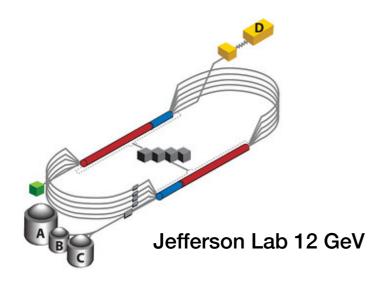
Lattice QCD Calculation of TMD Physics

25th International Spin Symposium (SPIN 2023)

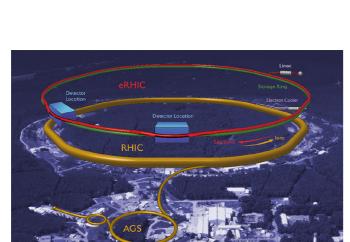
Durham Convention Center, Durham, NC, USA Sep 24-29, 2023

> YONG ZHAO SEP 28, 2023

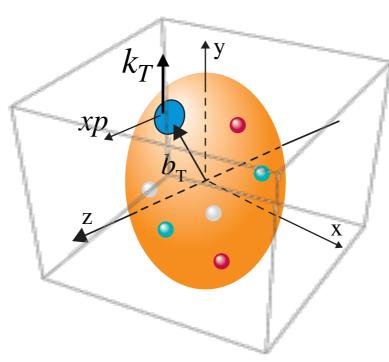

Outline

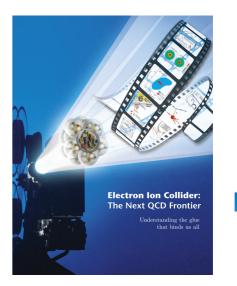
TMDs from experiments

Lattice methods for TMD calculation

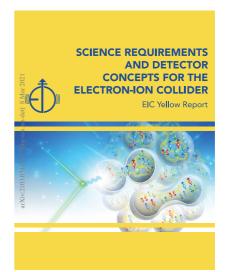

Results from lattice QCD

3D Imaging of the Proton





COMPASS, CERN


The Electron-Ion Collider, BNL

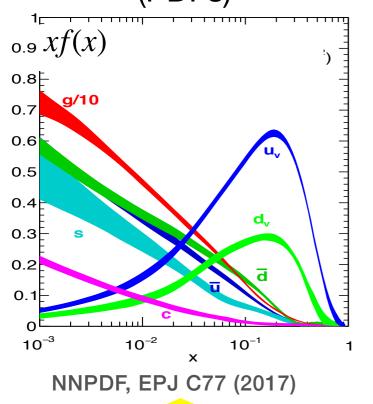
Parton Distribution Functions (PDFs)

0.9

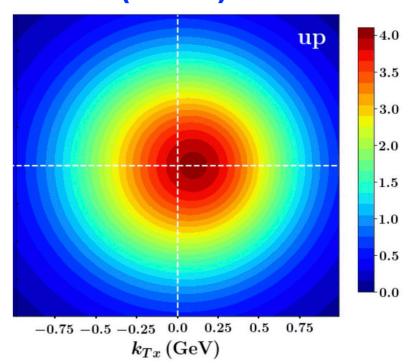
0.8

0.7

0.6

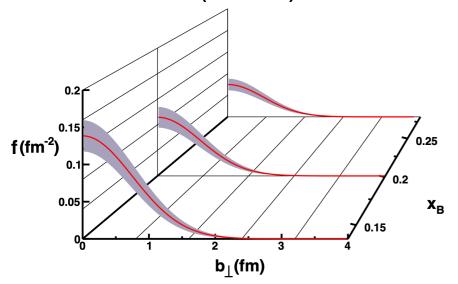

0.5

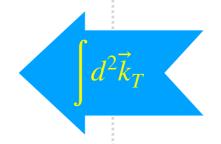
0.4


0.3

0.2

0.1


Transvers momentum distributions (TMDs)


Cammarota, et al. (JAM), PRD 102 (2020).

$\int_{0}^{\infty} d^{2}\vec{b}_{T}$ ed parton distribut

Generalized parton distributions (GPDs)

W. Armstrong et al., arXiv: 1708.00888.

xτ(x,μ=τυ GeV²)

Wigner distributions/Generalized TMDs

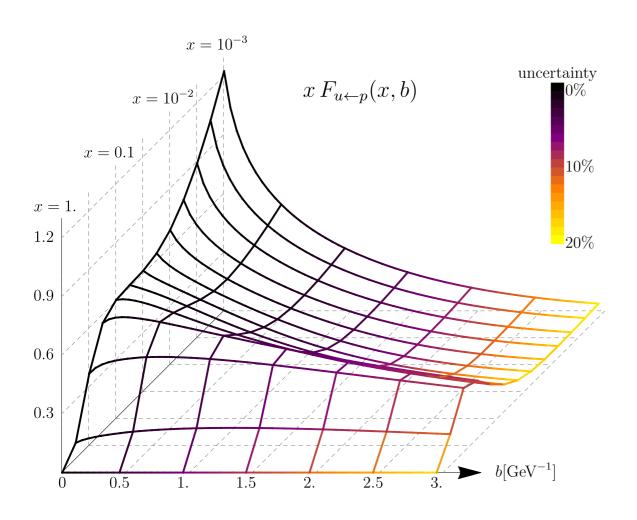
$$W(x, \vec{k}_T, \vec{b}_T)$$

TMDs from global analyses

e.g., semi-inclusive DIS: $l + p \longrightarrow l + h(P_h) + X$

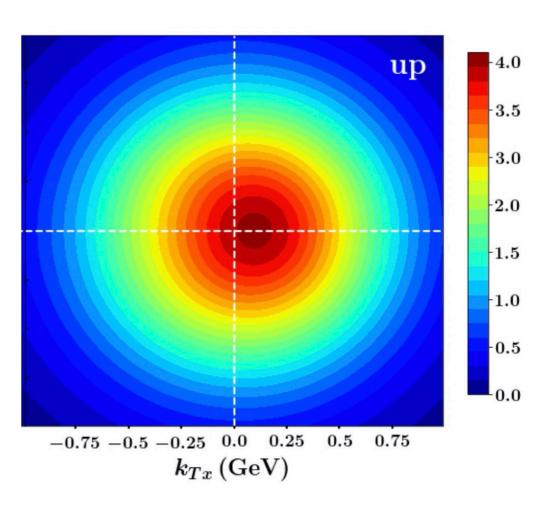
$$\frac{d\sigma}{dxdydz_hd^2\mathbf{P}_{hT}} \sim \int d^2\mathbf{b}_T \ e^{i\mathbf{b}_T \cdot \mathbf{P}_{hT}/z}$$

$$\times f_{i/p}(x, \mathbf{b}_T, Q, Q^2) \ D_{h/i}(z_h, \mathbf{b}_T, Q, Q^2) + Y(P_{hT}, Q) + \mathcal{O}(\frac{\Lambda_{\text{QCD}}}{Q}) \quad \text{Kang, Prokudin, Sun and Yuan, PRD 93} \tag{2016}$$


$$\begin{split} f_{i/p}(x,\mathbf{b}_T,\mu,\zeta) &= f_{i/p}^{\mathrm{pert}}(x,b^*(b_T),\mu,\zeta) \\ &\times \left(\frac{\zeta}{Q_0^2}\right)^{g_K(b_T)/2} \xrightarrow{\qquad\qquad} \begin{array}{c} \text{Collins-Soper kernel} \\ \text{(Non-perturbative part)} \\ \text{Intrinsic TMD} \\ \end{split}$$

