Lattice QCD Calculation of TMD Physics

25th International Spin Symposium (SPIN 2023) Durham Convention Center, Durham, NC, USA Sep 24-29, 2023

> **YONG ZHAO SEP 28, 2023**

TMDs from experiments

Lattice methods for TMD calculation

Results from lattice QCD

3D Imaging of the Proton

COMPASS, CERN

The Electron-Ion Collider, BNL


```
The 2015
LONG RANGE PLAN
for NUCLEAR SCIENCE
```

Y 🐝

SCIENCE REQUIREMENTS AND DETECTOR CONCEPTS FOR THE ELECTRON-ION COLLIDER EIC Yellow Report

TMDs from global analyses

e.g., semi-inclusive DIS: $l + p \longrightarrow l + h(P_h) + X$ $\frac{d\sigma}{dxdydz_hd^2\mathbf{P}_{hT}} \sim \int d^2\mathbf{b}_T \ e^{i\mathbf{b}_T \cdot \mathbf{P}_{hT}/z}$ $\times f_{i/p}(x, \mathbf{b}_T, Q, Q^2) \ D_{h/i}(z_h, \mathbf{b}_T, Q, Q^2) + Y(P_{hT}, Q) + \mathcal{O}(\frac{\Lambda_{QCD}}{Q}) \xrightarrow{Kang, Prokudin, Sun and Yuan, PRD 93} (2016)$

$$f_{i/p}(x, \mathbf{b}_T, \mu, \zeta) = f_{i/p}^{\text{pert}}(x, b^*(b_T), \mu, \zeta)$$

$$\times \left(\frac{\zeta}{Q_0^2}\right)^{g_K(b_T)/2} \xrightarrow{\text{Collins-Soper kernel} \\ (\text{Non-perturbative part})}_{f_{i/p}^{\text{NP}}(x, b_T) \longrightarrow \text{Intrinsic TMD}}$$

$$Q_0 \sim 1 \text{ GeV}$$
Non-perturbative when $b_T \sim 1/\Lambda_{\text{OCD}}$!

TMDs from global analyses

Unpolarized quark TMD

Scimemi and Vladimirov, JHEP 06 (2020).

Quark Sivers function

Cammarota, Gamberg, Kang et al. (JAM Collaboration), PRD 102 (2020).

TMDs from global analyses

Collins-Soper Kernel $K(b_T, \mu)$ or $\gamma_{\zeta}(b_T, \mu) - \frac{K(b_T, \mu)}{K(b_T, \mu)} = K^{\text{pert}}(b_T, \mu) + g_K(b_T)$

Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, JHEP 10 (2022).

See A. Bacchetta's talk on Tue and A. Prokudin's talk on Thu.

TMDs from experiments

Lattice methods for TMD calculation

Results from lattice QCD

TMD definition

TMD definition

Simulating partons on the lattice

Nevertheless, it is possible to approach the Feynman partons by simulating a boosted hadron on the lattice 😇

Large-Momentum Effective Theory (LaMET)

A quasi-PDF $\tilde{f}(x, P^{Z})$ to expand from: • X. Ji, PRL 110 (2013); SCPMA 57 (2014). • X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, RMP 93 (2021).

Power expansion and effective theory matching:

$$f(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} \bar{C}\left(\frac{x}{y}, \frac{\mu}{2xP^{z}}, \frac{\tilde{\mu}}{\mu}\right) \tilde{f}(y, P^{z}, \tilde{\mu}) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP^{z})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P^{z})^{2}}\right)$$

- X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);
- Y. Ma and J. Qiu, PRD 98 (2018);
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD 98 (2018)

Reliable prediction within $[x_{min}, x_{max}]$ at a given finite P^{z} !

Lattice calculation of pion valence PDF at NNLO

- JAM21nlo, PRL 127 (2021);
- xFitter (2020), PRD 102 (2020);
- ASV, PRL 105 (2010);
- GRVPI1, ZPC 53 (1992);
- BNL20, X. Gao, N. Karthik, YZ, et al., PRD 102 (2020).

