A_3$$

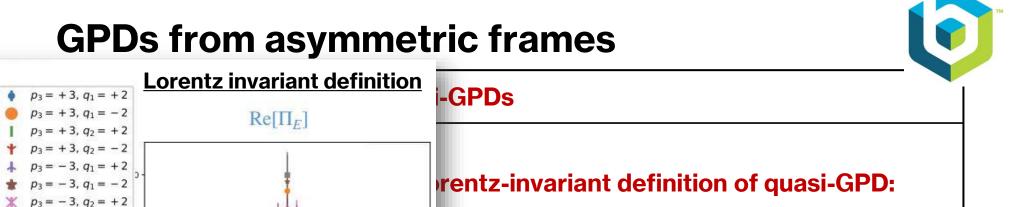
$$A_i \equiv A_i(z^2 = 0)$$

Lorentz-invariant definition of quasi-GPD:

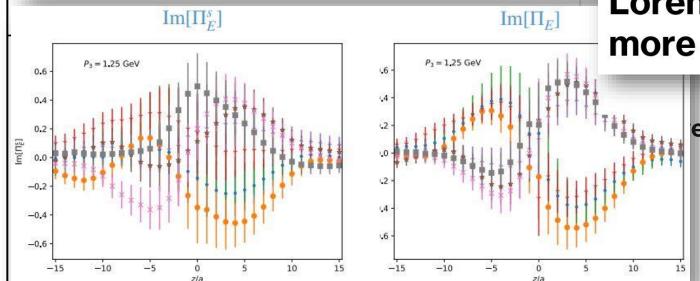
$$\mathcal{H}(z \cdot P^{s/a}, z \cdot \Delta^{s/a}, (\Delta^{s/a})^2, z^2) = A_1 + \frac{\Delta^{s/a} \cdot z}{P^{s/a} \cdot z} A_3$$
$$A_i \equiv A_i (z^2 \neq 0)$$

Feature:

Lorentz-invariant definition of quasi-GPDs may converge faster



$$P^{s/a}, z \cdot \Delta^{s/a}, (\Delta^{s/a})^2, z^2) = A_1 + \frac{\Delta^{s/a} \cdot z}{P^{s/a} \cdot z} A_3$$