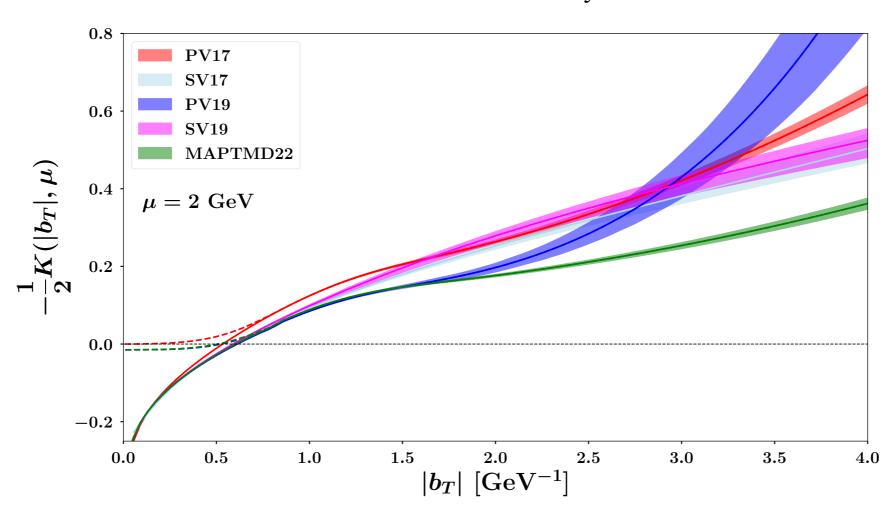
 $Q_0 \sim 1 \text{ GeV}$

Non-perturbative when $b_T \sim 1/\Lambda_{\rm QCD}$!


TMDs from global analyses

Unpolarized quark TMD

Scimemi and Vladimirov, JHEP 06 (2020).


Quark Sivers function

Cammarota, Gamberg, Kang et al. (JAM Collaboration), PRD 102 (2020).

TMDs from global analyses

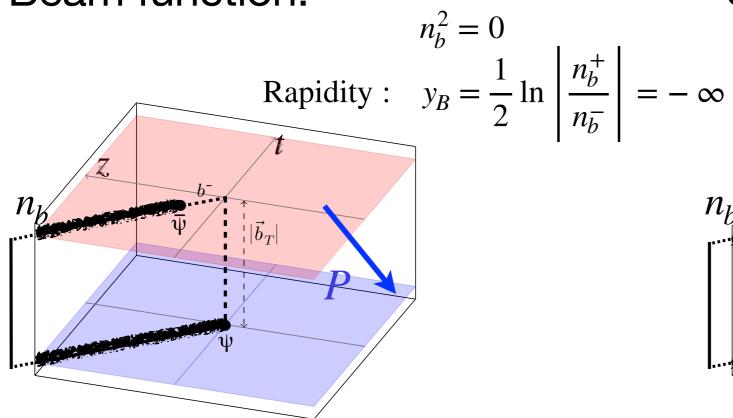
Collins-Soper Kernel $K(b_T, \mu)$ or $\gamma_{\zeta}(b_T, \mu)$ $K(b_T, \mu) = K^{\text{pert}}(b_T, \mu) + g_K(b_T)$

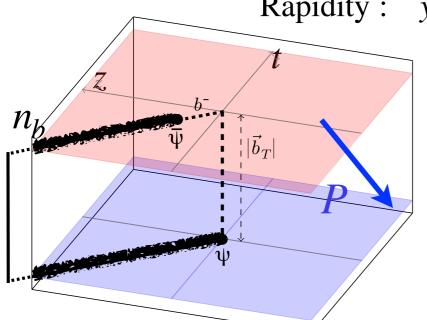
Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, JHEP 10 (2022).

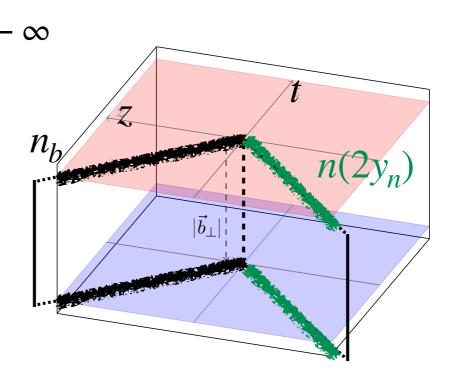
See A. Bacchetta's talk on Tue and A. Prokudin's talk on Thu.

Outline

TMDs from experiments


Lattice methods for TMD calculation


Results from lattice QCD

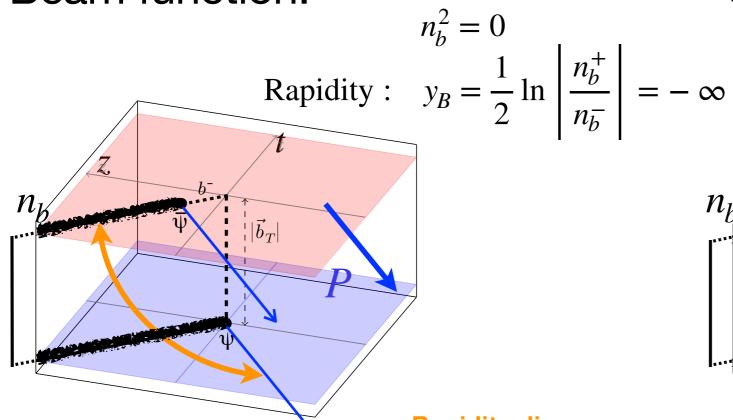

TMD definition

Beam function:

Hadronic matrix element

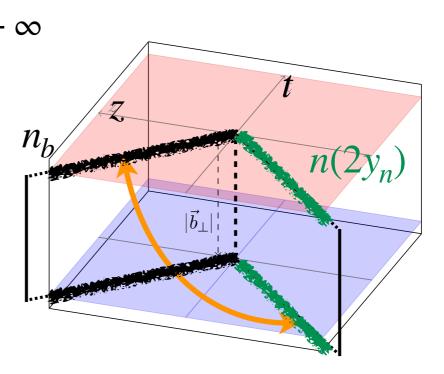
Vacuum matrix element

$$f_i(x, \mathbf{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{\tau \to 0} \frac{B_i}{\sqrt{S^q}}$$


Collins-Soper scale: $\zeta = 2(xP^+e^{-y_n})^2$

Rapidity divergence regulator

TMD definition


Beam function:

Hadronic matrix element

Rapidity divergences

Vacuum matrix element

$$f_i(x, \mathbf{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{\tau \to 0} \frac{B_i}{\sqrt{S^q}}$$

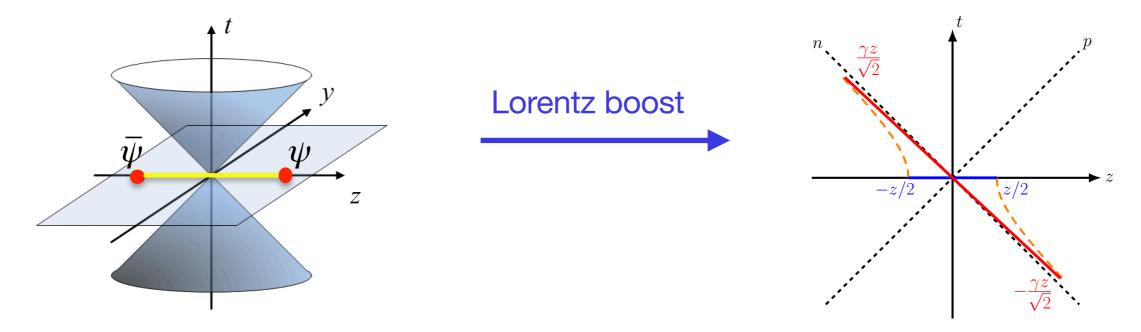
Collins-Soper scale: $\zeta = 2(xP^+e^{-y_n})^2$

