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Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
very hard, such as generalized form factors.
Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
of quarks and gluons at small x, for which
collider measurements are our only source of
information.
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Figure 2.1: Schematic view of a parton with
longitudinal momentum fraction x and trans-
verse position bT in the proton.

Both impact parameter distributions
f(x, bT ) and transverse-momentum distri-
butions f(x,kT ) describe proton structure
in three dimensions, or more accurately in
2+ 1 dimensions (two transverse dimensions
in either configuration or momentum space,
along with one longitudinal dimension in mo-

mentum space). Note that in a fast-moving
proton, the transverse variables play very dif-
ferent roles than the longitudinal momen-
tum.

It is important to realize that f(x, bT )
and f(x,kT ) are not related to each other by
a Fourier transform (nevertheless it is com-
mon to denote both functions by the same
symbol f). Instead, f(x, bT ) and f(x,kT )
give complementary information about par-
tons, and both types of quantities can be
thought of as descendants of Wigner distri-
butions W (x, bT ,kT ) [8], which are used ex-
tensively in other branches of physics [9].
Although there is no known way to mea-
sure Wigner distributions for quarks and
gluons, they provide a unifying theoretical
framework for the di↵erent aspects of hadron
structure we have discussed. Figure 2.2
shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
scale which specifies the resolution at which
partons are resolved, and which in a given
scattering process is provided by a large mo-
mentum transfer. For many processes in
e+p collisions, the relevant hard scale is Q

2

(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
thus opening the way for studying correla-
tions between spin and kT or bT . Informa-
tion about transverse degrees of freedom is
essential to access orbital angular momen-
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ
2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [98], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s
+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than its NNPDF3.0 counterpart in the x

⇠
< 0.03 region, while

it becomes smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light
quarks and strangeness are larger than 3.0 at intermediate x, with the largest deviation seen
for the strange and antidown PDFs, while at both small and large x there is good agreement
between the two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly

23

NNPDF, EPJ C77 (2017)

W. Armstrong et al., arXiv: 1708.00888.

Wigner distributions/Generalized 
TMDs

Parton Distribution Functions 
(PDFs)

Transvers momentum distributions 
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Figure 5.11: Tomographic scan of the nucleon via the momentum space quark density function
⌧1;@ ⌘

"(G , Æ:) , Æ() , ⇠) defined in Eq. (5.27) at G = 0.1 and ⇠ = 2 GeV. Panels are for D and 3 quarks.
The variation of color in the plot is due to variation of replicas and illustrates the uncertainty of the
extraction. The nucleon polarization vector is along Ĥ-direction. The figures are from Ref. [371].

Figure 5.12: The density distribution ⌧0

?
" of an unpolarized quark with flavor 0 in a proton polarized

along the +H direction and moving towards the reader, as a function of (:G , :H) at &2 = 4 GeV2. The
figures are from Ref. [358].

Figure 5.13: The density distribution of an unpolarized up and down quarks using Sivers functions
from Ref. [18].

Cammarota, et al. (JAM), PRD 102 (2020).
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(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
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An essential property of any particle is its
spin, and parton distributions can depend on
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larly rich for TMDs and GPDs because they
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thus opening the way for studying correla-
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e.g., semi-inclusive DIS:
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Figure 2.16: Semi Inclusive Deep Inelastic Scattering process (SIDIS) in ✏⇤
? center of mass frame. The

plot is from Ref. [214], adapted to the notation used here.

and similarly for the form in Eq. (2.180b).
Finally, we remark that Higgs production at the LHC is dominated by perturbative⇤QCD ⌧

@) ⌧ <� , in which case one can relate the gluon TMD PDFs to collinear PDFs as discussed in
Sec. 2.8, supplemented by resummation of large logarithms as outlined in Chapter 4.
2.11.3 Polarized SIDIS cross section

We now consider Semi-Inclusive Deep-Inelastic Scattering (SIDIS),

✓ (;) + ?(%) ! ✓ (;0) + ⌘(%⌘) + - , (2.185)

where the incoming lepton (an electron, positron or muon) with momentum ; scatters off a
proton with momentum %, both of which can be polarized. One measures both the outgoing
lepton with momentum ;

0 and a hadron of type ⌘ (such as a pion or kaon) and momentum %⌘ ,
but is inclusive over any additional hadronic radiation -.

As in the case of polarized Drell-Yan discussed in Sec. 2.11.1, we are interested in mea-
suring angular correlations in order to extract correlations between the polarization of the
struck quark and the spin of the proton. This requires defining a reference frame in which to
specify angular measurements, which is commonly chosen according to the Trento conven-
tions [19]. In this frame, the spacelike momentum @ defines the I axis, which together with
the lepton momenta defines the (G , I)-plane, with respect to which all angles are defined. This
is illustrated in Fig. 2.16.

We are interested in measuring the momentum component %⌘) and azimuthal angle )⌘ of
the detected hadron in this frame. In addition, there is an azimuthal angle #; characterizing
the overall orientation of the lepton scattering plane around the incoming lepton direction. The
angle is calculated with respect to an arbitrary reference axis, which in the case of transversely
polarized targets is chosen to be the direction of the polarization vector () . In the DIS limit
#; ⇡ )(, where the latter is the azimuthal angle of the spin-vector of the struck hadron. These
observables are also illustrated in Fig. 2.16.

In the limit that & ⌧ <, ,/, the SIDIS process can be described in the single-photon
exchange approximation, and is characterized by 18 independent structure functions [125]. At
leading order in a 1/& expansion, only a subset of 8 structure functions contributes, and the

Kang, Prokudin, Sun 
and Yuan, PRD 93 

(2016)

dσ
dxdydzhd2PhT

∼ ∫ d2bT eibT⋅PhT /z

l + p ⟶ l + h(Ph) + X

× fi/p(x, bT, Q, Q2) Dh/i(zh, bT, Q, Q2) + Y(PhT, Q)+𝒪(
ΛQCD

Q
)

fi/p(x, bT, μ, ζ) = f pert
i/p (x, b*(bT), μ, ζ)

× ( ζ
Q2

0 )
gK(bT)/2

f NP
i/p (x, bT)

Collins-Soper kernel 
(Non-perturbative part)

Intrinsic TMD

Non-perturbative when  !bT ∼ 1/ΛQCDQ0 ∼ 1 GeV
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Figure 5.6: Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band. Plot from Ref. [324].

and extract ⌫8 and ◆8 . This functional form of 5#% was also used in [323]. It has five free
parameters which grant a sufficient flexibility in G-space as needed for the description of
the precise LHC data. An example of distributions in (G , 1))-plane is presented in Fig. 5.6.
Depending on the value of G, the 1)-behavior apparently changes. The authors of Ref. [324]
observe (the same observation was made in Ref. [251]) that the unpolarized TMD FF gains
a large 1

2
)
-term in the nonperturbative part. It could indicate non-trivial consequences of

hadronization physics, or a tension between collinear and TMD distributions.
5.2.2 Drell-Yan and weak gauge boson production

Drell-Yan lepton pair production via either virtual photon or / boson served in prior
chapters of this handbook to set up the basic notation and concepts for TMD factorization.
Factorized in terms of a convolution of two TMD PDFs from each incoming proton at the
small transverse momentum @) as shown in Eq. (2.29a), Drell-Yan production in unpolarized
proton-proton collisions is one of the most important processes for extracting unpolarized
quark TMD PDFs.

There is a tremendous amount of experimental data for Drell-Yan production, ranging from
lower energy Fermilab experimments to the highest energy data at the LHC. The lower-energy
fixed-target Fermilab data include E605 [333] and E288 [334], while the higher-energy Fermilab
data from collider Tevatron include CDF Run I [335] and Run II [336], and D0 Run I [337] and
Run II [338, 339]. LHC data include forward /-production data from the LHCb experiment at
7 [340], 8 [341], and 13 [342] TeV, /-production data from the CMS experiment at 7 [343] and
8 [344] TeV, /-production data differential in rapidity from the ATLAS experiment at 7 [343]
and 8 [345] TeV, and off-peak (low- and high-mass) Drell-Yan data from the ATLAS experiment
at 8 TeV [345]. Finally, there is also preliminary / production data from the STAR experiment
at 510 GeV.

Earlier description of the small-@) Drell-Yan data from both fixed-target and collider Fer-
milab data within the Collins-Soper-Sterman (CSS) framework has been performed by several

TMD handbook 161

Figure 5.11: Tomographic scan of the nucleon via the momentum space quark density function
⌧1;@ ⌘

"(G , Æ:) , Æ() , ⇠) defined in Eq. (5.27) at G = 0.1 and ⇠ = 2 GeV. Panels are for D and 3 quarks.
The variation of color in the plot is due to variation of replicas and illustrates the uncertainty of the
extraction. The nucleon polarization vector is along Ĥ-direction. The figures are from Ref. [371].

Figure 5.12: The density distribution ⌧0

?
" of an unpolarized quark with flavor 0 in a proton polarized

along the +H direction and moving towards the reader, as a function of (:G , :H) at &2 = 4 GeV2. The
figures are from Ref. [358].

Figure 5.13: The density distribution of an unpolarized up and down quarks using Sivers functions
from Ref. [18].

Unpolarized quark TMD Quark Sivers function

Scimemi and Vladimirov, JHEP 06 (2020). Cammarota, Gamberg, Kang et al. (JAM Collaboration), 
PRD 102 (2020).
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discussed in Sec. III C. However, since the fits are performed using the central set of the collinear distributions,
all TMD replicas have the same integral in k? (i.e., their values at bT = 0 are the same). As a consequence,
the plots in Figs. 13-14 only partially account for the error of the collinear distributions.

1. Collins–Soper kernel

It is interesting to study the Collins–Soper kernel [6, 109] that drives the evolution of TMDs in terms of the
rapidity scale ⇣. Recent discussions of this crucial component of the TMD formalism have been presented in
Refs. [110, 111] and estimates based on lattice QCD have been proposed in Refs. [112–114].

The Collins–Soper kernel, as written in Eq. (36), is composed of two parts. The first part can be calculated
perturbatively and is computed at b⇤. The second part, denoted as gK , depends on the implementation of the
b⇤ prescription, cannot be computed in perturbation theory, and is one of the results of our fit. Only the full
Collins–Soper kernel can be compared with other works.

In Fig. 15, we show the Collins–Soper kernel as a function of |bT | at the scale µ = 2 GeV for our present
analysis (MAPTMD22, green band) and for four other analyses in the literature [5, 7, 20, 22]. The solid lines at
low |bT | correspond to the perturbative result. The slight di↵erences between the curves are due to the di↵erent
logarithmic accuracies of the perturbative calculations: the PV17 analysis was performed at NLL, the SV17
analysis at N2LL, the PV19, SV19 and MAPTMD22 at N3LL. The b⇤ prescription modifies the curves starting
from |bT | ⇡ 1 GeV�1. The behavior at high |bT | is driven by gK and is di↵erent for the various analyses.

At low |bT |, in our implementation b⇤ saturates to bmin ⇡ 1.123/Q. This implies that at low |bT | the Collins–
Soper kernel saturates to a finite value, as indicated by the dashed lines. As the scale increases, this modification
occurs at lower and lower values of |bT | and becomes less relevant.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|bT | [GeV�1]

�0.2

0.0

0.2

0.4

0.6

0.8

�
1 2
K

(|
b T

|,
µ
)

µ = 2 GeV

PV17

SV17

PV19

SV19

MAPTMD22

FIG. 15: The Collins–Soper kernel as a function of |bT | at a scale µ = 2 GeV from the present analysis (MAPTMD22),
compared with the PV17 [5], SV17 [20], PV19 [7], and SV19 [22] analyses. For the MAPTMD22, PV17, and PV19
curves, the uncertainty bands represent the 68% CL. Dashed lines show the e↵ect of including the bmin-prescription (see
text).