Traditional definition

1,50

1.25 1.00

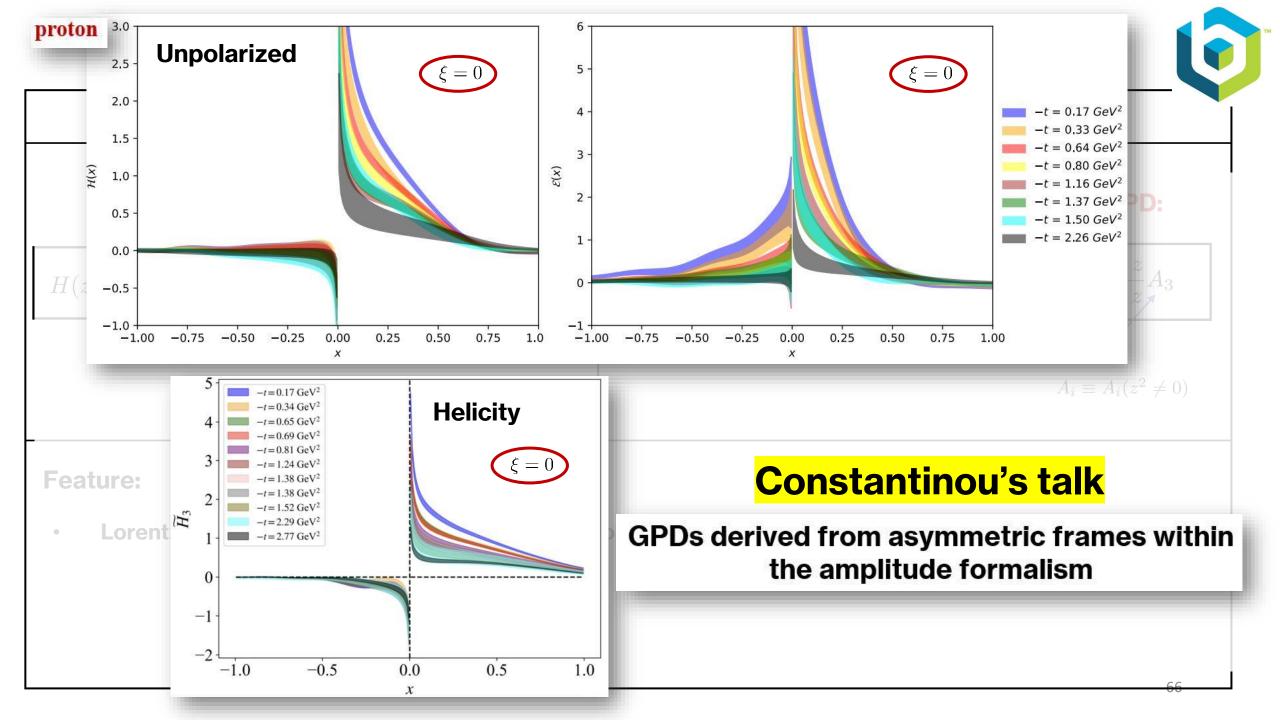
0.75 0.50 0.25

-0.25

 $\text{Re}[\Pi_{E}^{s}]$

Lorentz invariant definition leads to more precise results for GPD E

erge faster



New definition of quasi-GPDs

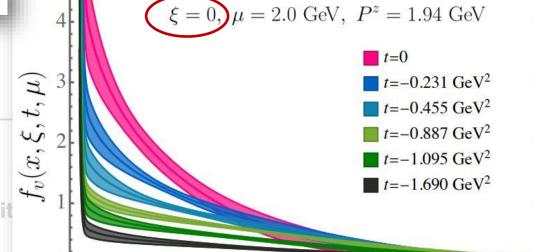
Shi's talk

Light-cone GPD:

GPDs derived from asymmetric frames within the amplitude formalism

$$H(z \cdot P^{s/a}, z \cdot \Delta^{s/a}, (\Delta$$

pion



0.4

0.6

x

0.8

0.2

0.0

$$(x^2)^2, z^2) = A_1 + \frac{\Delta^{s/a} \cdot z}{P^{s/a} \cdot z} A_3$$

$$A_i \equiv A_i(z^2 \neq 0)$$

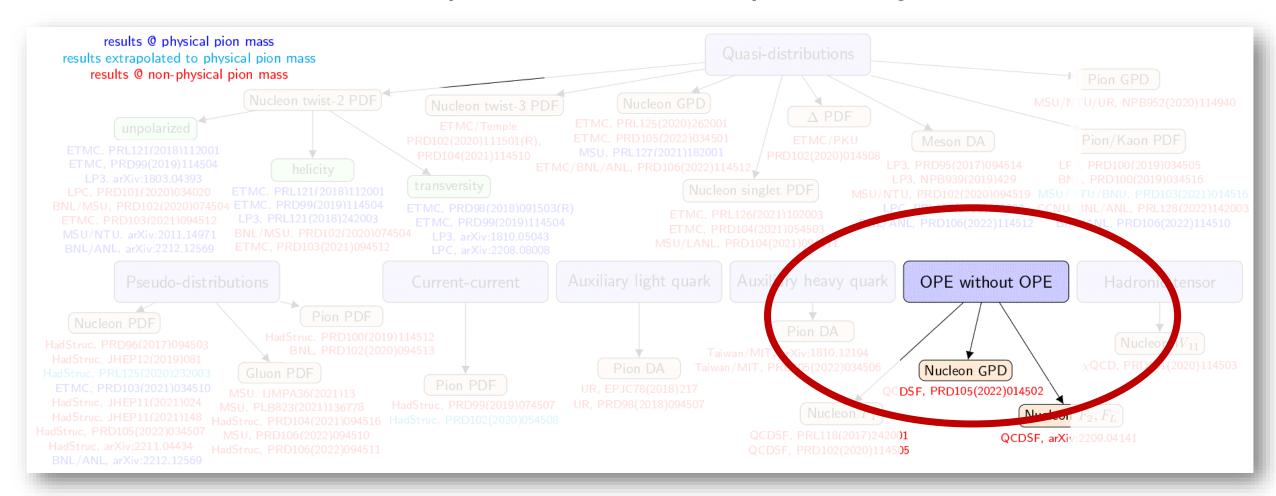
Feature:

Lorentz-invariant definit

67

Dynamical Progress of Lattice QCD calculations of PDFs/GPDs

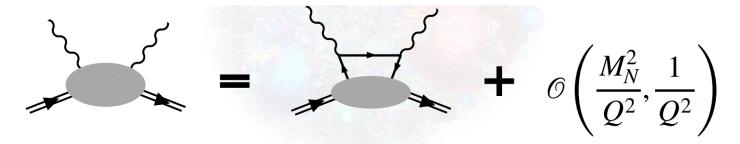
<u>Lattice QCD calculations of x-dependence of PDFs & related quantities using Euclidean correlators:</u>



Generalised parton distributions from the off-forward Compton amplitude in lattice QCD

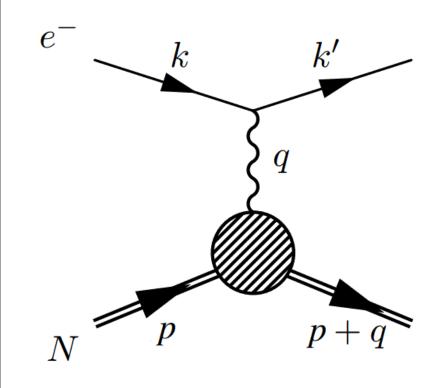
A. Hannaford-Gunn,¹ K. U. Can,¹ R. Horsley,² Y. Nakamura,³ H. Perlt,⁴ P. E. L. Rakow,⁵ G. Schierholz,⁶ H. Stüben,⁷ R. D. Young,¹ and J. M. Zanotti¹ (CSSM/QCDSF/UKQCD Collaborations)

Example: Forward Compton amplitude



Courtesy: Utku Can

Deep Inelastic Scattering (DIS)



DIS & Hadronic Tensor:

$$W_{\mu\nu} = \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right) F_1(x, Q^2)$$

$$+ \left(p_{\mu} - \frac{p \cdot q}{q^2} q_{\mu}\right) \left(p_{\nu} - \frac{p \cdot q}{q^2} q_{\nu}\right) F_2(x, Q^2)$$

$$p \cdot q$$

Forward Compton amplitude:

$$\begin{split} T_{\mu\nu}(p,q) &= i \int\! d^4z\, e^{iq\cdot z} \rho_{ss'} \langle p,s' |\, \mathcal{T}\{J_{\mu}(z)J_{\nu}(0)\} \,|\, p,s \rangle \\ &= \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right) \mathscr{F}_1(\omega,Q^2) + \left(p_{\mu} - \frac{p\cdot q}{q^2}q_{\mu}\right) \left(p_{\nu} - \frac{p\cdot q}{q^2}q_{\nu}\right) \mathscr{F}_2(\omega,Q^2) \\ & + \operatorname{Compton Structure Functions}\left(\operatorname{SF}\right) \end{split}$$