Rapidity divergence regulator

Simulating partons on the lattice

•
$$P = \infty$$
 hadron state? $X P \ll \frac{2\pi}{a}!$

Light-cone correlations?


$$z + ct = 0$$

 $z - ct \neq 0$ Real-time sign problem $\textcircled{2}$

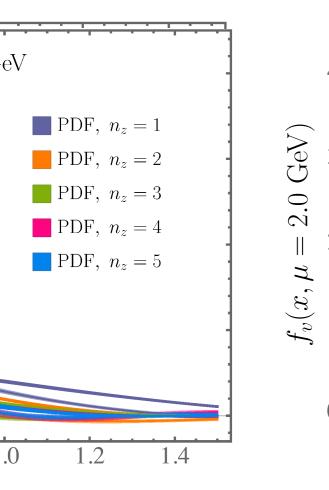
Nevertheless, it is possible to approach the Feynman partons by simulating a boosted hadron on the lattice ©

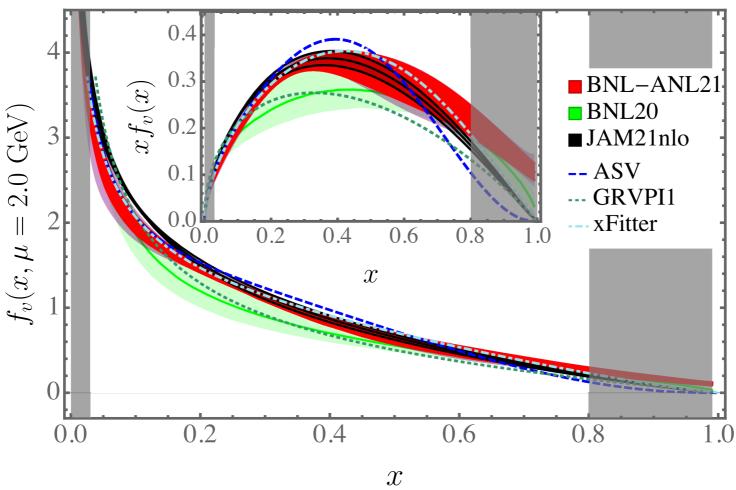
Large-Momentum Effective Theory (LaMET)

A quasi-PDF $\tilde{f}(x, P^z)$ to expand from:

- X. Ji, PRL 110 (2013); SCPMA 57 (2014).
- X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, RMP 93 (2021).

Power expansion and effective theory matching:

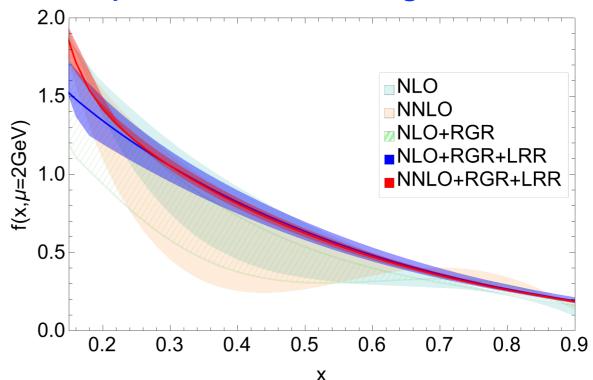

$$f(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} \bar{C}\left(\frac{x}{y}, \frac{\mu}{2xP^z}, \frac{\tilde{\mu}}{\mu}\right) \tilde{f}(y, P^z, \tilde{\mu}) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{(xP^z)^2}, \frac{\Lambda_{\text{QCD}}^2}{((1-x)P^z)^2}\right)$$


- X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);
- Y. Ma and J. Qiu, PRD 98 (2018);
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD 98 (2018)

Reliable prediction within $[x_{min}, x_{max}]$ at a given finite P^z !

Lattice calculation of pion valence PDF at NNLO

BNL-ANL21, Gao, Hanlon, Mukherjee, Petreczky, Scior, Syritsyn and YZ, PRL128 (2022).

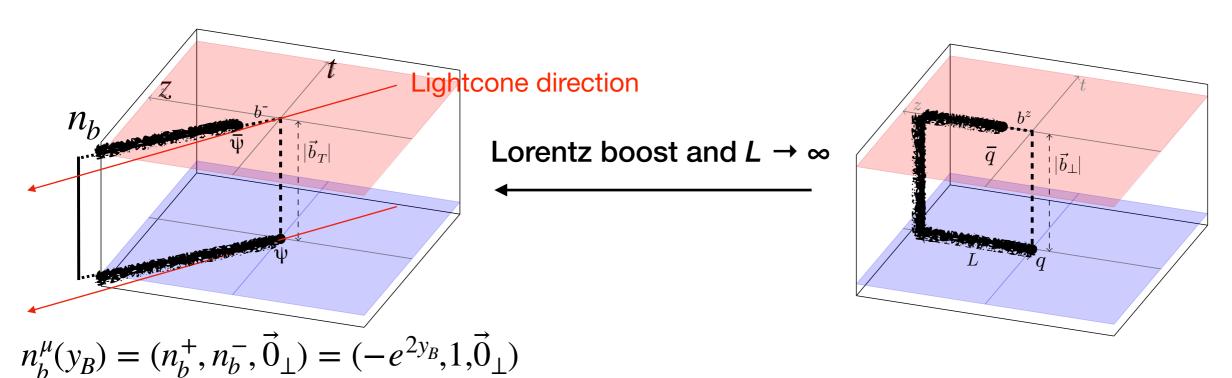

- **JAM21nlo**, PRL **127** (2021);
- xFitter (2020), PRD 102 (2020);
- ASV, PRL 105 (2010);
- **GRVPI1**, ZPC 53 (1992);
- BNL20, X. Gao, N. Karthik, YZ, et al., PRD 102 (2020).

Towards better perturbative and power precisions

$$f(x,\mu) = U^{\text{RGR}}(\mu, 2xP^z) \otimes \int_{-\infty}^{\infty} \frac{dy}{|y|} \bar{C}_{\text{LRR}}\left(\alpha_s(2xP^z), \frac{x}{y}, 1, \frac{\tilde{\mu}}{2xP^z}\right) \tilde{f}(y, P^z, \tilde{\mu})$$

- Holligan, Ji, Lin, Su and R. Zhang, NPB 993 (2023);
- R. Zhang, Ji, Holligan and Su, PLB 844 (2023);
- X. Gao, K. Lee, and YZ et al., PRD 103 (2021).
- $+ \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{|xP^z|}\right) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{(xP^z)^2}, \frac{\Lambda_{\text{QCD}}^2}{((1-x)P^z)^2}\right)$
- RGR: renormalization group resummation, resuming small x logarithms.
- LRR: leading-renormalon resummation, summing the asymptotic series in the Wilson line self-energy, improving power accuracy to $1/P_z^2$.
- THR: threshold resummation, resuming the large x logarithms.
 - X. Gao, K. Lee, and YZ et al., PRD 103 (2021);
 - X. Ji, Y. Liu and Y. Su, JHEP **08** (2023).

Better perturbative convergence with LRR!