2. Average squared transverse momenta

The average squared transverse momenta hk2
?
i(x,Q), hP 2

?
i(z,Q) are calculated with the Bessel weighting

technique suggested in Refs. [115, 116].
In the case of the TMD PDF for a quark q in the proton at µ =

p
⇣ = Q, one has [115, 116]:

hk2
?
iq(x,Q) =

´
d
2k? k2

?
f
q
1 (x,k

2
?
, Q,Q

2)´
d2k? f

q
1 (x,k

2
?
, Q,Q2)

=
2M2

f̂
q (1)
1 (x, |bT |, Q,Q

2)

f̂
q
1 (x, |bT |, Q,Q2)

����
|bT |=0

, (58)

where the Fourier transform f̂
q
1 of the TMD PDF has been defined in Eq. (5) and the first Bessel moment of

the TMD PDF f̂
q (1)
1 is defined as [115]:

f̂
q (1)
1 (x, |bT |, Q,Q

2) =
2⇡

M2

ˆ +1

0
d|k?|

k2
?

|bT |
J1

�
|k?||bT |

�
f
q
1 (x,k

2
?
, Q,Q

2) = � 2

M2

@

@b2
T

f̂
q
1 (x, |bT |, Q,Q

2) .

(59)

Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, JHEP 10 (2022).

Collins-Soper Kernel  or K(bT, μ) γζ(bT, μ) K(bT, μ) = Kpert(bT, μ) + gK(bT)

See A. Bacchetta’s talk on Tue and A. Prokudin’s talk on Thu.
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Figure 2.1: Graphs of the Wilson line structure ,@(1⇠ , 0) of the unsubtracted TMD PDF 5
0 (u)
8/? (left) and

of , (1)) for the soft function (
0
=0=1

(right), defined in Eqs. (2.37) and (2.38). The Wilson lines (solid)
extend to infinity in the directions indicated. Adapted from [107].

Here the brackets [· · · ]� denote that the operators inside are considered with an additional
rapidity regulator �, where the details on methods for how this is done are left to Sec. 2.4
below. Note that by Poincaré invariance, the proton matrix element in Eq. (2.37) only depends
on the difference 1

⇠ � 0 = 1
⇠ of the positions of the quark fields. In parts of the literature,

the correlator is defined as #̄0
8
(0),@(0, 1⇠)✏

+

2 #0
8
(1⇠), which thus is related to our convention

by 1
⇠ ! �1⇠. In particular, this also reverses the sign in the Fourier transform.

In Eqs. (2.37) and (2.38) we have 1
⇠ = (0, 1�, b)), and the staple shaped Wilson lines

,@(1⇠, 0) and , (1)) are defined by products of straight line segments,

,@(1⇠, 0) = ,[0 ! �1=1 ! �1=1 + b) ! 1]
= ,=1

(1⇠;�1, 0),
1̂)

�
�1=1 ; 0, 1)

�
,=1

(0⇠; 0,�1) , (2.39)

, (1)) = ,[0 ! �1=1 ! �1=1 + b) ! b) ! �1=0 + b) ! �1=0 ! 0]
= ,=0

(1) ; 0,�1),=1
(1) ;�1, 0),

1̂)

(�1=1 ; 0, 1))
⇥,=1

(0; 0,�1),=0
(0;�1, 0),

1̂)

(�1=0 ; 1) , 0) , (2.40)

with 1̂
⇠
)
= 1

⇠
)
/1) . For later use we also define a generalized version of the first product of

Wilson lines, where we take G
⇠ = (0, G�, x)) and H

⇠ = (0, H�, y)) as the two endpoints,

,@(G⇠, H⇠) = ,[G ! �1=1 + G ! �1=1 + H ! H]
= ,=1

(G⇠;�1, 0),�̂

�
�1=

⇠
1
+ H

⇠
)
; 0, |x) � y) |

�
,=1

(H⇠; 0,�1) , (2.41)

and here �̂⇠ = (G) � H))⇠/|x) � y) |. Here the Wilson line along a generic path ✏ is defined by
the path-ordered exponential

,[✏] = % exp

�8 60

π
✏

dG⇠�20
⇠ (G) C2

�
, (2.42)

b⊥

t
z

tz

P

nbnb

Hadronic matrix element Vacuum matrix element

fi(x, bT, μ, ζ) = lim
ϵ→0

ZUV lim
τ→0

Bi

Sq

Collins-Soper scale: ζ = 2(xP+e−yn)2 Rapidity divergence regulator

n(2yn)

n2
b = 0

Rapidity : yB =
1
2

ln
n+

b

n−
b

= − ∞
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Here the brackets [· · · ]� denote that the operators inside are considered with an additional
rapidity regulator �, where the details on methods for how this is done are left to Sec. 2.4
below. Note that by Poincaré invariance, the proton matrix element in Eq. (2.37) only depends
on the difference 1

⇠ � 0 = 1
⇠ of the positions of the quark fields. In parts of the literature,

the correlator is defined as #̄0
8
(0),@(0, 1⇠)✏

+

2 #0
8
(1⇠), which thus is related to our convention

by 1
⇠ ! �1⇠. In particular, this also reverses the sign in the Fourier transform.

In Eqs. (2.37) and (2.38) we have 1
⇠ = (0, 1�, b)), and the staple shaped Wilson lines

,@(1⇠, 0) and , (1)) are defined by products of straight line segments,

,@(1⇠, 0) = ,[0 ! �1=1 ! �1=1 + b) ! 1]
= ,=1

(1⇠;�1, 0),
1̂)

�
�1=1 ; 0, 1)

�
,=1

(0⇠; 0,�1) , (2.39)

, (1)) = ,[0 ! �1=1 ! �1=1 + b) ! b) ! �1=0 + b) ! �1=0 ! 0]
= ,=0

(1) ; 0,�1),=1
(1) ;�1, 0),

1̂)

(�1=1 ; 0, 1))
⇥,=1

(0; 0,�1),=0
(0;�1, 0),

1̂)

(�1=0 ; 1) , 0) , (2.40)

with 1̂
⇠
)
= 1

⇠
)
/1) . For later use we also define a generalized version of the first product of

Wilson lines, where we take G
⇠ = (0, G�, x)) and H

⇠ = (0, H�, y)) as the two endpoints,

,@(G⇠, H⇠) = ,[G ! �1=1 + G ! �1=1 + H ! H]
= ,=1

(G⇠;�1, 0),�̂

�
�1=

⇠
1
+ H

⇠
)
; 0, |x) � y) |

�
,=1

(H⇠; 0,�1) , (2.41)

and here �̂⇠ = (G) � H))⇠/|x) � y) |. Here the Wilson line along a generic path ✏ is defined by
the path-ordered exponential

,[✏] = % exp

�8 60

π
✏

dG⇠�20
⇠ (G) C2

�
, (2.42)

b⊥

t
z

tz

P

Rapidity divergences

nbnb

Hadronic matrix element Vacuum matrix element

fi(x, bT, μ, ζ) = lim
ϵ→0

ZUV lim
τ→0

Bi

Sq

Collins-Soper scale: ζ = 2(xP+e−yn)2 Rapidity divergence regulator

n(2yn)

n2
b = 0

Rapidity : yB =
1
2

ln
n+

b

n−
b

= − ∞
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Simulating partons on the lattice

10

}
lattice size L, 
e.g., L=32,48.

Imaginary time: t → iτ

lattice 
spacing a

z + ct = 0
z − ct ≠ 0

•  hadron state?  ✘ 

• Light-cone correlations?  ✘

P = ∞ P ≪
2π
a

!

Real-time sign problem 🙁

t = 0

Nevertheless, it is possible to approach the Feynman partons by 
simulating a boosted hadron on the lattice 😇
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A quasi-PDF  to expand from: 

Power expansion and effective theory matching:

f̃(x, Pz)

Large-Momentum Effective Theory (LaMET)

11

Lorentz boost

z

t
pn

z/2�z/2

� �zp
2

�zp
2

f(x, μ) = ∫
∞

−∞

dy
|y |

C̄ ( x
y

,
μ

2xPz
,

μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪 (

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )
• X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014); 
• Y. Ma and J. Qiu, PRD 98 (2018); 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD 98 (2018)

Reliable prediction within [xmin, xmax] at a given finite Pz !

• X. Ji, PRL 110 (2013); SCPMA 57 (2014).  
• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, RMP 93 (2021).
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Lattice calculation of pion valence PDF at NNLO

12

• JAM21nlo, PRL 127 (2021); 
• xFitter (2020), PRD 102 (2020); 
• ASV, PRL 105 (2010); 
• GRVPI1, ZPC 53 (1992); 
• BNL20, X. Gao, N. Karthik, YZ, et al., PRD 102 (2020).

BNL-ANL21, Gao, Hanlon, Mukherjee, Petreczky, Scior, Syritsyn and YZ, PRL128 (2022).4

FIG. 3. The PDFs obtained from the qPDFs with NNLO
matching at di↵erent P

z = nz ⇥ 0.48 GeV.

smaller x as P
z increases. The size of NNLO correction is

in general smaller than that of the NLO correction, which
indicates good perturbative convergence, a crucial crite-
rion for precision calculation. Besides, we also find that
the uncertainty from factorization scale variation is re-
duced at NNLO. As x ! 0, the qPDF is regular because
of the exponential extrapolation, while the matching cor-
rection makes it divergent, which is a sign that resumma-
tion of small-x logarithms is needed. A resummation of
large logarithms is also necessary as x ! 1 [33]. Since the
resummation e↵ects are important only in the end-point
regions, they are not considered in this analysis.

Then we compare the PDFs obtained at di↵erent P
z

with NNLO matching in Fig. 3. At moderate x, the
P

z-dependence is remarkably reduced, and the results
appear to converge for P

z
� 1.45 GeV, which strongly

indicates that the perturbative matching allows for re-
liable predictions. According to Eq. (7), there should
still be power corrections that are enhanced in both the
x ! 0 and x ! 1 regions, as one can see that each
PDF curve has a small nonvanishing tail at x � 1 which
decreases with P

z. To estimate the size of power cor-
rections, we fit the PDFs obtained at a = 0.04 fm, P

z =
{1.45, 1.94, 2.42} GeV and a = 0.06 fm, P

z = {1.72, 2.15}

GeV to the ansatz fv(x) + ↵(x)/P
2
z

for each fixed x,
where we ignore the a-dependence as the O(a2

P
2
z
) ef-

fect in the matrix elements has been shown to be less
than 1% [25]. Since the least-�2 fit is mainly determined
by the data sets at lower P

z with smaller statistical er-
rors, which have larger power corrections, we use the re-
sult at P

z = 2.42 GeV instead of the fitted fv(x) as
our final prediction for the PDF. The relative size of the
power correction is estimated to be ↵(x)/[P 2

z
fv(x)] . 0.1

for 0.01 < x < 0.80 and ↵(x)/[P 2
z
fv(x)] . 0.05 for

0.01 < x < 0.70 at P
z = 2.42 GeV. It is surprising

that the results are insensitive to P
z for x as small as

0.01, which can be explained by the fact that the qPDF
contributes to the PDF at larger x under perturbative
matching. However, it must be pointed out that the
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FIG. 3. The PDFs obtained from the qPDFs with NNLO
matching at di↵erent P

z = nz ⇥ 0.48 GeV.

the infinite momentum frame, and the qPDF evolves to
smaller x as P

z increases. The size of NNLO correction is
in general smaller than that of the NLO correction, which
indicates good perturbative convergence, a crucial crite-
rion for precision calculation. Besides, we also find that
the uncertainty from factorization scale variation is re-
duced at NNLO. As x ! 0, the qPDF is regular because
of the exponential extrapolation, while the matching cor-
rection makes it divergent, which is a sign that resumma-
tion of small-x logarithms is needed. A resummation of
large logarithms is also necessary as x ! 1 [33]. Since the
resummation e↵ects are important only in the end-point
regions, they are not considered in this analysis.