Same Lorentz decomposition as the Hadronic tensor

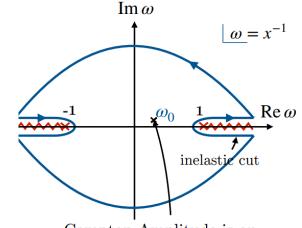
Forward Compton amplitude:

$$\begin{split} T_{\mu\nu}(p,q) &= i \int\! d^4z \, e^{iq\cdot z} \rho_{ss'} \langle p,s' | \, \mathcal{F}\{J_{\mu}(z)J_{\nu}(0)\} \, | \, p,s \rangle \\ &= \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) \mathcal{F}_1(\omega,Q^2) + \left(p_{\mu} - \frac{p\cdot q}{q^2} q_{\mu} \right) \left(p_{\nu} - \frac{p\cdot q}{q^2} q_{\nu} \right) \mathcal{F}_2(\omega,Q^2) \\ & + \mathcal{F}_2(\omega,Q^2) + \mathcal{F}_2(\omega,Q^2) \mathcal{F}_2(\omega,Q^2) \mathcal{F}_2(\omega,Q^2) \\ & + \mathcal{F}_2(\omega,Q^2) \mathcal{F}_2(\omega,Q^2) \mathcal{F}_2(\omega,Q^2) \mathcal{F}_2(\omega,Q^2) \mathcal{F}_2(\omega,Q^2) \\ & + \mathcal{F}_2(\omega,Q^2) \mathcal{F$$

Dispersion relations connecting Compton SFs to DIS SFs:

$$\begin{split} \underbrace{\mathcal{F}_1(\omega,Q^2) - \mathcal{F}_1(0,Q^2)}_{\equiv \overline{\mathcal{F}}_1(\omega,Q^2)} &= 2\omega^2 \int_0^1 dx \frac{2x \, F_1(x,Q^2)}{1 - x^2 \omega^2 - i\epsilon} \\ &= \overline{\mathcal{F}}_1(\omega,Q^2) \end{split}$$

$$\mathcal{F}_2(\omega,Q^2) = 4\omega \int_0^1 dx \frac{F_2(x,Q^2)}{1 - x^2 \omega^2 - i\epsilon}$$



Compton Amplitude is an analytic function in the unphysical region $|\omega_0| < 1$

Courtesy: Utku Can

Compton amplitude in Lattices

Forward Compton amplitude:

Compton amplitude approach gives access to moments of DIS SFs:

Example:

$$\mathcal{F}_2(\omega, Q^2) = \sum_{n=1}^{\infty} 4\omega^{2n-1} M_{2n}^{(2)}(Q^2), \text{ where } M_{2n}^{(2,L)}(Q^2) = \int_0^1 dx \, x^{2n-2} F_{2,L}(x, Q^2)$$

Compton amplitude in Lattices

Off-forward is very similar

$$T_{\mu
u} = rac{1}{2ar{ar{P}}\cdotar{ar{q}}}igg[-\Big(h\cdotar{ar{q}}\mathcal{H}_1 + e\cdotar{ar{q}}\mathcal{E}_1\Big)g_{\mu
u} + rac{1}{ar{ar{P}}\cdotar{ar{q}}}\Big(h\cdotar{ar{q}}\mathcal{H}_2 + e\cdotar{ar{q}}\mathcal{E}_2\Big)ar{ar{P}}_\muar{ar{P}}_
u + \mathcal{H}_3h_{\{\mu}ar{ar{P}}_{
u\}}igg] + \dots$$

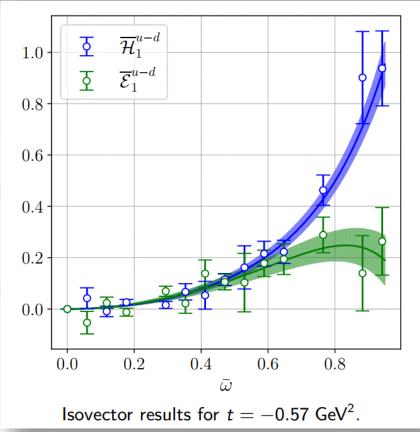
Compton amplitude:

This approach gives access to moments GPDs:

Compton amplitude approac

Example:

$$\mathcal{F}_2(\omega, Q^2) = \sum_{n=1}^{\infty} 4\omega^{2n-1}$$



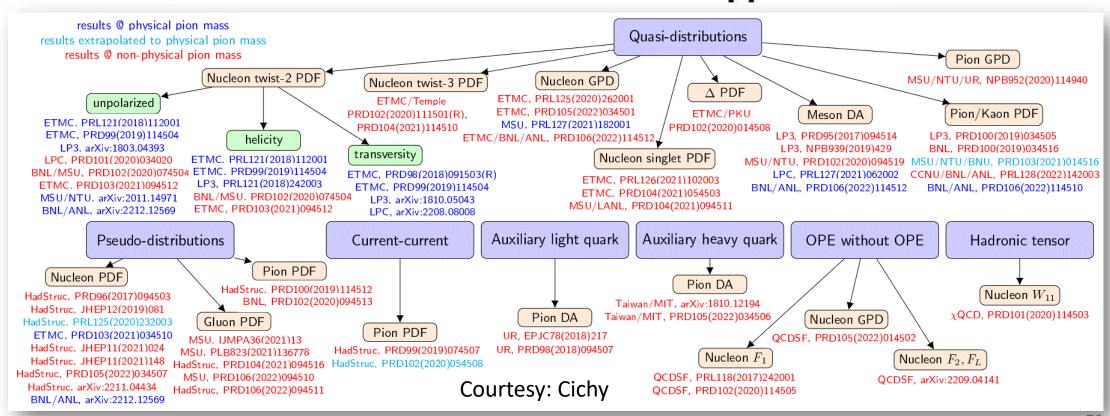
Summary

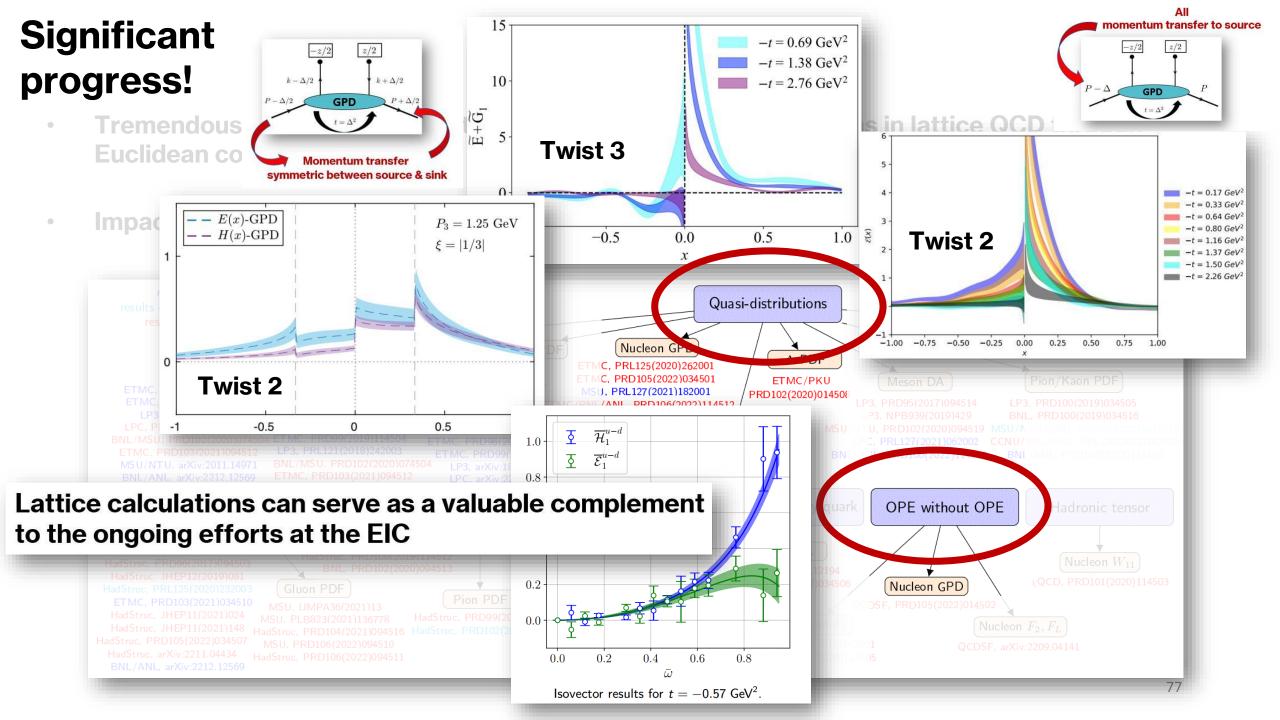
- Tremendous recent activity in studying parton structure of hadrons in lattice QCD through Euclidean correlators
- Impact of approach(es) largest where experiments are difficult → GPDs