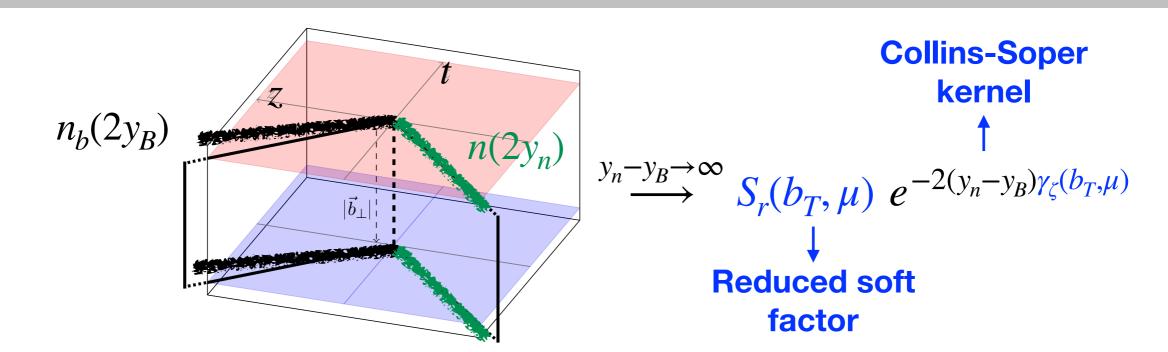

Zhang, Ji, Holligan and Su, PLB 844 (2023).

See Q. Shi's talk on Wed for on application to pion GPD.

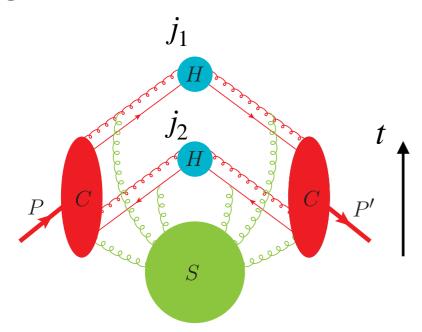
Quasi TMD in LaMET

Beam function in Collins scheme:

Quasi beam function :


Spacelike but close-to-lightcone

$$(y_B \to -\infty)$$
 Wilson lines, not


calculable on the lattice

Equal-time Wilson lines, directly calculable on the lattice

Soft factor

Light-meson form factor:

$$F(b_T, P^z) = \langle \pi(-P) | j_1(b_T) j_2(0) | \pi(P) \rangle$$

$$\stackrel{P^z \gg m_N}{=} S_r(b_T, \mu) \int dx dx' \ H(x, x', \mu)$$

$$\times \Phi^{\dagger}(x, b_T, P^z, \mu) \Phi(x', b_T, P^z, \mu)$$

 $\Phi(x, b_T, P^z, \mu)$: quasi-TMD wave function

- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ji and Liu, PRD 105 (2022);
- Deng, Wang and Zeng, JHEP 09 (2022).

Factorization formula for the quasi-TMDs

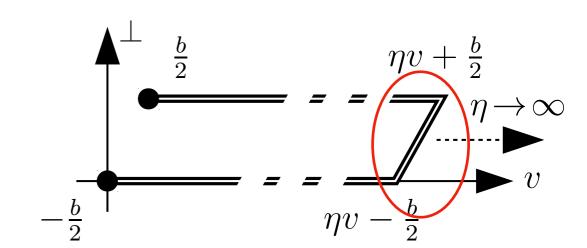
$$\frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z})}{\sqrt{S_{r}(b_{T}, \mu)}} = C(\mu, x\tilde{P}^{z}) \exp\left[\frac{1}{2}\gamma_{\zeta}(\mu, b_{T})\ln\frac{(2x\tilde{P}^{z})^{2}}{\zeta}\right] \times f_{i/p}^{[s]}(x, \mathbf{b}_{T}, \mu, \zeta) \left\{1 + \mathcal{O}\left[\frac{1}{(x\tilde{P}^{z}b_{T})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{(x\tilde{P}^{z})^{2}}\right]\right\}$$

Matching coefficient:

Independent of spin;

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 09 (2020);
- Vladimirov and Schäfer, PRD 101 (2020);
- Ji, Liu, Schäfer and Yuan, PRD 103 (2021);
- Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).
- No quark-gluon or flavor mixing, which makes gluon calculation much easier.
 - Schindler, Stewart and YZ, JHEP 08 (2022);
 - Zhu, Ji, Zhang and Zhao, JHEP 02 (2023).

Factorization formula for the quasi-TMDs


$$\frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{\sqrt{S_r(b_T, \mu)}} = C(\mu, x\tilde{P}^z) \exp\left[\frac{1}{2}\gamma_{\zeta}(\mu, b_T)\ln\frac{(2x\tilde{P}^z)^2}{\zeta}\right] \times f_{i/p}^{[s]}(x, \mathbf{b}_T, \mu, \zeta) \left\{1 + \mathcal{O}\left[\frac{1}{(x\tilde{P}^z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right]\right\}$$

- * Collins-Soper kernel; $\gamma_{\zeta}(\mu, b_T) = \frac{d}{d \ln \tilde{P}^z} \ln \frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{C(\mu, x\tilde{P}^z)}$
- * Flavor separation; $\frac{f_{i/p}^{[s]}(x, \mathbf{b}_T)}{f_{j/p}^{[s']}(x, \mathbf{b}_T)} = \frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T)}{\tilde{f}_{j/p}^{\text{naive}[s']}(x, \mathbf{b}_T)}$
- * Spin-dependence, e.g., Sivers function (single-spin asymmetry);
- * Full TMD and TMD wave function kinematic dependence.
- * Twist-3 PDFs from small b_T expansion of TMDs. Ji, Liu, Schäfer and Yuan, PRD 103 (2021).
- * Sub-leading power TMDs. Rodini and Vladimirov, JHEP 08 (2022).

Lorentz-invariant (LI) approach

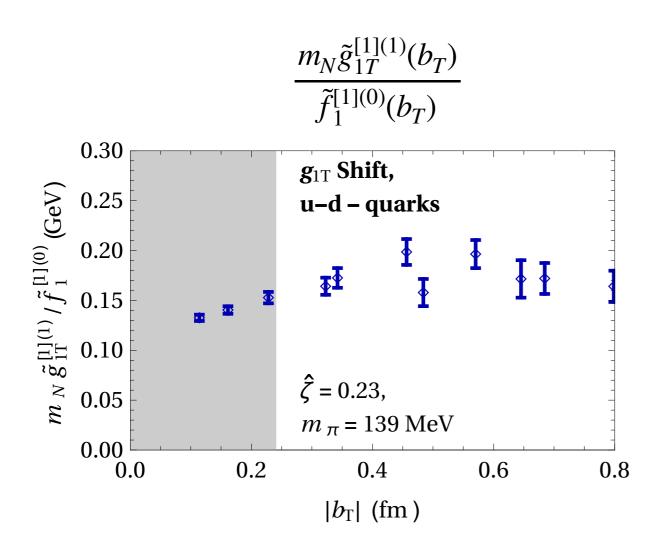
 Wilson line geometry ensuring maximal Lorentz symmetry.

 Lorentz-covariant decomposition of the lattice TMD correlator.