Then we compare the PDFs obtained at di↵erent P
z

with NNLO matching in Fig. 3. At moderate x, the
P

z-dependence is remarkably reduced, and the results
appear to converge for P

z
� 1.45 GeV, which strongly

indicates that the perturbative matching allows for re-
liable predictions. According to Eq. (7), there should
still be power corrections that are enhanced in both the
x ! 0 and x ! 1 regions, as one can see that each PDF
curve has a small nonvanishing tail at x � 1 which de-
creases with P

z (see also App. C 3). To estimate the
size of power corrections, we fit the PDFs obtained at
a = 0.04 fm, P

z = {1.45, 1.94, 2.42} GeV and a = 0.06
fm, P

z = {1.72, 2.15} GeV to the ansatz fv(x)+↵(x)/P
2
z

for each fixed x, where we ignore the a-dependence as the
O(a2

P
2
z
) e↵ect in the matrix elements has been shown to

be less than 1% [25]. Since the least-�2 fit is mainly de-
termined by the data sets at lower P

z with smaller statis-
tical errors, which have larger power corrections, we use
the result at P

z = 2.42 GeV instead of the fitted fv(x) as
our final prediction for the PDF. The relative size of the
power correction is estimated to be ↵(x)/[P 2

z
fv(x)] . 0.1

for 0.01 < x < 0.80 and ↵(x)/[P 2
z
fv(x)] . 0.05 for

0.01 < x < 0.70 at P
z = 2.42 GeV. It is surprising

that the results are insensitive to P
z for x as small as

0.01, which can be explained by the fact that the qPDF
contributes to the PDF at larger x under perturbative
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FIG. 4. Comparison of our prediction of fv(x) to global fits
and BNL20. The shaded regions x < 0.03 and x > 0.8 are
excluded by requiring that the estimates of O(↵3

s) and power
corrections be smaller than 5% and 10%, respectively.

matching. However, it must be pointed out that the
smallness here is only relative, as the size of ↵(x)/P

2
z

still
increases as x ! 0. To further verify this, we also calcu-
late the PDF from the qPDF with a power-law (A/|�|

d)
extrapolation, and find that the results are almost iden-
tical to those from the exponential extrapolation even at
x = 0.01, so we simply use the latter to proceed.

Our final prediction for fv(x) (BNL-ANL21) is shown
in Fig. 4. The central value is obtained from the qPDF
at a = 0.04 fm, zS = 0.24 fm, zL = 0.92 fm, µ = 2.0
GeV and P

z = 2.42 GeV with exponential extrapolation
and NNLO matching. The red band represents the
statistical error, and the light purple band stands for the
systematic error from scale variation, which is obtained
by repeating the same procedure for µ = 1.4 and 2.8
GeV and evolving the matched results to µ = 2.0 GeV
with the NLO DGLAP equation. We demand that the
relative O(↵3

s
) matching correction at µ = 2.0 GeV

be smaller than 5%, which propagates to  37% NLO
and  14% NNLO corrections and excludes the regions
x < 0.03 and x > 0.88. Combining the estimates of
power corrections and the statistical and scale-variation
errors, we determine the PDF at 0.03 . x . 0.80 with
5–20% uncertainty. Our result is in good agreement with
the global fits by xFitter [35] and JAM21nlo [36] within
the claimed region, but deviates from the GRVPI1 [34]
and ASV [37] fits. When compared to a previous analysis
of the same lattice data (BNL20) [25] which used the
NLO OPE in coordinate space and a parameterization
of the PDF, our x-space calculation shows considerably
reduced uncertainties, but still agrees within errors.

In summary, we have performed a state-of-the-art lat-
tice QCD calculation of the x-dependence of the pion
valence quark PDF, where we developed a simple pro-
cedure to renormalize the qPDF in the hybrid scheme
and match it to the MS PDF at NNLO accuracy. With

FIG. 4. Comparison of our prediction of fv(x) to global fits
and BNL20. The shaded regions x < 0.03 and x > 0.8 are
excluded by requiring that the estimates of O(↵3

s) and power
corrections be smaller than 5% and 10%, respectively.

smallness here is only relative, as the size of ↵(x)/P
2
z

still
increases as x ! 0. To further verify this, we also calcu-
late the PDF from the qPDF with a power-law (A/|�|

d)
extrapolation, and find that the results are almost iden-
tical to those from the exponential extrapolation even at
x = 0.01, so we simply use the latter to proceed.

Our final prediction for fv(x) (BNL-ANL21) is shown
in Fig. 4. The central value is obtained from the qPDF
at a = 0.04 fm, zS = 0.24 fm, zL = 0.92 fm, µ = 2.0
GeV and P

z = 2.42 GeV with exponential extrapolation
and NNLO matching. The red band represents the
statistical error, and the light purple band stands for the
systematic error from scale variation, which is obtained
by repeating the same procedure for µ = 1.4 and 2.8
GeV and evolving the matched results to µ = 2.0 GeV
with the NLO DGLAP equation. We demand that the
relative O(↵3

s
) matching correction at µ = 2.0 GeV

be smaller than 5%, which propagates to  37% NLO
and  14% NNLO corrections and excludes the regions
x < 0.03 and x > 0.88. Combining the estimates of
power corrections and the statistical and scale-variation
errors, we determine the PDF at 0.03 . x . 0.80 with
5–20% uncertainty. Our result is in good agreement with
the global fits by xFitter [35] and JAM21nlo [36] within
the claimed region, but deviates from the GRVPI1 [34]
and ASV [37] fits. When compared to a previous analysis
of the same lattice data (BNL20) [25] which used the
NLO OPE in coordinate space and a parameterization
of the PDF, our x-space calculation shows considerably
reduced uncertainties, but still agrees within errors.

In summary, we have performed a state-of-the-art lat-
tice QCD calculation of the x-dependence of the pion
valence quark PDF, where we developed a simple pro-
cedure to renormalize the qPDF in the hybrid scheme
and match it to the MS PDF at NNLO accuracy. With
two fine lattice spacings, we observed that the final re-
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Towards better perturbative and power precisions

13

f(x, μ) = URGR(μ, 2xPz) ⊗ ∫
∞

−∞

dy
|y |

C̄LRR (αs(2xPz),
x
y

,1,
μ̃

2xPz ) f̃(y, Pz, μ̃)

+ 𝒪 (
ΛQCD

|xPz | )+ 𝒪 (
Λ2

QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )✗
• RGR: renormalization group 

resummation, resuming small x 
logarithms. 

• LRR: leading-renormalon resummation, 
summing the asymptotic series in the 
Wilson line self-energy, improving 
power accuracy to 1/Pz2. 

• THR: threshold resummation, resuming 
the large x logarithms.

• Holligan, Ji, Lin, Su and R. Zhang, NPB 993 (2023); 
• R. Zhang, Ji, Holligan and Su, PLB 844 (2023); 
• X. Gao, K. Lee, and YZ et al., PRD 103 (2021).

• X. Gao, K. Lee, and YZ et al., PRD 103 (2021); 
• X. Ji, Y. Liu and Y. Su, JHEP 08 (2023).

4

FIG. 2: Top: The comparison of C0(↵s(µ), z
2µ2

) from

the fixed-order (dotted), renormalization group resummation

(dashed), and the leading renormalon resummation (solid).

Bottom: m0(⌧) extracted from leading renormalon resumma-

tion with PV as a IR regulator.

formalism on the top panel in Fig. 2. The error bands in
RGR are obtained by varying the resummation scale from
0.75z�1 to 1.5z�1, corresponding to about 30% change
in the coupling. Going beyond the lower bound in our
data range, the perturbation theory breaks down. While
there is a large di↵erence from NLO to NNLO in fixed-
order calculations with or without renormalization group
improvement, the LRR results show much better conver-
gence in the perturbative region z < 0.3 fm, and much
smaller dependence on the scale variation, indicating that
NNLO term is already dominated by the leading renor-
malon.

We show the NLO LRR-improved m0 result as blue
band together with fixed-order results on the lower panel
in Fig. 2. By including the leading renormalon, there
is now a clear window near z = 0.12 fm for a constant
m0(⌧) = 0.161+0.025

�0.002 GeV for NLO with much smaller
uncertainty. Thus Eq. (2) achieves the linear-z accu-
racy when the leading renormalon series is resummed.
We also show the NNLO renormalon-resummed results
m0(⌧) = 0.164+0.016

�0.003 GeV as the red band to demonstrate
the good convergence with this method, consistent with
the blue band and has smaller scale dependence at small
z. The di↵erence between the non-perturbative lattice
result and the perturbation series is well described by
the linear dependence in z in the perturbatively-reliable

region. This gives us confidence that we have reached
twist-three power accuracy for describing the Pz = 0 ma-
trix element.

PDF matching to leading power accuracy We com-
mented after Eq. (2) that the leading-power correction
term m0(⌧) multiplies the twist-two matrix elements in
the same way independent of their spin. This observa-
tion is still valid when m0(⌧) plays the additional role
to account for the scheme dependence in regularizing
the leading renormalon divergence in the coe�cient func-
tion Ck(↵s). This is because all Ck(↵s) has the exactly
the same leading renormalon series as a quark “pole”
mass. Moreover, this leading renormalon series expo-
nentiates such that it matches exactly the mass renor-
malization of the Wilson line in the quasi-PDF operator.
Therefore, if we renormalize the large-P z spatial correla-
tors hB(z, P z, a) with the ZR(z, a, µ, ⌧) and m0(⌧) from
the previous section, the resulting hR(z, P z, µ, ⌧) can be
matched to light-cone PDFs with ⌧ prescription, e.g., PV,
for the leading renormalon in the matching coe�cient
without any explicit leading power corrections.

We apply again the leading-renormalon resummed co-
e�cient functions and the corresponding m0 to the anal-
ysis of the pion PDF lattice data [13], with results shown
in Fig. 3. The results from fixed-order perturbation the-
ory from Fig. 1 are shown again for comparison. The
m0(⌧) used in calculating the blue (red) band is from the
bottom plot in Fig. 2. The error bands are obtained by
varying the starting point of the RG evolution in both
m0(⌧) extraction and perturbative matching. The re-
sults show much reduced error bands from LRR because
of the much smaller uncertainty in m0(⌧). Interestingly,
the NNLO+RGR+LRR result suggests a even smaller
error after matching, because the scale variation in the
RGR matching cancels most of the corresponding m0 dif-
ference in coordinate space. Moreover, the consistency in
x > 0.2 between NLO and NNLO suggests good conver-
gence of the perturbation theory after LRR, the same as
our observation in coordinate space.

FIG. 3: The e↵ect of leading-renormalon resummation (the

red and blue band) on the pion PDF, compared with fixed-

order results in the background.

Zhang, Ji, Holligan and Su, PLB 844 (2023).

Better perturbative convergence with LRR!

See Q. Shi’s talk on Wed for on application to pion GPD.
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• Beam function in Collins 
scheme:

Quasi TMD in LaMET
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• Quasi beam function :
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Figure 2.1: Graphs of the Wilson line structure ,@(1⇠ , 0) of the unsubtracted TMD PDF 5
0 (u)
8/? (left) and

of , (1)) for the soft function (
0
=0=1

(right), defined in Eqs. (2.37) and (2.38). The Wilson lines (solid)
extend to infinity in the directions indicated. Adapted from [107].

Here the brackets [· · · ]� denote that the operators inside are considered with an additional
rapidity regulator �, where the details on methods for how this is done are left to Sec. 2.4
below. Note that by Poincaré invariance, the proton matrix element in Eq. (2.37) only depends
on the difference 1

⇠ � 0 = 1
⇠ of the positions of the quark fields. In parts of the literature,

the correlator is defined as #̄0
8
(0),@(0, 1⇠)✏

+

2 #0
8
(1⇠), which thus is related to our convention

by 1
⇠ ! �1⇠. In particular, this also reverses the sign in the Fourier transform.

In Eqs. (2.37) and (2.38) we have 1
⇠ = (0, 1�, b)), and the staple shaped Wilson lines

,@(1⇠, 0) and , (1)) are defined by products of straight line segments,

,@(1⇠, 0) = ,[0 ! �1=1 ! �1=1 + b) ! 1]
= ,=1

(1⇠;�1, 0),
1̂)

�
�1=1 ; 0, 1)

�
,=1

(0⇠; 0,�1) , (2.39)

, (1)) = ,[0 ! �1=1 ! �1=1 + b) ! b) ! �1=0 + b) ! �1=0 ! 0]
= ,=0

(1) ; 0,�1),=1
(1) ;�1, 0),

1̂)

(�1=1 ; 0, 1))
⇥,=1

(0; 0,�1),=0
(0;�1, 0),

1̂)

(�1=0 ; 1) , 0) , (2.40)

with 1̂
⇠
)
= 1

⇠
)
/1) . For later use we also define a generalized version of the first product of

Wilson lines, where we take G
⇠ = (0, G�, x)) and H

⇠ = (0, H�, y)) as the two endpoints,

,@(G⇠, H⇠) = ,[G ! �1=1 + G ! �1=1 + H ! H]
= ,=1

(G⇠;�1, 0),�̂

�
�1=

⇠
1
+ H

⇠
)
; 0, |x) � y) |

�
,=1

(H⇠; 0,�1) , (2.41)

and here �̂⇠ = (G) � H))⇠/|x) � y) |. Here the Wilson line along a generic path ✏ is defined by
the path-ordered exponential

,[✏] = % exp

�8 60

π
✏

dG⇠�20
⇠ (G) C2

�
, (2.42)

b⊥

t
z

q

q

bz

L

nb
Lorentz boost and L → ∞

Equal-time Wilson lines, directly 
calculable on the lattice🙂

nμ
b (yB) = (n+

b , n−
b , 0⃗⊥) = (−e2yB,1,0⃗⊥)

Spacelike but close-to-lightcone 
( ) Wilson lines, not 

calculable on the lattice ☹
yB → − ∞

Lightcone direction
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Soft factor
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= ⟨π(−P) | j1(bT)j2(0) |π(P)⟩

Pz≫mN= Sr(bT, μ)∫ dxdx′ H(x, x′ , μ)

F(bT, Pz)

× Φ†(x, bT, Pz, μ)Φ(x′ , bT, Pz, μ)

• Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020); 
• Ji and Liu, PRD 105 (2022); 
• Deng, Wang and Zeng, JHEP 09 (2022).