Summary

- Tremendous recent activity in studying parton structure of hadrons in lattice QCD through Euclidean correlators
- Impact of approach(es) largest where experiments are difficult → GPDs

Overview of Euclidean-correlator approaches





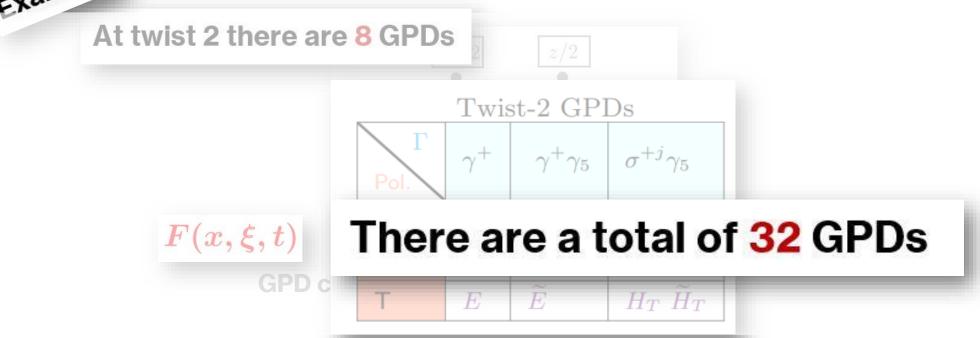
Outlook

- Improving perturbative calculations
- Better understanding of power corrections
- Synergy with phenomenology ...

Backup slides

Example:

What are Generalized Parton Distributions?

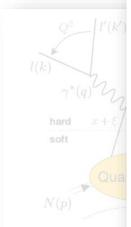


Definition of GPD correlator:

$$F^{[\Gamma]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p'; \lambda' | \bar{\psi}(-\frac{\xi}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p; \lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

Physical processes sensitive to GPDs

(list not exhaustive)



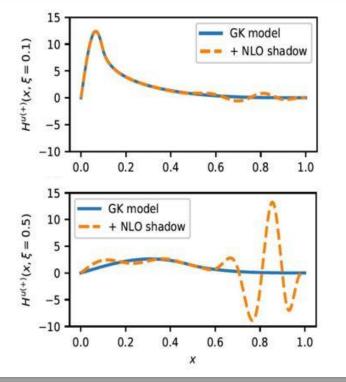
Shadow GPDs

Deconvolution problem of deeply virtual Compton scattering

V. Bertone[®], ^{1,*} H. Dutrieux[®], ^{1,†} C. Mezrag[®], ^{1,‡} H. Moutarde[®], ^{1,§} and P. Sznajder[®], ^{2,||}

$$F(x,\xi,t) \to F(x,\xi,t) + S(x,\xi,t)$$
 with
$$\int_{-1}^{1} \mathrm{d}x \, \frac{S(x,\xi,t)}{x-\xi+i\varepsilon} = 0$$

Blue and dashed Fit the same CFFs!