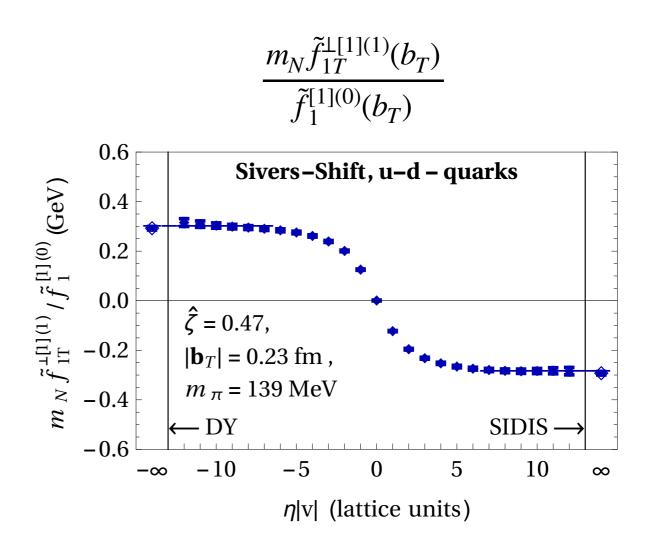
 Amplitudes related to the beam function by Lorentz invariance.

 Ratios of TMDs can be calculated at leading order in perturbation theory. Hägler, Musch, Engelhardt, Negele, Schäfer, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 (2016), 1601.05717, PRD96 (2017).

Factorization theorem yet to be derived.


Outline

TMDs from experiments


Lattice methods for TMD calculation

Results from lattice QCD

Ratio of TMD moments from the LI approach

M. Engelhardt, et al., PoS LATTICE2022 (2023)

M. Engelhardt, et al., TMD Handbook, 2304.03302.

Collins-Soper kernel from LaMET

$$\gamma_{\zeta}^{q}(\mu,b_{T}) = \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C(\mu,xP_{2}^{z}) \int db^{z} \ e^{ib^{z}xP_{1q}^{z}} \tilde{Z}'(bp,\mu)\mu, \tilde{\mu}'_{0}^{z} \tilde{Z}''(bp,\mu)\mu, \tilde{\mu}'_{0}^{z}$$

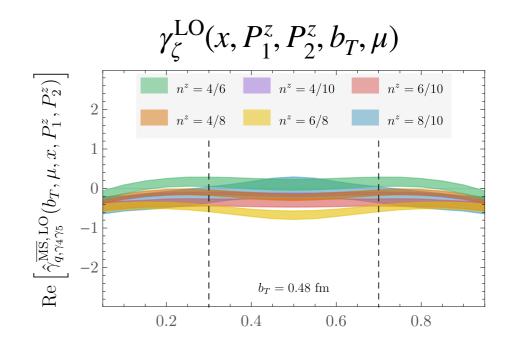
Perturbative Renormalization (and operator mixing) $\eta = 1/(p^z b_T) M/v^z$

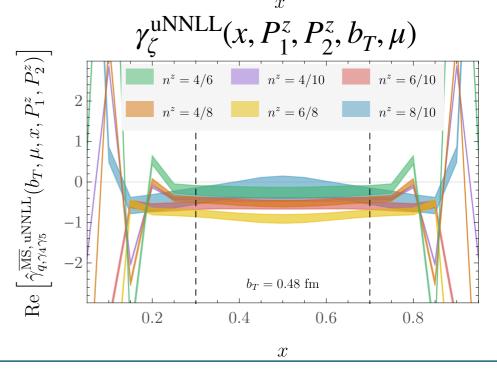
$$1/(p^z b_T)$$
 M/v^z

$$\times \left\{ 1 + \mathcal{O}\left[\frac{1}{(x\tilde{P}^{z}b_{T})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{(x\tilde{P}^{z})^{2}}, \frac{1}{((1-x)\tilde{P}^{z}b_{T})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{((1-x)\tilde{P}^{z}b_{T})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{((1-x)\tilde{P}^{z}b_{T})^{2}}\right] \right\}$$

Power corrections

Current status for the Collins-Soper kernel


	Pion mass	Renormalization	Operator mixing	Fourier transform	Matching	x-plateau search
SWZ20 PRD 102 (2020) Quenched	$m_{\pi} = 1.2 \text{ GeV}$	Yes	Yes	Yes	LO	Yes
LPC20 PRL 125 (2020)	$m_{\pi} = 547 \text{ MeV}$	N/A	No	N/A	LO	N/A
SVZES JHEP08 (2021), 2302.06502	$m_{\pi} = 422 \text{ MeV}$	N/A	No	N/A	NLO	N/A
PKU/ETMC 21 PRL 128 (2022)	$m_{\pi} = 827 \text{ MeV}$	N/A	No	N/A	LO	N/A
SWZ21 PRD 106 (2022)	$m_{\pi} = 580 \text{ MeV}$	Yes	Yes	Yes	NLO	Yes
LPC22 PRD 106 (2022)	$m_{\pi} = 670 \text{ MeV}$	Yes	No	Yes	NLO	Yes
LPC23 JHEP 08 (2023)	$m_{\pi} = 220 \text{ MeV}$	Yes	No	Yes	NLO	Yes
ASWZ23 2307.12359	$m_{\pi} = 148.8 \; {\rm MeV}$	Yes	Yes	Yes	NNLL	Yes


Inproved calculation at physical pion mass

Φ: Quasi-TMD Wave function

- Close-to-Physical pion mass
 - Better suppressed power corrections
- More stable Fourier transform
- Renormalization of nonlocal operator
 - Systematic treatment of operator mixing using the RI-xMOM scheme
- Green, Jansen and Steffens, PRL 121 (2018) and PRD 101 (2020).
- Constantinou, Panagopoulos, and Spanoudes, PRD 99 (2019).

A. Avkhadiev, P. Shanahan, M. Wagman and YZ, 2307.12359.

Matching and (perturbative) power corrections

Matching correction:

$$\delta \gamma_q(x, P_1^z, P_2^z, \mu) = \frac{1}{\ln(P_1^z/P_2^z)} \left[\ln \frac{C(xP_2^z, \mu)}{C(xP_1^z, \mu)} + x \to \bar{x} \right] , \quad C(p^z, \mu) = C(p^z, 2p^z)$$
Up to NNLO

Collinear v.s. TMD factorization:

- $p^z \gg \Lambda_{\rm OCD}$ so a factorization exists.
 - If $p^z b_T \gg 1$, TMD region.
 - If $p^z b_T \ll 1$, collinear region.
 - If $p^z b_T \sim 1$, collinear but with calculable power corrections.

e.g.,
$$p^z=2$$
 GeV, $b_T=0.2$ fm, $p^z*b_T=2$

$C(p^z, \mu) = C(p^z, 2p^z)$ ex	$\exp\left[K(p^z,2p^z)\right]$
Up to NNLO	Up to N ³ LL

- del Río and Vladimirov, 2304.14440.
- Ji, Liu and Su, JHEP 08 (2023).
- Braun, Chetyrkin and Kniehl, JHEP 07 (2020).
- Stewart, Tackmann and Waalewijn, JHEP 09 (2010).