Light-meson form factor:

H

CC

H

P ′P

S

t

j1

j2

b⊥

t
z

tz
nb(2yB) n(2yn) yn−yB→∞

⟶ Sr(bT, μ) e−2(yn−yB)γζ(bT,μ)

: quasi-TMD wave functionΦ(x, bT, Pz, μ)

Reduced soft 
factor

Collins-Soper 
kernel
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Matching coefficient: 
•Independent of spin; 

•No quark-gluon or flavor mixing, which makes gluon calculation 
much easier.

Factorization formula for the quasi-TMDs

16

• Schindler, Stewart and YZ, JHEP 08 (2022); 
• Zhu, Ji, Zhang and Zhao, JHEP 02 (2023).

• Ji, Sun, Xiong and Yuan, PRD91 (2015); 
• Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019); 
• Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037; 
• Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020); 
• Ebert, Schindler, Stewart and YZ, JHEP 09 (2020); 
• Vladimirov and Schäfer, PRD 101 (2020); 
• Ji, Liu, Schäfer and Yuan, PRD 103 (2021); 
• Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022). 

× f [s]
i/p (x, bT, μ, ζ){1 + 𝒪[ 1

(xP̃zbT)2
,

Λ2
QCD

(xP̃z)2 ]}

f̃ naive[s]
i/p (x, bT, μ, P̃z)

Sr(bT, μ)
= C(μ, xP̃z) exp[ 1

2
γζ(μ, bT)ln

(2xP̃z)2

ζ ]
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✴Collins-Soper kernel; 

✴Flavor separation; 

✴Spin-dependence, e.g., Sivers function (single-spin asymmetry); 

✴Full TMD and TMD wave function kinematic dependence. 

✴Twist-3 PDFs from small bT expansion of TMDs. 

✴Sub-leading power TMDs.

Factorization formula for the quasi-TMDs

17

× f [s]
i/p (x, bT, μ, ζ){1 + 𝒪[ 1

(xP̃zbT)2
,

Λ2
QCD

(xP̃z)2 ]}

f̃ naive[s]
i/p (x, bT, μ, P̃z)

Sr(bT, μ)
= C(μ, xP̃z) exp[ 1

2
γζ(μ, bT)ln

(2xP̃z)2

ζ ]

γζ(μ, bT) =
d

d ln P̃z
ln

f̃ naive[s]
i/p (x, bT, μ, P̃z)

C(μ, xP̃z)
f [s]
i/p(x, bT)

f [s′ ]
j/p (x, bT)

=
f̃ naive[s]

i/p (x, bT)

f̃ naive[s′ ]
j/p (x, bT)

Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

Rodini and Vladimirov, JHEP 08 (2022).
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• Wilson line geometry ensuring maximal 
Lorentz symmetry.


• Lorentz-covariant decomposition of the 
lattice TMD correlator.


• Amplitudes related to the beam function 
by Lorentz invariance.


• Ratios of TMDs can be calculated at 
leading order in perturbation theory.


• Factorization theorem yet to be derived.

Lorentz-invariant (LI) approach

18
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Figure 2.11: Staple-shaped path for the gauge connection ,
E

A◆ in Eq. (2.161).

evolution parameter

✓̂ =
E · %p
|E2 |%2

. (2.164)

This parameter characterizes the staple link connecting the quark operators. It therefore differs
from the variable ✓0 defined in Eq. (2.30), which involves a combination of variables inherited
from the proton matrix element (<? and H�) and the TMD soft factor (H=).

Using Lorentz covariance, the matrix element in Eq. (2.161) can be decomposed into inde-
pendent tensors constructed from %

⇠, 1⇠ and E
⇠, with the coefficients (or amplitudes) uniquely

determined by the Lorentz scalars % · 1, 12, ✓̂, E · 1/
p
�E2, and ◆2

E
2 [143]. (Following standard

conventions, we do not treat the dependence on <
2
?
= %

2 as a variable.) Such decompositions
will be presented in Sec. 6.4.1. In Table 2.5 we list these Lorentz scalars, together with their
values in two reference frames for comparison. TMD PDFs are originally defined in a frame
where 1

+ = 0 and E) = %) = 0. This constrains one of the five Lorentz scalars, since it implies
the relation, expressed in Lorentz-invariant form,

E · 1
E · % =

% · 1
<

2
#

h
1 �

q
1 + ✓̂�2

i
. (2.165)

In Table 2.5 the column labeled Modern CS (H⌫) corresponds to the frame choice used in
the modern Collins-Soper definition with space-like Wilson lines of infinite extent, Eq. (2.48)
inserted into Eq. (2.37), with finite but large |H⌫ |. The column labeled Euclidean Lattice
gives the values in the frame where E

⇠ has no time component (HE = 0), in which the lattice
calculation is performed. Since all the Lorentz scalars can be determined in this Euclidean
frame, one can obtain full information about the unsubtracted TMD PDF. In order to make full
contact with the modern Collins definition of the unsubtracted TMD PDF, which is considered
in the limit ◆ ! 1 and eventually with large H⌫ ! �1, the lattice results obtained at finite
values must ultimately be extrapolated towards a large rapidity difference ✓̂ ! 1 and large
◆ ! 1.

An important corollary of this discussion is that the soft factor (2.38), cf. Fig. 2.1 (right), can-
not be straightforwardly calculated in Lattice QCD in a completely analogous fashion. Since
it contains two staple directions with two different rapidities, there exists no Lorentz trans-
formation that simultaneously renders both directions purely spatial. In the modern Collins
definition the soft function is combined with the unsubtracted TMD PDF as in Eq. (2.49),

Hägler, Musch, Engelhardt, 
Negele, Schäfer, et al.,  
EPL88 (2009),  
PRD83 (2011),  
PRD85 (2012),  
PRD93 (2016),  
1601.05717,  
PRD96 (2017).
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• TMDs from experiments 

• Lattice methods for TMD calculation 

• Results from lattice QCD

Outline

19
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Ratio of TMD moments from the LI approach

20

TMDs for longitudinally polarized nucleons at the physical pion mass M. Engelhardt

g1T Shift,

u-d - quarks

= 0.23,

m = 139 MeV
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Figure 4: Isovector generalized !1! worm-gear shift in the nucleon in the SIDIS/DY limit as a function of

|"! | for #̂ = 0.23, to be contrasted with Fig. 3 (right). Data in the shaded region at small |"! | may be affected

by significant finite lattice spacing effects. Error bars show statistical uncertainties only.

setup is still beset by significant systematic uncertainties, the discrepancy between the magnitudes

of the ℎ⊥1" and !1! worm-gear shifts seen in Figs. 3 and 4 appears sufficiently marked as to make

an explanation purely through systematic biases in the calculational scheme seem unlikely. The

discrepancy rather appears more likely to be a manifestation of strong gluonic dynamical effects

present in full QCD that are not captured by quark models.

4. Summary

As part of an ongoing program exploring TMD observables within Lattice QCD, the present

investigation focused on longitudinally polarized nucleons. Results were obtained for the gener-

alized axial charge (5) and the generalized ℎ⊥1" worm-gear shift (4), which had hitherto not been

studied; all leading-twist quark TMD observables have thereby now been explored within the lattice

TMD program. The data were generated using a RBC/UKQCD domain wall fermion ensemble

at the pion mass %# = 139 MeV. To mitigate statistical fluctuations, a fairly small source-sink

separation 0.91 fm was employed in this exploratory calculation, leading to appreciable excited

state contaminations that are manifested in the magnitude of the extracted generalized axial charge.

The most striking outcome of this study is the magnitude found for the generalized ℎ⊥1" worm-gear

shift, which differs by close to a factor 2 from its counterpart, the !1! worm-gear shift associated

with longitudinally polarized quarks in a transversely polarized nucleon. In a wide range of quark

models, these two worm-gear shifts are predicted to have the same magnitude (and opposite sign,

as is indeed found within the present investigation). Despite the significant systematic biases still

contained in the calculational scheme employed, a discrepancy this marked appears likely to reflect

genuine physical effects generated by the gluonic dynamics in the nucleon that are not captured

by quark models. Additional studies comparing the two worm-gear shifts with reduced systematic

uncertainties are necessary to draw more definite conclusions regarding this interpretation.

7

mNg̃[1](1)
1T (bT)

f̃ [1](0)
1 (bT)

M. Engelhardt, et al., PoS LATTICE2022 (2023)

TMD Handbook 225

SIDIS ⟶⟵ DY

Sivers-Shift, u-d - quarks

ζ = 0.47,
|bT | = 0.23 fm ,
m π = 139 MeV

-10 -5 0 5 10 ∞-∞
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

η|v| (lattice units)

m
N

f˜ 1T⊥[
1]

(1
) /

f˜ 1[1
](

0)
(G

eV
)

Figure 6.20: Preliminary analysis of nucleon lattice TMD data at the physical quark masses. Left:
Isovector generalized Sivers shift as a function of staple length ◆ at fixed 1) and ✓̂. Right: Isovector
generalized tensor in the SIDIS limit as a function of 1) for fixed ✓̂. Shaded area indicates region which
may be subject to significant lattice artefacts. Data were obtained using domain wall fermions at lattice
spacing 0 = 0.114 fm. Plot taken from Ref. [714].

clover fermion and domain wall fermion results is seen specifically in the 61) worm gear shift,
as discussed above and displayed in Fig. 6.18, is consistent with this mixing pattern obtained
in lattice perturbation theory. The pattern of mixing can be further understood using an aux-
iliary field approach to recast bilocal quark operators in terms of local operators, as laid out
for straight gauge links in Ref. [627], and extended to staple links in Ref. [640]. The nonper-
turbative mixing pattern for quark bilinear operators with staple-shaped gauge connections
in the RI’/MOM scheme was explored in Ref. [195] where mixing patterns were found that
extend beyond those found in one-loop perturbative calculations; a sample result for purely
transverse quark operator separation 1 is shown in Fig. 6.19. Lattice TMD calculations must
take into account these more complex renormalization patterns. One avenue is the use of chi-
rally symmetric formulations such as domain wall fermions in order to avoid certain operator
mixings, another is to use a scheme along the lines put forward in Refs. [627, 640] to correctly
incorporate mixing effects in clover fermion calculations.

Progress has also been achieved in terms of extending lattice TMD calculations to the
physical quark masses. Recent calculations have yielded the first results for TMD observables
at the physical values of the quark masses, employing a RBC/UKQCD domain wall fermion
ensemble with a lattice spacing 0 = 0.114 fm [714]. Results from a preliminary analysis are
exhibited in Fig. 6.20. Comparing the left panel with the left panel of Fig. 6.14, displayed
at similar values of 1) and ✓̂, there appears to be no marked dependence of the isovector
generalized Sivers shift on the quark masses in the explored range, extending all the way to
the physical quark masses. The right panel of Fig. 6.20 shows results for the generalized tensor
charge, cf. Eq. (6.63), in the SIDIS limit as a function of 1) .