Check out! **Progress of Lattice QCD calculations of PDFs/GPDs**

result results extra

results (

Hindawi

un

ETMC. PRL1 ETMC, PRD LP3, arXiv LPC, PRD101 BNL/MSU, PRE ETMC, PRD10 MSU/NTU, ar BNL/ANL, ar

HadStruc, PRD96 HadStruc, JHEP HadStruc, PRL125 ETMC, PRD103 HadStruc, JHEP HadStruc, JHEP HadStruc, PRD1050

HadStruc, arXiv:2

BNL/ANL, arXiv:2212.1256

Nucleon P

Advances in High Energy Physics Volume 2019, Article ID 3036904, 68 pages https://doi.org/10.1155/2019/3036904

Review Article

A Guide to Light-Cone PDFs from Lattice QCD: An Overview of Approaches, Techniques, and Results

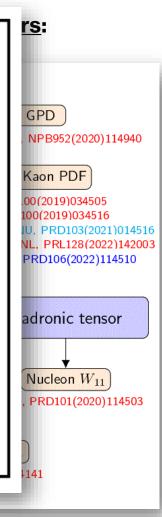
Krzysztof Cichy 10 and Martha Constantinou 10 2

¹Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

²Department of Physics, Temple University, Philadelphia, PA 19122 - 1801, USA

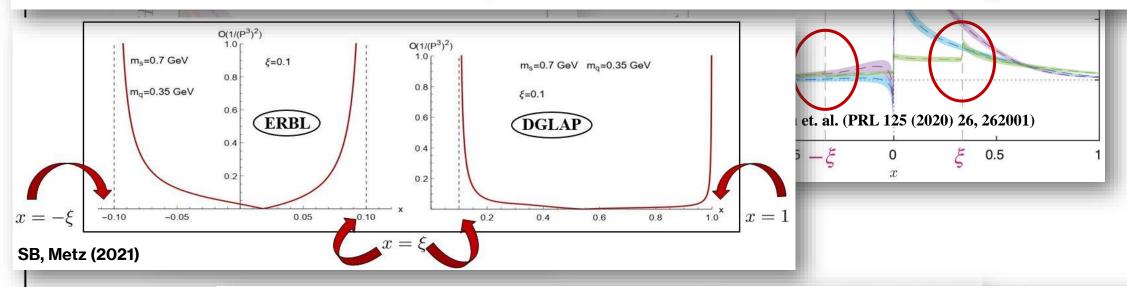
Correspondence should be addressed to Martha Constantinou; marthac@temple.edu

Received 17 November 2018; Accepted 15 January 2019; Published 2 June 2019



First Lattice QCD results of the x-dependent GPDs

Power corrections for quasi-GPDs in a Scalar Diquark Model



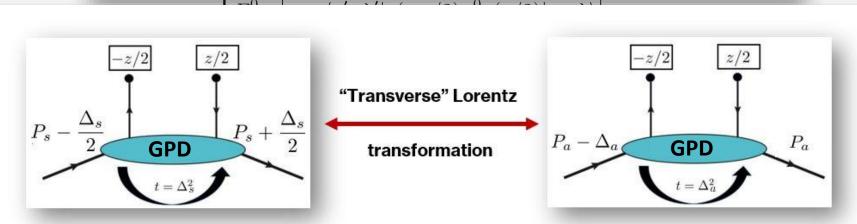
Our prediction regarding the structure of divergence: $q_{\mathbf{Q}}(x) \approx \mathcal{O}\left(\frac{1}{(x+\xi)(x-\xi)(1-x)P_3^2}\right)$

GPDs from asymmetric frames

Historic definitions of quasi-GPDs H & E are not manisfestly Lorentz invariant

Think about how γ^0 transforms under Lorentz transformation

Tra (s



 (γ_s,λ)