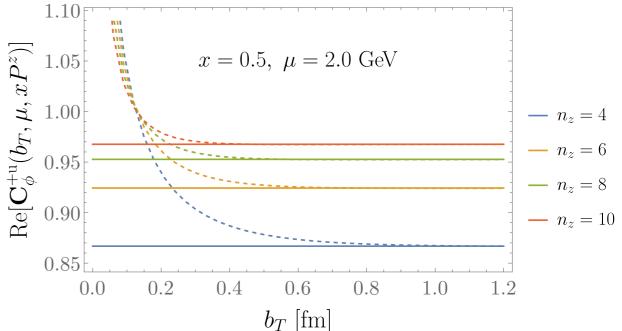
Accuracy	K_{Γ}	K_{γ_C}	$K_{\gamma_{\mu}}$	η	C_{ϕ}
NLL	2	1	1	1	0
NNLL	3	2	2	2	1

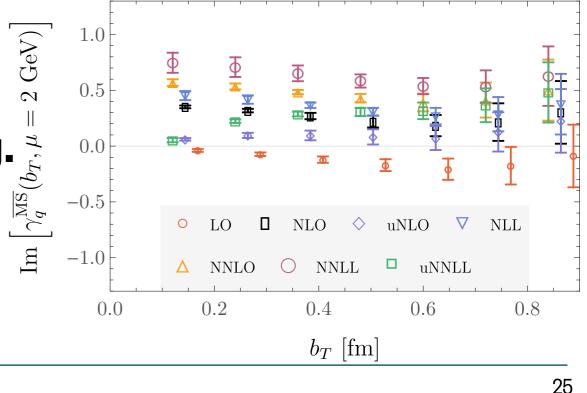
Matching and (perturbative) power corrections

Unexpanded matching coefficient:

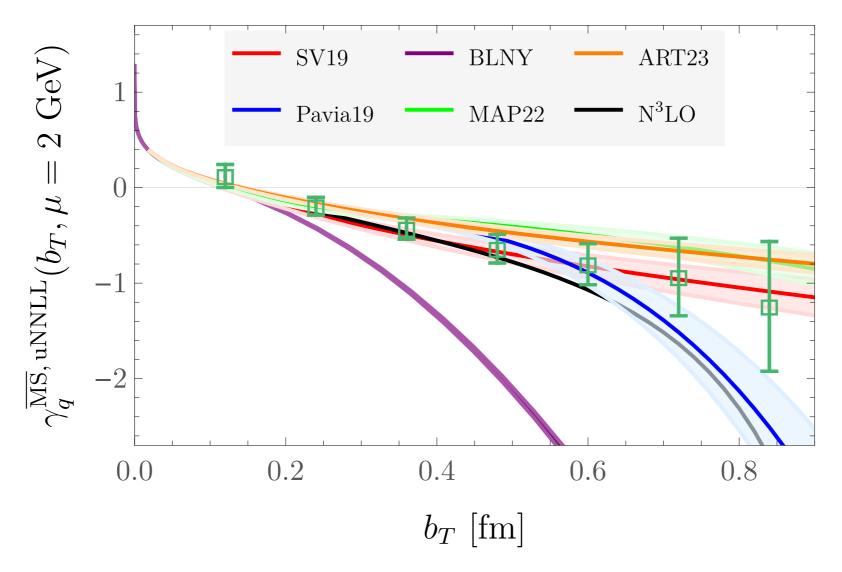
$$C^{\text{uNLO}}(p^z, b_T, \mu) = C(p^z, \mu) + \delta C(p^z, b_T)$$

$$\lim_{p^z b_T \to \infty} \delta C(p^z, b_T) = 0$$

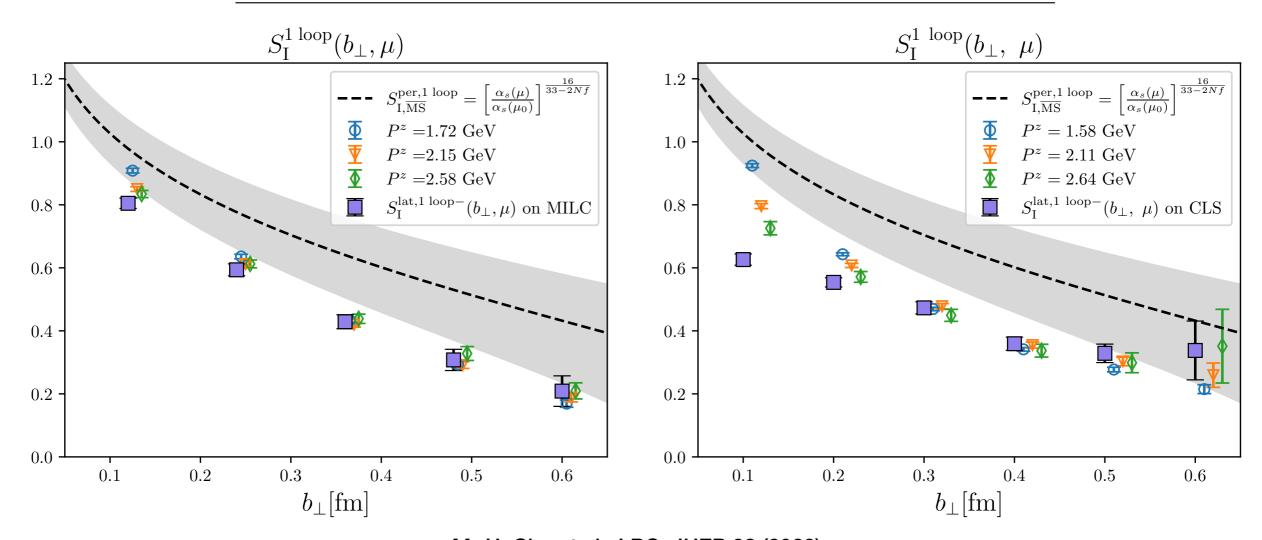

$$C^{\text{uNNLL}}(p^z, b_T, \mu) = C^{\text{uNLO}}(p^z, b_T 2p^z)$$


$$\times \exp\left[K^{\text{NNLL}}(p^z, 2p^z)\right]$$

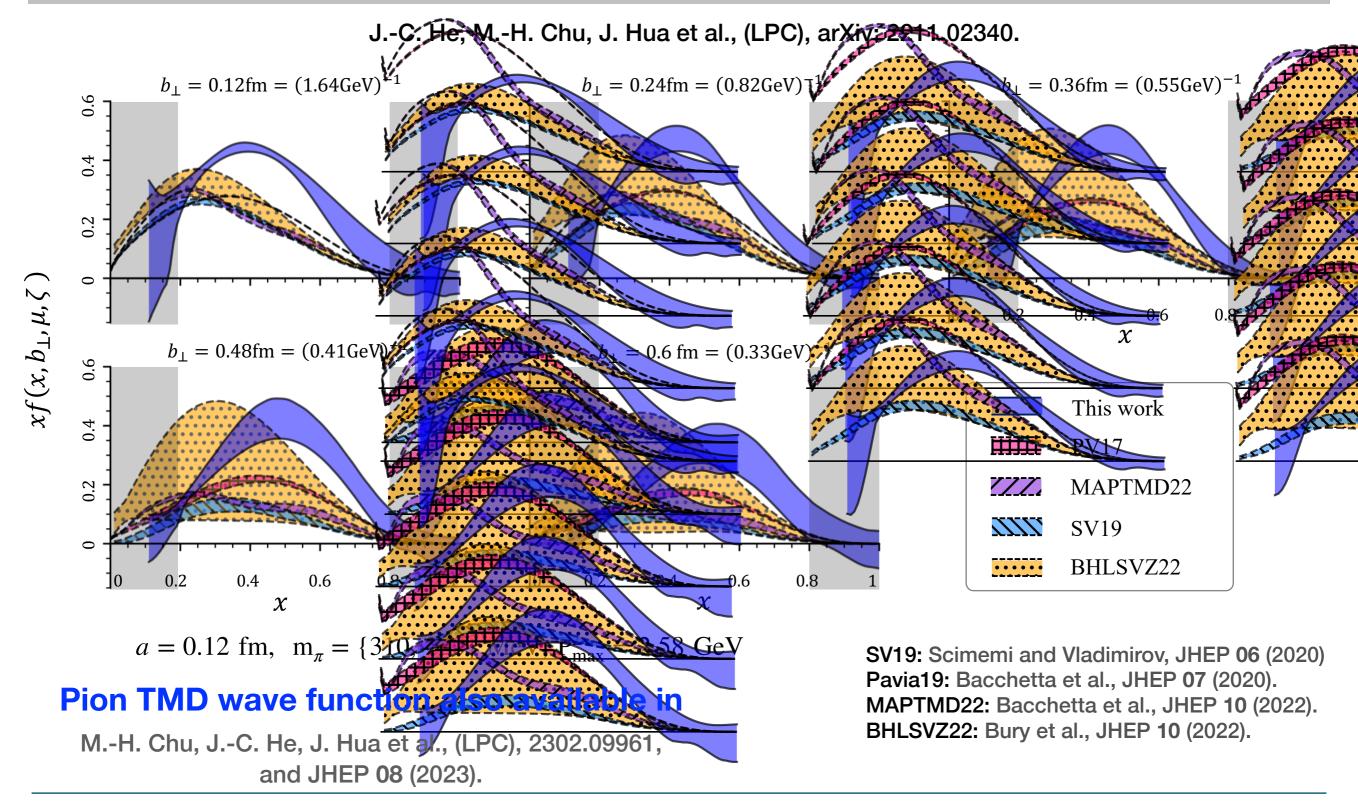
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Deng, Wang and Zeng, JHEP 09 (2022).