Lattice TMD calculations have also been extended to include the dependence on the longi-
tudinal momentum fraction G, by performing scans of the matrix element in Eq. (6.55) in the
1 · % direction; 1 · % is Fourier conjugate to G. The geometries employed in performing this

mN f̃⊥[1](1)
1T (bT)

f̃ [1](0)
1 (bT)

M. Engelhardt, et al., TMD Handbook, 2304.03302.
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Collins-Soper kernel from LaMET

21

γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

ln
C(μ, xPz

2) ∫ dbz eibzxPz
1 Z̃′ (bz, μ, μ̃)Z̃UV(bz, μ̃, a)W̃(bz, bT, a, η, Pz

1)
C(μ, xPz

1) ∫ dbz eibzxPz
2 Z̃′ (bz, μ, μ̃)Z̃UV(bz, μ̃, a)W̃(bz, bT, a, η, Pz

2)

!4

LQCD Setup

Independent of hadron state, choice of momenta, choice of 

…up to power corrections:             ,                       ,          

bz
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Exploit independence, 
calculate for valence pion 
with 

bT /⌘
<latexit sha1_base64="69wzNtbB6blpqQaZ9ANR5t1EsfY=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU01U0GPRi8cK/cI2lM120i7dbMLuRCih/8KLB0W8+m+8+W/ctjlo9cHA470ZZuYFiRQGXffLKaysrq1vFDdLW9s7u3vl/YOWiVPNocljGetOwAxIoaCJAiV0Eg0sCiS0g/HtzG8/gjYiVg2cJOBHbKhEKDhDKz0E/QY9oz1A1i9X3Ko7B/1LvJxUSI56v/zZG8Q8jUAhl8yYrucm6GdMo+ASpqVeaiBhfMyG0LVUsQiMn80vntITqwxoGGtbCulc/TmRsciYSRTYzojhyCx7M/E/r5tieO1nQiUpguKLRWEqKcZ09j4dCA0c5cQSxrWwt1I+YppxtCGVbAje8st/Seu86l1U3fvLSu0mj6NIjsgxOSUeuSI1ckfqpEk4UeSJvJBXxzjPzpvzvmgtOPnMIfkF5+MbPkSP+g==</latexit>

1/(pzbT )
<latexit sha1_base64="Q4+fMjCu+Wod9t4vaCKDQqD8XKs=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL3VXBT0WvXis0C9o15JNs21oNlmSWaEu/RlePCji1V/jzX9j2u5BWx8MPN6bYWZeEAtuwHW/ndzK6tr6Rn6zsLW9s7tX3D9oGpVoyhpUCaXbATFMcMkawEGwdqwZiQLBWsHoduq3Hpk2XMk6jGPmR2QgecgpASt1vLNy/PCEg179tFcsuRV3BrxMvIyUUIZar/jV7SuaREwCFcSYjufG4KdEA6eCTQrdxLCY0BEZsI6lkkTM+Ons5Ak+sUofh0rbkoBn6u+JlETGjKPAdkYEhmbRm4r/eZ0Ewms/5TJOgEk6XxQmAoPC0/9xn2tGQYwtIVRzeyumQ6IJBZtSwYbgLb68TJrnFe+i4t5flqo3WRx5dISOURl56ApV0R2qoQaiSKFn9IreHHBenHfnY96ac7KZQ/QHzucPg4aQGA==</latexit>

M/pz
<latexit sha1_base64="gyRaoK6fcXvI/bc3De1aIqX+7yY=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU91VQY9FL16ECm5baNeSTbNtaDZZkqxQl/4GLx4U8eoP8ua/MW33oK0PBh7vzTAzL0w408Z1v53C0vLK6lpxvbSxubW9U97da2iZKkJ9IrlUrRBrypmgvmGG01aiKI5DTpvh8HriNx+p0kyKezNKaBDjvmARI9hYyb89SR6euuWKW3WnQIvEy0kFctS75a9OT5I0psIQjrVue25iggwrwwin41In1TTBZIj7tG2pwDHVQTY9doyOrNJDkVS2hEFT9fdEhmOtR3FoO2NsBnrem4j/ee3URJdBxkSSGirIbFGUcmQkmnyOekxRYvjIEkwUs7ciMsAKE2PzKdkQvPmXF0njtOqdVd2780rtKo+jCAdwCMfgwQXU4Abq4AMBBs/wCm+OcF6cd+dj1lpw8pl9+APn8wd0245y</latexit>

m⇡ ⇠ 1.2 GeV
<latexit sha1_base64="EQknpcKHjoG3NPAPc4ruxSSYvHo=">AAACAnicbVDLSgNBEJyNrxhfUU/iZTAInsJuFPQY9KDHCOYB2RBmJ51kyMzuMtMrhiV48Ve8eFDEq1/hzb9x8jhoYkFDUdVNd1cQS2HQdb+dzNLyyupadj23sbm1vZPf3auZKNEcqjySkW4EzIAUIVRRoIRGrIGpQEI9GFyN/fo9aCOi8A6HMbQU64WiKzhDK7XzB6rtx4L6RijqFUs+wgOm9Bpqo3a+4BbdCegi8WakQGaotPNffifiiYIQuWTGND03xlbKNAouYZTzEwMx4wPWg6alIVNgWunkhRE9tkqHdiNtK0Q6UX9PpEwZM1SB7VQM+2beG4v/ec0EuxetVIRxghDy6aJuIilGdJwH7QgNHOXQEsa1sLdS3meacbSp5WwI3vzLi6RWKnqnRff2rFC+nMWRJYfkiJwQj5yTMrkhFVIlnDySZ/JK3pwn58V5dz6mrRlnNrNP/sD5/AG385ZZ</latexit>

Not independent of sea quark mass, 
quenched gauge fields used for 
exploratory calculation 
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power corrections
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Renormalization (and 
operator mixing)

Perturbative 
matching

Power corrections
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Current status for the Collins-Soper kernel

22

Pion mass Renormalization Operator 
mixing

Fourier 
transform Matching x-plateau 

search
SWZ20 

PRD 102 (2020)  
Quenched

Yes Yes Yes LO Yes

LPC20 
PRL 125 (2020) N/A No N/A LO N/A

SVZES 
JHEP08 (2021), 

2302.06502
N/A No N/A NLO N/A

PKU/ETMC 21 
PRL 128 (2022) N/A No N/A LO N/A

SWZ21 
PRD 106 (2022) Yes Yes Yes NLO Yes

LPC22 
PRD 106 (2022) Yes No Yes NLO Yes

LPC23 
JHEP 08 (2023) Yes No Yes NLO Yes 

ASWZ23 
2307.12359 Yes Yes Yes NNLL Yes

mπ = 580 MeV

mπ = 827 MeV

mπ = 422 MeV

mπ = 547 MeV

mπ = 1.2 GeV

mπ = 670 MeV

mπ = 220 MeV

mπ = 148.8 MeV
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• Close-to-Physical pion mass


• Better suppressed power corrections


• More stable Fourier transform 

• Renormalization of nonlocal operator 

• Systematic treatment of operator mixing 
using the RI-xMOM scheme

Improved calculation at physical pion mass

23

: Quasi-TMD wave functionΦ

Φ̃ = ⟨0 | |π(P)⟩

!4

LQCD Setup

Independent of hadron state, choice of momenta, choice of 

…up to power corrections:             ,                       ,          

bz
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Exploit independence, 
calculate for valence pion 
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Not independent of sea quark mass, 
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power corrections
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a = 0.12 fm,
mπ = 148.8 MeV,

Pz
max = 2.15 GeV
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FIG. 11. Examples of real parts of CS kernel estimators
“̂MS

� (bT , x, P z
1 , P z

2 , µ), computed with matching corrections at
LO (top panel) and uNNLL (bottom panel) accuracies as
described in Section III E, using bT = 0.48 fm and � = “4“5.
The black dashed lines enclose the region in x used to determine
the CS kernel. The notation nz = P z

1 /P z
2 displays momenta

in lattice units. Further examples are shown in Figs. 44–47 of
Appendix D.

ever, uNLO and uNNLL accuracies still do not lead to
values of Im

#
“̂MS

q,�

$
that are consistent with zero within

the accessible range of bT P z. This suggests that power
corrections beyond those that have been accounted for
by the unexpanded matching are relevant at the level of
precision of this calculation.

Since matching corrections with smallest expected
power corrections are given by uNNLL, this accuracy is
used for the final estimate of the CS kernel. Furthermore,
considering both the larger qualitative di�erence between
Im

#
“̂MS

q,�

$
for di�erent accuracies and momenta, as well as

the parametrically larger estimates of bT -dependent power
corrections compared to Re

#
“̂MS

q,�

$
, the central value of

the CS kernel is determined from fits to Re
#
“̂MS, uNNLL

q,�

$

while Im
#
“̂MS

q,�

$
is not treated as a direct source of sys-

tematic uncertainty. Finally, scale variation in resummed
corrections around µ0 = 2pz, with pz

œ {xP z, (1 ≠ x)P z
},

is not used to estimate the associated perturbative uncer-
tainties. This choice is motivated by the range of pz used

FIG. 12. CS kernel in bT space evaluated sepatately for each
momentum pair with LO (top panel) and uNNLL (bottom
panel) matching.

to determine the CS kernel, and in particular because
results at scales µ0/2 are sensitive to non-perturbative ef-
fects. The significance of higher-order perturbative e�ects
may instead be judged by comparing the final uNNLL
CS kernel determination to those obtained with other
accuracies, as shown in Fig. 13.

The final CS kernel results of this work are summarized
in Table II. These results are shown as a function of bT

and compared with phenomenological determinations of
the CS kernel in Fig. 15.

IV. OUTLOOK

This work presents a numerical determination of the
quark Collins-Soper kernel “MS

q (bT , µ = 2 GeV) in the
non-perturbative range of bT corresponding to transverse
momentum scales 240 MeV <

≥ qT
<
≥ 1.6 GeV, through a lat-

tice QCD calculation at a fixed lattice spacing and volume,
quark masses corresponding to an approximately physical
value of the pion mass mfi = 148.8(1) MeV, and uNNLL
perturbative matching power corrections in LaMET. Addi-
tionally, this work presents improved estimates of system-
atic uncertainties associated with perturbative matching
from LaMET, the associated power corrections, and mix-
ing e�ects in staple-shaped operators using the RI/xMOM
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• Matching correction: 

• Collinear v.s. TMD factorization: 

•  so a factorization exists.


• If , TMD region.


• If , collinear region.


• If , collinear but with calculable power corrections.

pz ≫ ΛQCD

pzbT ≫ 1
pzbT ≪ 1
pzbT ∼ 1

Matching and (perturbative) power corrections

24

δγq(x, Pz
1, Pz

2, μ) =
1

ln(Pz
1 /Pz

2) [ln
C(xPz

2, μ)
C(xPz

1, μ)
+ x → x̄] , C(pz, μ) = C(pz,2pz) exp [K(pz,2pz)]

Up to NNLO Up to N3LL

e.g., pz=2 GeV, bT=0.2 fm, pz*bT=2

22

Accuracy K� K“C K“µ ÷ C„

NLL 2 1 1 1 0
NNLL 3 2 2 2 1

TABLE III. Loop orders of each term comprising the resummed
matching coe�cient defined in Eq. (12) at a given accuracy.
The loop orders of the beta function —[–s(µ)] and the coupling
as(µ) are equal to the loop order of the term they are used in.
All the functions are defined in Appendix C 2.

of the MS scale µ, the natural choice of the initial scales
should be proportional to the hard parton momentum
in the quasi-TMD WFs, e.g., (pz

0
, µ0) = (pz, 2pz). There-

fore, in this work the resummed matching corrections are
determined in scheme II.