Symmetric frame

$$-z^3/2$$
 ψ

"Transverse" with respect to Wilson Line

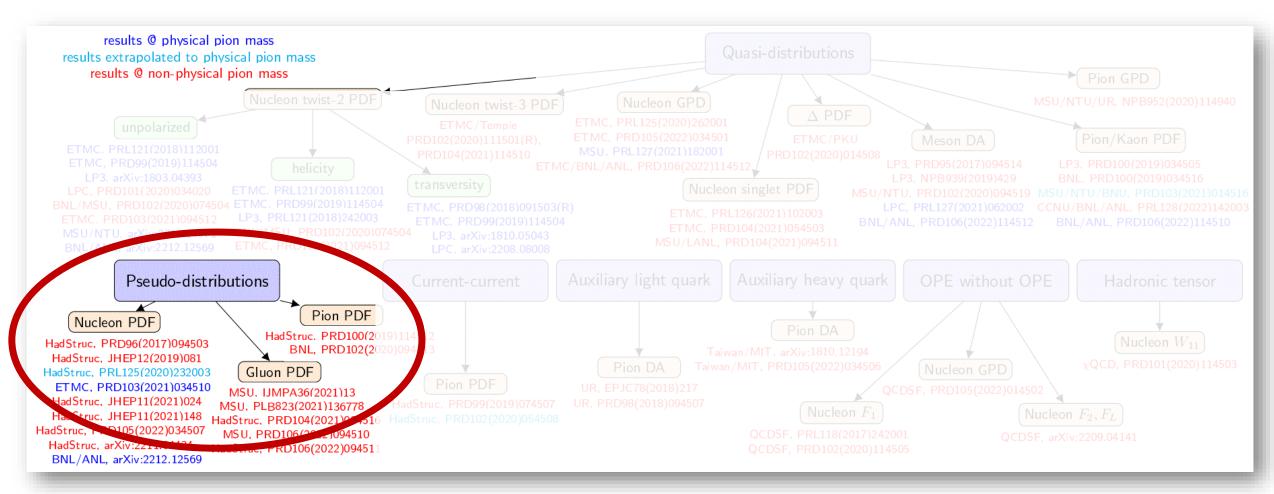
$$F_s^0 = \gamma F_0^a - \gamma \beta F_\perp^a$$

$$\beta = -\sqrt{\frac{E_i^a - E_f^a}{E_i^a + E_f^a}} < 0$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Dynamical Progress of Lattice QCD calculations of PDFs/GPDs

<u>Lattice QCD calculations of x-dependence of PDFs & related quantities using Euclidean correlators:</u>

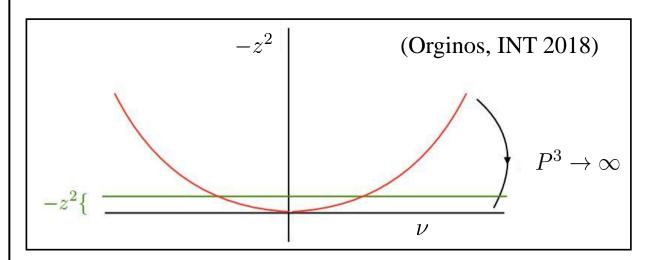


Pseudo-GPD approach

Generalized Parton Distributions and Pseudo-Distributions

A. V. Radyushkin^{1, 2}

Sketch of the approach:



Quasi-PDF: Fixed P^3

$$Q(x, P^3) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \, e^{-ix\nu} \left(\frac{z}{p} \right) \frac{0}{p}$$

Pseudo-PDF: Fixed z^2

$$P(x, -z^{2}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \, e^{-ix\nu} \left(\frac{z}{p} \right) \frac{0}{p}$$

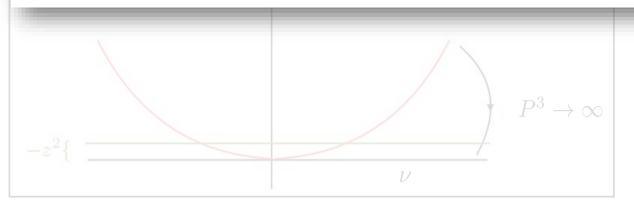
Pseudo-GPD approach

Generalized Parton Distributions and Pseudo-Distributions

A. V. Radyushkin^{1,2}

Quasi-PDF: (fixed P^3)

Progress is steadily advancing & we anticipate forthcoming results regarding GPDs from the pseudo-GPD approach



Pseudo-PDF : (fixed z^2)

$$P(x, -z^{2}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \, e^{-ix\nu} \int_{p}^{\infty} d\nu \, e^{-ix\nu} \int_{$$