- Significantly reduced with the unexpanded matching!
- Convergence in Pz also improved.

Collins-Soper kernel from lattice at NNLL


Final result in comparison with global fits and perturbative QCD

SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020)
Pavia19: A. Bacchetta et al., JHEP 07 (2020)
BLNY: Landry, Brock, Nadolsky and Yuan, PRD 67 (2003)


Reduced soft factor at NLO accuracy

Ensemble	a(fm)	$N_{\sigma}^3 \times N_{\tau}$	m_π^{sea}	m_{π}^{val}	Measure
X650	0.098	$48^{3} \times 48$	333 MeV	662 MeV	911×4
A654	0.098	$24^{3} \times 48$	$333~{ m MeV}$	$662~{ m MeV}$	4923×20
a12m130	0.121	$48^{3} \times 64$	$132~{ m MeV}$	$310~{ m MeV}$	1000×4
				$220~{ m MeV}$	1000×16
a12m310	0.121	$24^{3} \times 64$	305 MeV	$670 \mathrm{MeV}$	1053×8

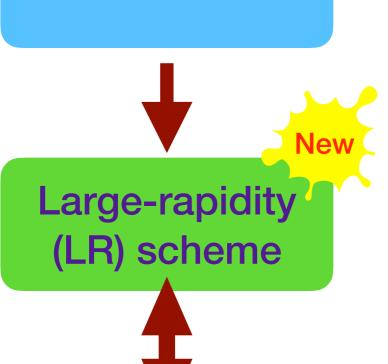
M.-H. Chu et al., LPC, JHEP 08 (2023).

(x, b_T) dependence of the unpolarized proton TMD

Conclusion

- The quark and gluon quasi TMDs can be factorized into the physical TMDs, without any mixing.
- Lattice calculation of the Collins-Soper kernel has made significant progress in reducing the systematics.
- First calculations of the soft function and TMD are available, but the systematics needs to be under control.
- Understanding the power corrections is important!

Outlook


Observables	Status	
Non-perturbative Collins-Soper kernel	Better understanding of the systematics, with room for improvement (e.g., np power corrections, $a \rightarrow 0$)	
Soft factor	to be under systematic control	
Spin-dependent TMDs (in ratios)	In progress	
Proton v.s. pion TMDs, (x, b_T) (in ratios)	In progress	
Flavor dependence of TMDs, (x, b_T) (in ratios)	to be studied	
TMDs and TMD wave functions, (x, b_T)	to be under systematic control	
Gluon TMDs (x, b_T)	to be studied	
Wigner distributions (x, b_T, Δ_T)	to be studied	

Backup Slides

Factorization relation with the TMDs

Collins scheme

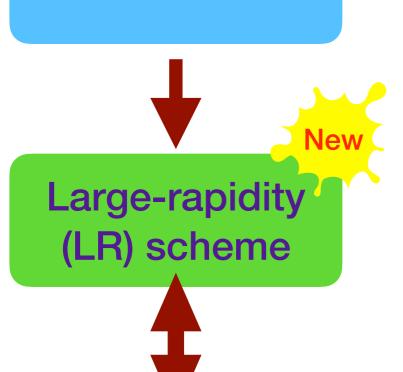
$$\tilde{f}_{i}(x, \mathbf{b}_{T}, \mu, \tilde{\zeta}, \tilde{P}^{z}) = \lim_{\tilde{P}^{z} \gg m_{N}} \lim_{a \to 0} \tilde{Z}_{\text{UV}} \frac{\tilde{B}_{i}}{\sqrt{Sq}}$$
Lorentz boost
$$y_{\tilde{P}} = y_{P} - y_{B}$$

$$f_i^{LR}(x, \mathbf{b}_T, \mu, \zeta, y_P - y_B) = \lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^{LR} \frac{B_i}{\sqrt{Sq}}$$

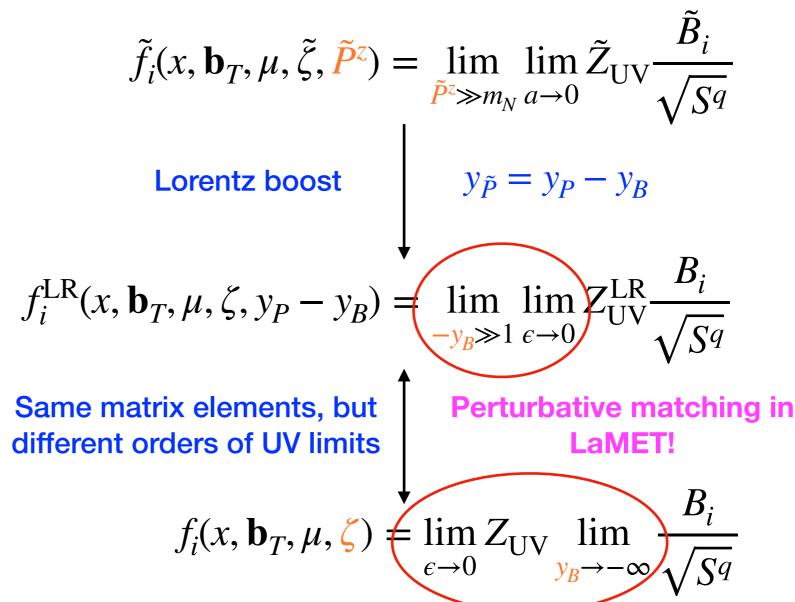
Same matrix elements, but Perturbative matching in different orders of UV limits

LaMET!