To obtain the resummed matching corrections, all
functions comprising K„ are computed perturbatively
in as(µ),

—[–s(µ)] = ≠2–s(µ)
Œÿ

n=0

an+1

s (µ)—n, (C21)

�cusp[as(µ)] =
Œÿ

n=0

an+1

s (µ)�n, (C22)

“µ[as(µ)] =
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n=0

an+1

s (µ)“µ
n , (C23)

“±
C [as(µ)] =

Œÿ

n=0

an+1

s (µ)“C±
n . (C24)

A resummation of C±
„ (µ, pz) from C±

„ (µ0, pz
0
) of a given

accuracy corresponds to a consistent set of loop orders
chosen for C±

„ (µ0, pz
0
) and the functions above, with as(µ)

run from as(µ0 = 2 GeV) as detailed further below. Ex-
amples for NLL and NNLL resummations are provided
in Table III. Explicitly, the following perturbative results
are used for the NLL and NNLL resummations. The
—-function is given by

—0 = 11
3 CA ≠

4
3TF nf , (C25)

—1 = 34
3 C2

A ≠

3
20
3 CA + 4CF

4
TF nf , (C26)
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1415
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+
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27 CA

4
T 2

F n2

f ,

(C27)

where TF = 1/2. The cusp anomalous dimension �cusp,

computed to four-loop order [129–134], is given by

�0 = 2CF , (C28)

�1 = 2CF

53
67
9 ≠

fi2

3

4
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20
9 TF nf

6
, (C29)
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+CF TF nf
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3 + 16’(3)

4
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27T 2

F n2

f

6
.

(C30)

The non-cusp anomalous dimensions are given in terms of
“µ

n and “C±
n © “C

n û ifi“Cú
n . Like the matching coe�cients

discussed in Appendix C 1, they can be extracted from the
recently calculated NNLO matching kernel of the quasi
TMD PDFs [77, 78] and are given by

“µ
0

= ≠2CF , (C31)
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(C32)

and

“C±
0

= 2CF û ifi�0 , (C33)
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(C34)

respectively, where the imaginary part is inferred from
the logarithm L±

z in Eq. (C7) of the fixed-order result.

The corresponding perturbative expressions of resum-
mation kernels for the NNLL resummation are [135]

KNNLL

“µ
(µ0, µ)

= ≠
“µ

0

2—0

5
ln r + as(µ)

3
“µ

1

“µ
0

≠
—1

—0

4
(r ≠ 1)

6
,

(C35)

KNNLL

“C
(µ0, µ)

= ≠
“C

0

2—0

5
ln r + as(µ)

3
“C

1
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0

≠
—1
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4
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6
,

(C36)
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• Unexpanded matching coefficient: 

• The CS kernel has a unphysical 
imaginary part which cannot be 
cancelled by NLO/NNLO matching. 
• Significantly reduced with the 

unexpanded matching! 

• Convergence in Pz also improved.

Matching and (perturbative) power corrections

25

14

bT [fm] 0.12 0.24 0.36 0.48 0.60 0.72 0.84
“MS, uNNLL

q 0.12(12) -0.20(9) -0.43(11) -0.64(15) -0.80(15) -0.94(41) -1.24(68)

TABLE II. Quark Collins-Soper kernel “MS

q (bT , µ = 2 GeV) as a function of bT .

FIG. 13. CS kernel in bT space for di�erent choices of
Dirac structure � with uNNLL matching (top panel) and
for all computed accuracies of the matching correction
”“MS

q (bT , µ, x, P z
1 , P z

2 ) (bottom panel).

renormalization scheme.
While a complete quantification of systematic uncer-

tainties would require performing lattice QCD calcula-
tions at multiple lattice spacings and at larger boosts or
higher-order perturbative matching, the precision and
control over systematic uncertainties achieved in this
work is su�cient to preliminarily compare the CS kernel
determination with phenomenological parameterizations
of the kernel fit to experimental data. In Fig. 15 the
final determination is compared with the following pa-
rameterizations: Scimemi and Vladimirov (SV19) [51],
Bachetta et al. (Pavia19) [52], the MAP Collaboration
(MAPTMD22) [55], Moos et al. (ART23) [56], as well as
an older parameterization based on the work of Brock,
Landry, Nadolsky and Yuan (BLNY) [44] and employed
in recent code packages for resummation calculations rel-
evant to precision electroweak measurements [110, 111].
Within quantified uncertainties, the data agrees with all
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FIG. 14. Imaginary part of the CS kernel estimator shown
for various accuracies of the perturbative matching correction
”“MS

q (bT , µ, x, P z
1 , P z

2 ).

FIG. 15. CS kernel with uNNLL matching in bT space (green
squares) compared to phenomenological parameterizations of
experimental data in Refs. [44, 51, 52, 55, 56] labelled BLNY,
SV19, Pavia19, MAP22, and ART23, respectively, as well as
perturbative results from Refs. [108, 109] labelled N3LO.

models in the range 0.12 fm <
≥ bT

<
≥ 0.24 fm, with all

but BLNY for 0.24 fm <
≥ bT

<
≥ 0.6 fm, and with SV19,

MAPTMD22 and ART23 for bT
>
≥ 0.6 fm. Finally, for

bT Ø 0.6 fm, the results are consistent with a constant,
as suggested for the large-bT behavior in Ref. [112]. Dis-
cretization artifacts and power corrections, both enhanced
at small bT , will be studied in more detail in future work.
More refined comparisons would also take into account
the di�erences in the number of quark flavors and their
masses between the lattice QCD determination and the
global analyses, which lead to perturbative corrections
described in Ref. [113].

CuNLO(pz, bT, μ) = C(pz, μ) + δC(pz, bT)

lim
pzbT→∞

δC(pz, bT) = 0

CuNNLL(pz, bT, μ) = CuNLO(pz, bT2pz)

× exp [KNNLL(pz,2pz]

24
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FIG. 21. NLO matching coe�cient with (solid) and without
(dashed) expansion at large P zbT and x = 0.5 and µ = 2 GeV.

where b0 = 2e≠“E , Ei(z) © ≠
s Œ

≠z dt e≠t

t is the exponen-
tial integral function, and Gm,n

p,q

!
z
--a1,...,ap

b1,...,bq

"
is the Meijer

G-function. The unexpanded coe�cient C±u

„ (bT , µ, xP z)
and the corresponding perturbative correction to the CS
kernel ”“uNLO

q (bT , x, P z
1

, P z
2

, µ) are shown as a function
of x in Figs. 21 and 22, respectively. The estimated cor-
rections are consistent with the di�erent rates of conver-
gence observed in real and imaginary parts for fixed-order
and resummed corrections in Figs. 9 and 19, respectively.
In the real part, the corrections become negligible for
bT

>
≥ 0.4 fm, except for the pair of smallest momenta used

in this work. In the imaginary part, the corrections are
large for the entire kinematic range of this study.

Appendix D: Additional examples for Section III

This section collates examples of intermediate analy-
sis steps in the numerical calculation of the CS kernel,
supplementing Section III.

Supplementing Fig. 6, additional examples of the MS-
renormalized quasi-TMD WFs W MS

�
(bT , µ, x, P z, ¸) are

illustrated in Figs. 23–38.
Supplementing Figs. 7 and 8, additional examples of the

Fourier-transformed MS-renormalized quasi-TMD WF
ratios W MS

�
(bT , µ, x, P z) are provided in Fig. 39 and

Figs. 40–43, respectively.
Supplementing Fig. 11, additional examples of real

parts of CS kernel estimators Re
#
“̂MS

�
(bT , x, P z

1
, P z

2
, µ)

$

are provided in Figs. 46 and 47 with LO matching, and

FIG. 22. uNLO matching correction to the CS kernel without
expansion at large P zbT at momentum pair (nz

1, nz
2) = (6, 8)

and µ = 2 GeV. The black line represents the NLO correction.

in Figs. 44 and 45 with uNNLL matching.

• Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037; 
• Deng, Wang and Zeng, JHEP 09 (2022).
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• Final result in comparison with global fits and perturbative QCD

Collins-Soper kernel from lattice at NNLL
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SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) 
Pavia19: A. Bacchetta et al., JHEP 07 (2020) 
BLNY: Landry, Brock, Nadolsky and Yuan, PRD 67 (2003)
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q (bT , µ = 2 GeV) as a function of bT .
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Dirac structure � with uNNLL matching (top panel) and
for all computed accuracies of the matching correction
”“MS

q (bT , µ, x, P z
1 , P z
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renormalization scheme.
While a complete quantification of systematic uncer-

tainties would require performing lattice QCD calcula-
tions at multiple lattice spacings and at larger boosts or
higher-order perturbative matching, the precision and
control over systematic uncertainties achieved in this
work is su�cient to preliminarily compare the CS kernel
determination with phenomenological parameterizations
of the kernel fit to experimental data. In Fig. 15 the
final determination is compared with the following pa-
rameterizations: Scimemi and Vladimirov (SV19) [51],
Bachetta et al. (Pavia19) [52], the MAP Collaboration
(MAPTMD22) [55], Moos et al. (ART23) [56], as well as
an older parameterization based on the work of Brock,
Landry, Nadolsky and Yuan (BLNY) [44] and employed
in recent code packages for resummation calculations rel-
evant to precision electroweak measurements [110, 111].
Within quantified uncertainties, the data agrees with all

FIG. 14. Imaginary part of the CS kernel estimator shown
for various accuracies of the perturbative matching correction
”“MS

q (bT , µ, x, P z
1 , P z
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FIG. 15. CS kernel with uNNLL matching in bT space (green
squares) compared to phenomenological parameterizations of
experimental data in Refs. [44, 51, 52, 55, 56] labelled BLNY,
SV19, Pavia19, MAP22, and ART23, respectively, as well as
perturbative results from Refs. [108, 109] labelled N3LO.

models in the range 0.12 fm <
≥ bT

<
≥ 0.24 fm, with all

but BLNY for 0.24 fm <
≥ bT

<
≥ 0.6 fm, and with SV19,

MAPTMD22 and ART23 for bT
>
≥ 0.6 fm. Finally, for

bT Ø 0.6 fm, the results are consistent with a constant,
as suggested for the large-bT behavior in Ref. [112]. Dis-
cretization artifacts and power corrections, both enhanced
at small bT , will be studied in more detail in future work.
More refined comparisons would also take into account
the di�erences in the number of quark flavors and their
masses between the lattice QCD determination and the
global analyses, which lead to perturbative corrections
described in Ref. [113].
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Reduced soft factor at NLO accuracy
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M.-H. Chu et al., LPC, JHEP 08 (2023).
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Figure 10. The intrinsic soft functions obtained from the combination of F (�?) and F (�?�5) (see

Eq. (3.12)). The left panels are from ensemble a12m310 (MILC) while the right panels are from en-

semble X650 (CLS). The first row shows results using tree-level matching while the second row is for 1-loop

matching. The “�” and “+” sign in the legends indicates the direction of the quasi TMDWF used in the cal-

culation. The data points have been shifted horizontally for better visibility. Only statistical uncertainties

are shown.

In all cases the intrinsic soft functions obtained for X650 show stronger P z-dependence than those
for a12m310. When going from tree-level matching to 1-loop matching, the intrinsic soft functions
increase significantly for both ensembles, approaching the 1-loop perturbative values, especially at
small b?. Based on all these studies, we regard the results from 1-loop matching and �? + �?�5

combination as our final estimates of the intrinsic soft function, summarized in Fig. 11. Generally
speaking, the final intrinsic soft function on two ensembles show satisfactory agreement except at
small b? where lattice discretization e↵ects are the most significant.

4 Collins-Soper Kernel

The CS kernel describes the rapidity evolution of TMDWFs and TMDPDFs. Results containing
one-loop contributions were already calculated for a12m130 using quasi TMDWFs in the framework
of LaMET in [31] and were revisited in [32] on a12m310. In this section we provide the results for
X650 obtained in the same way. Here we use quasi TMDWF in “�” direction and use the 1-loop

– 13 –

Ensemble a(fm) N3
� ⇥ N⌧ msea

⇡ mval
⇡ Measure

X650 0.098 483⇥ 48 333 MeV 662 MeV 911⇥4

A654 0.098 243⇥ 48 333 MeV 662 MeV 4923⇥20

a12m130 0.121 483⇥ 64 132 MeV
310 MeV 1000⇥4
220 MeV 1000⇥16

a12m310 0.121 243⇥ 64 305 MeV 670 MeV 1053⇥8

Table 1. The lattice setups used in this work. X650 and A654 were generated using 2+1 flavors of

dynamical clover fermions and tree-level Symanzik gauge action by the CLS collaboration. We remark that

for these two ensembles the light quark and strange quark have the same mass in the sea. a12m310 and

a12m130 are generated using 2+1+1 flavors of highly improved staggered dynamic quarks [53] (HISQ) by

MILC collaboration [56].

last column of the table gives the number of measurements, which is equal to the number of the
configurations times the number of di↵erent sources used for each configuration.