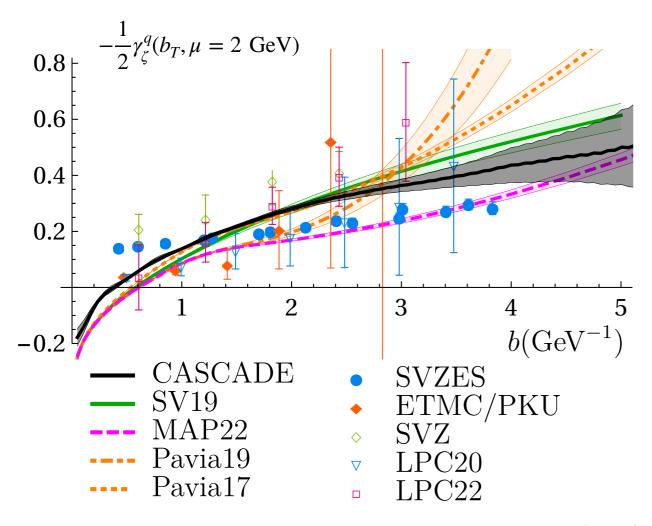
$$f_i(x, \mathbf{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{\mathbf{y}_B \to -\infty} \frac{B_i}{\sqrt{Sq}}$$


Continuum

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).


Factorization relation with the TMDs

Collins scheme



Continuum

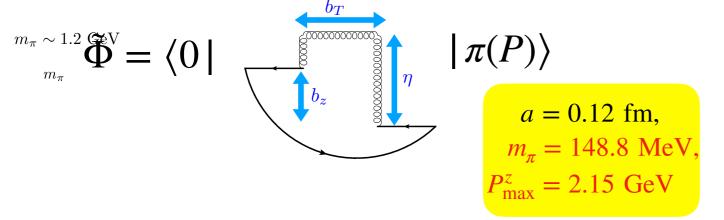
Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

Collins Soper kernel from Lattice QCD

Comparison between lattice results and global fits

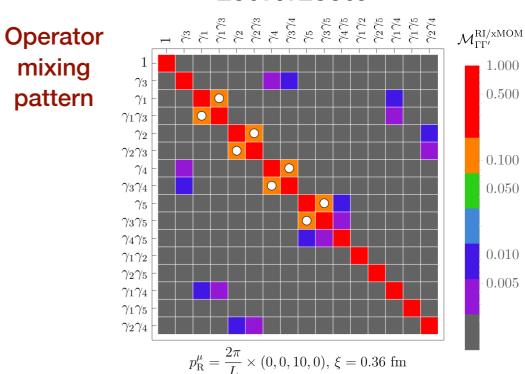
MAP22: Bacchetta, Bertone, Bissolotti, et al., JHEP 10 (2022)

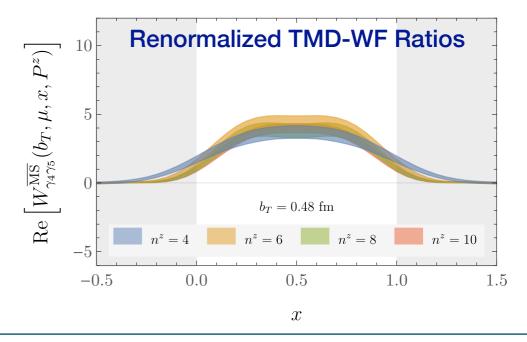
SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020)

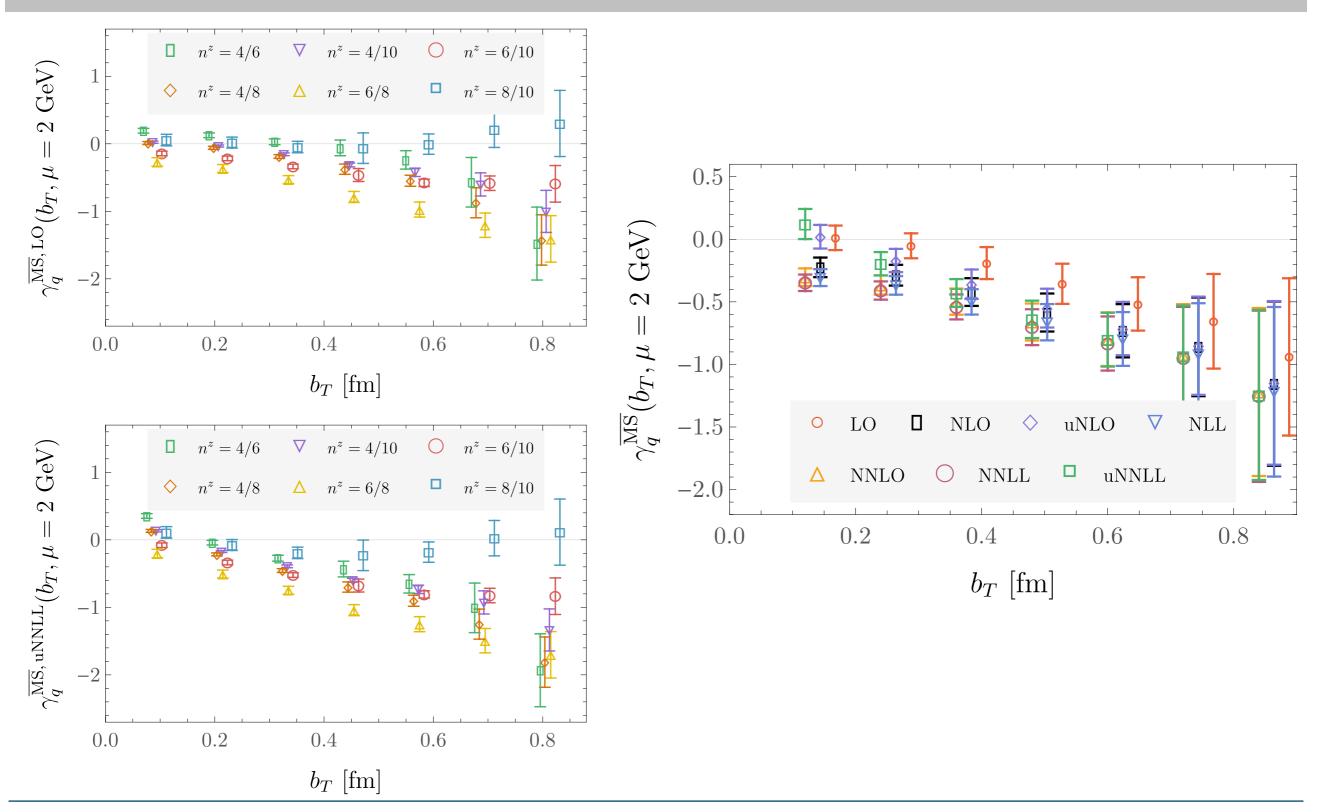

Pavia 19: A. Bacchetta et al., JHEP 07 (2020) Pavia 17: A. Bacchetta et al., JHEP 06 (2017)

CASCADE: Martinez and Vladimirov, PRD 106 (2022)

Approach	Collaboration
Quasi beam functions	P. Shanahan, M. Wagman and YZ (SWZ21), PRD 104 (2021)
	QA. Zhang, et al. (LPC20), PRL 125 (2020).
Quasi TMD wavefunctions	Y. Li et al. (ETMC/PKU 21), PRL 128 (2022).
	MH. Chu et al. (LPC22), PRD 106 (2022) JHEP 08 (2023)
Moments of quasi TMDs	Schäfer, Vladmirov et al. (SVZES21), JHEP 08 (2021), 2302.06502


Improved calculation at physical pion mass


Φ: Quasi-TMD Wave function



- Close-to-Physical pion mass
 - Better suppressed power corrections
 - More stable Fourier transform
- Renormalization of nonlocal operator
 - Systematic treatment of operator mixing using the RI-xMOM scheme
- Green, Jansen and Steffens, PRL 121 (2018) and PRD 101 (2020).
- Constantinou, Panagopoulos, and Spanoudes, PRD 99 (2019).

A. Avkhadiev, P. Shanahan, M. Wagman and YZ, 2307.12359.