3 Intrinsic soft function

As the rapidity independent part of the o↵-light-cone soft function, the intrinsic soft function
SI eliminates the regulator scheme dependence of the quasi TMDPDF/TMDWF. Its determination
relies on the calculation of the quasi TMDWF which we present below.

3.1 Quasi TMDWF

Bare quasi TMDWF.— From Eq. (2.9) we know that the first piece needed for the intrinsic
soft function is the quasi TMDWF. In this section we show how it is determined, taking X650
(a = 0.098 fm) as an example. Similar results have been obtained for a12m130 [31] and a12m310
[32] both with valence pion mass 670 MeV. To obtain the bare quasi-TMDWF in position space on
the lattice, one first calculates the following two-point correlation

C�
2 (L, z, b?, t, P z) =

X

~x

e�iP z
~x·n̂z hO�(L, z, b?, t)O†

⇡
(0, P z)i, (3.1)

where the interpolators read

O�(L, z, b?, t) ⌘ ū(~x + b?n̂? + zn̂z, t)Uc��d(~x, t)

O†
⇡
(P z, t) ⌘

X

~x,~y

ū(~x, t)�5d(~y, t)e�iP
z
~y·n̂z . (3.2)

Ideally one should use � = (�z�5 + �t�5)/2 to eliminate power corrections. However in [31] it
was demonstrated that the corrections are at most 5%, such that for simplicity we can just take
� = �t�5. In this calculation we have 0  L  10a, 0  z  10a, 0  b?  7a, 0  t  9a and
P z = {0, 6, 8, 10, 12}⇥ 2⇡/(48a) = {0, 1.58, 2.11, 2.64, 3.16} GeV. To ensure that artifacts are small
for the considered momenta we examine the dispersion relation in Appendix A for the ensemble
X650 and a12m310, on which the soft function will be calculated. We also point out that the
previous calculation on a12m130 [31] only considered L = 7a, which should su�ce as shall be seen
later. We normalize the above non-local two-point function with the corresponding local two-point
function

C�
2 (L, z, b?, t, P z)

C�
2 (L, z = 0, b? = 0, t, P z)

=  ̃�(L, z, b?, P z)
1 + c0(z, b?, P z, L)e��Et

1 + c1e��Et
, (3.3)

and find that the ground-state contribution, which reproduces the continuum definition Eq (2.6),
can be obtained by a one- or two-state fit. In [31, 32] both fitting Ansätze are explored and a

– 6 –
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(x, bT) dependence of the unpolarized proton TMD
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J.-C. He, M.-H. Chu, J. Hua et al., (LPC), arXiv: 2211.02340.

SV19: Scimemi and Vladimirov, JHEP 06 (2020) 
Pavia19: Bacchetta et al., JHEP 07 (2020). 
MAPTMD22: Bacchetta et al., JHEP 10 (2022). 
BHLSVZ22: Bury et al., JHEP 10 (2022).

a = 0.12 fm, mπ = {310, 220} MeV, Pz
max = 2.58 GeV
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FIG. 5. Our final results for isovector unpolarized TMDPDFs xf(x, b?, µ, ⇣) at renormalization scale µ = 2 GeV and rapidity
scale

p
⇣ = 2 GeV, extrapolated to physical pion mass 135 MeV and infinite momentum limit P z ! 1, compared with PV17

[6], MAPTMD22 [9], SV19 [7] and BHLSVZ22 [8] global fits (slashed bands). The colored bands denote our results with both
statistical and systematic uncertainties, the shaded grey regions imply the endpoint regions where LaMET predictions are not
reliable.
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SUPPLEMENTAL MATERIALS

Renormalization

In order to renormalize the bare quasi-TMD matrix
elements, the square root of Wilson loop

p
ZE and loga-

rithmic divergence factor ZO need to be computed.
The Wilson loop ZE(r = 2L+z, b?, a) is defined as the

vacuum expectation of a rectangular shaped space-like
gauge links with size r⇥b?. It is introduced to eliminate
the linear divergence form as e��m̄r, which comes from
the self-energy corrections of the gauge link [28, 34], as
well as the pinch-pole singularity, which comes from the
heavy quark e↵ective potential term e�V (b?)L from the
interactions between the two Wilson lines along the z
direction in the staple link [20]. In practice, the signal
to noise ratio of ZE(r, b?, a) grows fast and is hardly
available at large r and/or b?. To address this, we fit the
e↵ective energies of Wilson loop, which denote the QCD
static potentials, and then extrapolate them at large r
and/or b? area, as in Ref. [27]. Numerical results of
Wilson loop are shown in the upper panel of Fig. 6.

Besides, the logarithmic divergences factor ZO can be
extracted from the zero-momentum bare matrix elements
h̃0
� (z, b?, 0, a, L). In order to keep the renormalized ma-

trix elements consistent with perturbation theory, ZO

should be determined with the condition:

ZO(1/a, µ,�) = lim
L!1

h̃0
� (z, b?, 0, a, L)p

ZE (2L+ z, b?, a)h̃MS
� (z, b?, µ)

(12)

in a specific window where z ⌧ ⇤�1
QCD so that the

perturbation theory works well. Here the perturbation
results have been evolved from the intrinsic physical
scale 2e��E/

p
z2 + b2? to MS scale µ via renormalization

group equation [44]. To preserve a good convergence of
the perturbation theory before and after RG evolution,
we choose the region where b? = a, z = 0 or a. More
discussions about RG evolution can be found in the fol-
lowing section. The numerical value for ZO in this work
is taken as 1.0622(87), of which the uncertainty is negli-
gible compared with other systematic uncertainties.

Pion TMD wave function also available in 
M.-H. Chu, J.-C. He, J. Hua et al., (LPC), 2302.09961, 

and JHEP 08 (2023).
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• The quark and gluon quasi TMDs can be factorized into the 
physical TMDs, without any mixing.


• Lattice calculation of the Collins-Soper kernel has made 
significant progress in reducing the systematics.


• First calculations of the soft function and TMD are available, 
but the systematics needs to be under control.


• Understanding the power corrections is important!

Conclusion

29



YONG ZHAO, 09/28/2023

Outlook

30

Observables Status

Non-perturbative Collins-Soper kernel
 Better understanding of the systematics, with room 
for improvement (e.g., np power corrections, a→0)

Soft factor to be under systematic control

Spin-dependent TMDs (in ratios)
 In progress

Proton v.s. pion TMDs,             (in ratios)
 In progress

Flavor dependence of TMDs,          (in ratios) 


  
to be studied

TMDs and TMD wave functions,           to be under systematic control

Gluon TMDs to be studied

Wigner distributions to be studied

(x, bT)

(x, bT)

(x, bT)

(x, bT)

(x, bT, ΔT)
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Factorization relation with the TMDs

32

Quasi

Large-rapidity 
(LR) scheme

Collins scheme

Lattice

Continuum

f̃i(x, bT, μ, ζ̃, P̃z) = lim
P̃z≫mN

lim
a→0

Z̃UV
B̃i

Sq

f LR
i (x, bT, μ, ζ, yP − yB) = lim

−yB≫1
lim
ϵ→0

Z LR
UV

Bi

Sq

fi(x, bT, μ, ζ) = lim
ϵ→0

ZUV lim
yB→−∞

Bi

Sq

New
Lorentz boost

Same matrix elements, but 
different orders of UV limits

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022). 

Perturbative matching in 
LaMET!

yP̃ = yP − yB
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Comparison between lattice results and global fits

Collins Soper kernel from Lattice QCD

33

4

FIG. 2. Comparison of CS kernels extracted from differ-

ent combinations of the pseudo-data. The top plot shows all

possible (twelve) combinations of pseudo-data with different

kinematics, listed in the table I. The bottom plot show ex-

tractions made with different input collinear PDFs. The solid

lines are the central values. The shaded areas are the statis-

tical uncertainty. The oscillations at b ⇠ 4� 6GeV
�1

are due

to the finite bin size in the qT -space. The gray dashed line in

the lower plot shows the effect of incomplete cancellation of

parton’s momentum if PDFs in the comparing cross-section

are different (here, CT18 vs. CASCADE).

tions of CS kernel is shown in fig.3. The CASCADE
extraction lightly disagrees with the perturbative curve
(b < 1GeV�1), but in agreement with the SV19 [10] and
Pavia17 [7] for 1 < b < 3GeV�1.

The fit of the large-b part by a polynomial gives

D(b, µ) ⇠ [(0.069± 0.031)GeV]⇥ b, (11)

with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
by theoretical estimations [14, 38]

Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
matics. For explicitness, we considered the case of the
Drell-Yan process, but the method can be easily gener-
alized to other processes such as SIDIS, semi-inclusive
annihilation, Z/W-boson production, and their polarized
versions.
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FIG. 3. Comparison of the CS kernels obtained in different

approaches. CASCADE curve is obtained in this work. The

curves SV19, MAP22, Pavia19 and Pavia17 are obtained from

the fits of Drell-Yan and SIDIS data in refs. [39], [10], [11],

and [7], correspondingly. Dots represent the computations of

CS kernel on the lattice, with SVZES, ETMC/PKU, SVZ,

LPC20 and LPC22 corresponding to refs.[16], [40], [17], [41],

and [42].

The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.
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• Close-to-Physical pion mass


• Better suppressed power corrections


• More stable Fourier transform


• Renormalization of nonlocal operator 

• Systematic treatment of operator mixing 
using the RI-xMOM scheme

Improved calculation at physical pion mass

34

: Quasi-TMD wave functionΦ

Φ̃ = ⟨0 | |π(P)⟩

!4

LQCD Setup

Independent of hadron state, choice of momenta, choice of 

…up to power corrections:             ,                       ,          
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Exploit independence, 
calculate for valence pion 
with 

bT /⌘
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Not independent of sea quark mass, 
quenched gauge fields used for 
exploratory calculation 

x
<latexit sha1_base64="T81e0FN4eiLN0l7csieDRUgh6Jc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix68diC/YA2lM120q7dbMLuRiyhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveRcWtX5arN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD5uOM/g==</latexit>

Variation of        probes 
power corrections

m⇡
<latexit sha1_base64="O2UScV7hb2SyqhzsV63WC/iMZiM=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4ruG2hXUo2zbahSTYkWaEs/Q1ePCji1R/kzX9j2u5BWx8MPN6bYWZerDgz1ve/vdLa+sbmVnm7srO7t39QPTxqmTTThIYk5anuxNhQziQNLbOcdpSmWMSctuPx3cxvP1FtWCof7UTRSOChZAkj2DopFP2eYv1qza/7c6BVEhSkBgWa/epXb5CSTFBpCcfGdANf2SjH2jLC6bTSywxVmIzxkHYdlVhQE+XzY6fozCkDlKTalbRorv6eyLEwZiJi1ymwHZllbyb+53Uzm9xEOZMqs1SSxaIk48imaPY5GjBNieUTRzDRzN2KyAhrTKzLp+JCCJZfXiWti3pwWfcfrmqN2yKOMpzAKZxDANfQgHtoQggEGDzDK7x50nvx3r2PRWvJK2aO4Q+8zx/SSY6v</latexit>

A. Avkhadiev, P. Shanahan, M. Wagman and YZ, 
2307.12359.

• Green, Jansen and Steffens, PRL 121 (2018) and PRD 101 (2020). 
• Constantinou, Panagopoulos, and Spanoudes, PRD 99 (2019). 

a = 0.12 fm,
mπ = 148.8 MeV,

Pz
max = 2.15 GeV
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(a) The mixing matrix at the renormalization scale used in the
analysis of the CS kernel. White disks denote o�-diagonal ele-
ments with contributions expected at one-loop order in lattice
perturbation theory [106]. Examples for other renormalization
scales are provided in Fig. 16 of Appendix B.

(b) Dominant o�-diagonal �, �Õ elements of the mixing matrix for
� œ {“3“5, “4“5} as a function of pR. Data corresponding to
›R/a œ {2, 3, 4} are denoted by squares, circles and triangles,
respectively. Statistical and systematic uncertainties, denoted
by error bars and color bands, respectively, are computed as
described in text.

FIG. 5. An example of renormalization-induced mixing e�ects as defined by the mixing matrix M
RI/xMOM

��Õ (pR, ›R) in Eq. (24).

components:

M
RI/xMOM

��Õ (pR, ›R)

©
Abs[ZRI/xMOM

��Õ (pR, ›R)]
1

16

q
�

Abs[ZRI/xMOM

��
(pR, ›R)]

.
(24)

The central values of ZRI/xMOM

��Õ (pR, ›R) are calculated
at ›R/a = 3 and pR = 2.15 GeV, and systematic un-
certainty for each pair �, �Õ is estimated as half the
di�erence between the maximum and the minimum of
ZRI/xMOM

��Õ (pR, ›R) over all values of pR and ›R stud-
ied. Systematic and statistical uncertainties are added in
quadrature. Fig. 5a illustrates M

RI/xMOM

��Õ (pR, ›R) com-
puted from the central values of ZRI/xMOM

��Õ (pR, ›R), and
Fig. 5b illustrates the auxiliary-scale dependence of dom-
inant o�-diagonal contributions to M

RI/xMOM

��Õ (pR, ›R)
for � œ {“3“5, “4“5}, which are given by �Õ

œ

{“3“5, “4“5, “5}.

At the level of renormalization constants as defined
by Eq. (24), mixing e�ects for collinear configurations
of pµ

R
and ›µ

R
are consistent with constraints on staple-

shaped operator mixing from C, P and T transforma-
tions [36, 107], and the dominant contributions are as
expected from lattice perturbation theory at one-loop
order [106]. While non-collinear momentum configura-
tions are not used in the determination of the kernel, an
investigation of mixing e�ects using such a definition of
the associated renormalization scales, summarized in Ap-
pendix B, reveals contributions to mixing in addition to
those expected in lattice perturbation theory at one-loop

order. The additional contributions may be understood
as artifacts of an o�-shell renormalization scheme.

The ratios of the MS-renormalized quasi-TMD WFs,
W MS

�
(bT , µ, bz, P z, ¸), are computed according to

W MS

�
(bT , µ, bz, P z, ¸) =

ÿ

�Õ

ZMS

��Õ(µ) W (0)

�Õ (bT , bz, P z, ¸),

(25)
using W (0)

�Õ (bT , bz, P z, ¸) and ZMS

��Õ(µ) for all of the 16 �Õ

structures; the uncertainties are combined in quadrature.
The e�ects of mixing on quasi-TMD WF ratios are illus-
trated in Figs. 6a and 6b.

C. Fourier-transformed quasi-TMD WF ratios

The Fourier transform of the MS-renormalized position-
space quasi-TMD WF ratios is realized as a Discrete
Fourier Transform (DFT), i.e.,

W MS

�
(bT , µ, x, P z) = P z

2fi
N�(P )

ÿ

|bz|Æbz
max

ei(x≠ 1
2 )P zbz

◊ W̄ MS

�
(bT , µ, bz, P z),

(26)

where bmax
z denotes the truncation point in position space

and W̄ MS

�
(bT , µ, bz, P z) denotes a position-space quasi-

TMD WF ratio whose real and imaginary parts have been
averaged at each P z over ±bz and all values of ¸(P z)
relevant for a given bz with weights proportional to the
inverse variance of each contribution. As can be seen in
Appendix D, the values that are averaged are in all cases
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FIG. 8. Examples of real and imaginary parts of the Fourier-transformed MS-renormalized quasi-TMD WF ratios
W MS

� (bT , µ, x, P z), µ = 2.0 GeV, computed as described in Section III C. Further examples are shown in Figs. 40–43 of
Appendix D.

complex distributions, with a vanishing imaginary part
as bT æ 0 or P z

æ 0, where W MS

�
(bT , x, P z, ¸) is ex-

pected to be real. Finally, since the LaMET matching
coe�cients to NLO are independent of Dirac structure,
W MS

�
(bT , bz, P z, ¸) for � œ {“3“5, “4“5} are expected to

agree up to power corrections. The magnitude of both
real and imaginary parts of the quasi-TMD WFs are
reduced outside of the physical region x œ [0, 1] as P z

increases, which is consistent with expectations from the
factorization formula [41, 65, 66, 68, 71, 72, 75]. Since the
factorization scales are proportional to the hard parton
momenta xP z and (1 ≠ x)P z, the power corrections are
always enhanced near the end-point regions x æ 0 and
x æ 1, and lead to nonvanishing tails when P z is finite.

D. Perturbative matching

The final determination of the CS kernel in this work
employs the bT -unexpanded resummed perturbative cor-
rection at NNLL accuracy, denoted uNNLL,

”“MS, uNNLL

q (bT , µ, x, P z
1

, P z
2

)

= ≠
1

ln(P z
1

/P z
2

)

3
ln

CMS, uNLO

„ (bT , 2pz
1
, pz

1
)

CMS, uNLO

„ (bT , 2pz
2
, pz

2
)

≠

1
KMS, NNLL

„ (µ, 2pz
1
) ≠ KMS, NNLL

„ (µ, 2pz
2
)
2

+ (x ¡ x̄)
4

,

(27)

which is derived from Eq. (14) by resumming the bT -
unexpanded coe�cients CMS, uNLO

„ (bT , µ0, pz) with the
kernel KMS, NNLL

„ (µ, µ0) for µ0 = 2pz. The logarithmic
ratio of the uNLO coe�cients is expanded in –s(2pz

1
)

and –s(2pz
2
) analogously to that of the bT -independent

coe�cients in Eq. (C4).

In addition to uNNLL, corrections at several other
accuracies are computed to study perturbative conver-
gence: fixed-order NLO and NNLO corrections computed
according to Eq. (11), uNLO corrections computed anal-
ogously, and NLL and NNLL resummations computed
according to Eq. (13). In all comparisons beyond LO,
for example that of NNLL and NLL illustrated in Fig. 9,
the Re[”“MS

q (µ, x, P z
1

, P z
2

)] exhibit qualitative agreement
between di�erent accuracies for x œ [0.3, 0.7] at each
pair (P z

1
, P z

2
), with better agreement at larger momenta.

When compared analogously, the Im[”“MS
q (µ, x, P z

1
, P z

2
)]

exhibit worse agreement and are larger in magnitude than
the real parts. This indicates di�erent rates of perturba-
tive convergence in real and imaginary parts of matching
corrections. The same qualitative picture is observed for
fixed-order corrections in Fig. 19 of Appendix C 1. Sensi-
tivity to bT -dependent power corrections is also di�erent
between real and imaginary parts, as may be seen by
comparing corrections expanded and unexpanded in bT ,
such as the comparison of NLO and uNLO illustrated in
Fig. 10 and further examples provided in Appendix C 3.
These comparisons reveal a bT -dependent sensitivity to
power corrections which, for momenta used in this work,
is significant for bT /a <

≥ 3 in the real part and across the
entire range in bT /a in the imaginary part.

E. The Collins-Soper kernel

Using Eq. (2) and replacing integral Fourier trans-
forms of quasi-TMD WF ratios with the DFTs defined in
Eq. (26), the MS-renormalized quark CS kernel is deter-

Operator 
mixing 
pattern

Renormalized TMD-WF Ratios
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bT [fm] 0.12 0.24 0.36 0.48 0.60 0.72 0.84
“MS, uNNLL

q 0.12(12) -0.20(9) -0.43(11) -0.64(15) -0.80(15) -0.94(41) -1.24(68)

TABLE II. Quark Collins-Soper kernel “MS

q (bT , µ = 2 GeV) as a function of bT .
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FIG. 13. CS kernel in bT space for di�erent choices of
Dirac structure � with uNNLL matching (top panel) and
for all computed accuracies of the matching correction
”“MS

q (bT , µ, x, P z
1 , P z

2 ) (bottom panel).

renormalization scheme.
While a complete quantification of systematic uncer-

tainties would require performing lattice QCD calcula-
tions at multiple lattice spacings and at larger boosts or
higher-order perturbative matching, the precision and
control over systematic uncertainties achieved in this
work is su�cient to preliminarily compare the CS kernel
determination with phenomenological parameterizations
of the kernel fit to experimental data. In Fig. 15 the
final determination is compared with the following pa-
rameterizations: Scimemi and Vladimirov (SV19) [51],
Bachetta et al. (Pavia19) [52], the MAP Collaboration
(MAPTMD22) [55], Moos et al. (ART23) [56], as well as
an older parameterization based on the work of Brock,
Landry, Nadolsky and Yuan (BLNY) [44] and employed
in recent code packages for resummation calculations rel-
evant to precision electroweak measurements [110, 111].
Within quantified uncertainties, the data agrees with all

FIG. 14. Imaginary part of the CS kernel estimator shown
for various accuracies of the perturbative matching correction
”“MS

q (bT , µ, x, P z
1 , P z

2 ).

FIG. 15. CS kernel with uNNLL matching in bT space (green
squares) compared to phenomenological parameterizations of
experimental data in Refs. [44, 51, 52, 55, 56] labelled BLNY,
SV19, Pavia19, MAP22, and ART23, respectively, as well as
perturbative results from Refs. [108, 109] labelled N3LO.

models in the range 0.12 fm <
≥ bT

<
≥ 0.24 fm, with all

but BLNY for 0.24 fm <
≥ bT

<
≥ 0.6 fm, and with SV19,

MAPTMD22 and ART23 for bT
>
≥ 0.6 fm. Finally, for

bT Ø 0.6 fm, the results are consistent with a constant,
as suggested for the large-bT behavior in Ref. [112]. Dis-
cretization artifacts and power corrections, both enhanced
at small bT , will be studied in more detail in future work.
More refined comparisons would also take into account
the di�erences in the number of quark flavors and their
masses between the lattice QCD determination and the
global analyses, which lead to perturbative corrections
described in Ref. [113].
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FIG. 11. Examples of real parts of CS kernel estimators
“̂MS

� (bT , x, P z
1 , P z

2 , µ), computed with matching corrections at
LO (top panel) and uNNLL (bottom panel) accuracies as
described in Section III E, using bT = 0.48 fm and � = “4“5.
The black dashed lines enclose the region in x used to determine
the CS kernel. The notation nz = P z

1 /P z
2 displays momenta

in lattice units. Further examples are shown in Figs. 44–47 of
Appendix D.

ever, uNLO and uNNLL accuracies still do not lead to
values of Im

#
“̂MS

q,�

$
that are consistent with zero within

the accessible range of bT P z. This suggests that power
corrections beyond those that have been accounted for
by the unexpanded matching are relevant at the level of
precision of this calculation.

Since matching corrections with smallest expected
power corrections are given by uNNLL, this accuracy is
used for the final estimate of the CS kernel. Furthermore,
considering both the larger qualitative di�erence between
Im

#
“̂MS

q,�

$
for di�erent accuracies and momenta, as well as

the parametrically larger estimates of bT -dependent power
corrections compared to Re

#
“̂MS

q,�

$
, the central value of

the CS kernel is determined from fits to Re
#
“̂MS, uNNLL

q,�

$

while Im
#
“̂MS

q,�

$
is not treated as a direct source of sys-

tematic uncertainty. Finally, scale variation in resummed
corrections around µ0 = 2pz, with pz

œ {xP z, (1 ≠ x)P z
},

is not used to estimate the associated perturbative uncer-
tainties. This choice is motivated by the range of pz used
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FIG. 12. CS kernel in bT space evaluated sepatately for each
momentum pair with LO (top panel) and uNNLL (bottom
panel) matching.

to determine the CS kernel, and in particular because
results at scales µ0/2 are sensitive to non-perturbative ef-
fects. The significance of higher-order perturbative e�ects
may instead be judged by comparing the final uNNLL
CS kernel determination to those obtained with other
accuracies, as shown in Fig. 13.

The final CS kernel results of this work are summarized
in Table II. These results are shown as a function of bT

and compared with phenomenological determinations of
the CS kernel in Fig. 15.

IV. OUTLOOK

This work presents a numerical determination of the
quark Collins-Soper kernel “MS

q (bT , µ = 2 GeV) in the
non-perturbative range of bT corresponding to transverse
momentum scales 240 MeV <

≥ qT
<
≥ 1.6 GeV, through a lat-

tice QCD calculation at a fixed lattice spacing and volume,
quark masses corresponding to an approximately physical
value of the pion mass mfi = 148.8(1) MeV, and uNNLL
perturbative matching power corrections in LaMET. Addi-
tionally, this work presents improved estimates of system-
atic uncertainties associated with perturbative matching
from LaMET, the associated power corrections, and mix-
ing e�ects in staple-shaped operators using the RI/xMOM