Towards better perturbative and power precisions

$$f(x,\mu) = U^{\text{RGR}}(\mu, 2xP^z) \bigotimes \int_{-\infty}^{\infty} \frac{dy}{|y|} \bar{C}_{\text{LRR}}\left(\alpha_s(2xP^z), \frac{x}{y}, 1, \frac{\tilde{\mu}}{2xP^z}\right) \tilde{f}(y, P^z, \tilde{\mu})$$

- Holligan, Ji, Lin, Su and R. Zhang, NPB 993 (2023);
- R. Zhang, Ji, Holligan and Su, PLB 844 (2023);
- X. Gao, K. Lee, and **YZ** et al., PRD **103** (2021).
- RGR: renormalization group resummation, resuming small x logarithms.
- LRR: leading-renormalon resummation, summing the asymptotic series in the Wilson line self-energy, improving power accuracy to $1/P_z^2$.
- THR: threshold resummation, resuming the large *x* logarithms.
 - X. Gao, K. Lee, and YZ et al., PRD 103 (2021);
 - X. Ji, Y. Liu and Y. Su, JHEP 08 (2023).

Better perturbative convergence with LRR!

 $+ \mathcal{O}\left(\frac{\Lambda_{QCD}}{|xP^z|}\right) + \mathcal{O}\left(\frac{\Lambda_{QCD}^2}{(xP^z)^2}, \frac{\Lambda_{QCD}^2}{((1-x)P^z)^2}\right)$

See Q. Shi's talk on Wed for on application to pion GPD.

Quasi TMD in LaMET

- Beam function in Collins scheme:
- n_{b} $Lorentz \text{ boost and } L \to \infty$ $n_{b}^{\mu}(y_{B}) = (n_{b}^{+}, n_{b}^{-}, \vec{0}_{\perp}) = (-e^{2y_{B}}, 1, \vec{0}_{\perp})$
 - Spacelike but close-to-lightcone ($y_B \rightarrow -\infty$) Wilson lines, not calculable on the lattice 😕

Equal-time Wilson lines, directly calculable on the lattice

Quasi beam function :

Soft factor

Light-meson form factor:

$$F(b_T, P^z) = \langle \pi(-P) | j_1(b_T) j_2(0) | \pi(P) \rangle$$

$$\stackrel{P^z \gg m_N}{=} S_r(b_T, \mu) \int dx dx' H(x, x', \mu)$$

$$\times \Phi^{\dagger}(x, b_T, P^z, \mu) \Phi(x', b_T, P^z, \mu)$$

 $\Phi(x, b_T, P^z, \mu)$: quasi-TMD wave function

- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ji and Liu, PRD 105 (2022);
- Deng, Wang and Zeng, JHEP 09 (2022).

Factorization formula for the quasi-TMDs

$$\frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{\sqrt{S_r(b_T, \mu)}} = C(\mu, x \tilde{P}^z) \exp\left[\frac{1}{2}\gamma_{\zeta}(\mu, b_T) \ln \frac{(2x \tilde{P}^z)^2}{\zeta}\right] \times f_{i/p}^{[s]}(x, \mathbf{b}_T, \mu, \zeta) \left\{1 + \mathcal{O}\left[\frac{1}{(x \tilde{P}^z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(x \tilde{P}^z)^2}\right]\right\}$$

Matching coefficient:

Independent of spin;

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 09 (2020);
- Vladimirov and Schäfer, PRD 101 (2020);
- Ji, Liu, Schäfer and Yuan, PRD 103 (2021);
- Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).
- No quark-gluon or flavor mixing, which makes gluon calculation much easier.
 - Schindler, Stewart and YZ, JHEP 08 (2022);
 - Zhu, Ji, Zhang and Zhao, JHEP 02 (2023).

Factorization formula for the quasi-TMDs

$$\frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{\sqrt{S_r(b_T, \mu)}} = C(\mu, x \tilde{P}^z) \exp\left[\frac{1}{2}\gamma_{\zeta}(\mu, b_T) \ln \frac{(2x \tilde{P}^z)^2}{\zeta}\right] \times f_{i/p}^{[s]}(x, \mathbf{b}_T, \mu, \zeta) \left\{1 + \mathcal{O}\left[\frac{1}{(x \tilde{P}^z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(x \tilde{P}^z)^2}\right]\right\}$$

* **Collins-Soper kernel;**
$$\gamma_{\zeta}(\mu, b_T) = \frac{d}{d \ln \tilde{P}^z} \ln \frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{C(\mu, x \tilde{P}^z)}$$

* Flavor separation;
$$\frac{f_{i/p}^{[s]}(x, \mathbf{b}_T)}{f_{j/p}^{[s']}(x, \mathbf{b}_T)} = \frac{f_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T)}{\tilde{f}_{j/p}^{\text{naive}[s']}(x, \mathbf{b}_T)}$$

* Spin-dependence, e.g., Sivers function (single-spin asymmetry);

* Full TMD and TMD wave function kinematic dependence.

* Twist-3 PDFs from small b_T expansion of TMDs. Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

* Sub-leading power TMDs. Rodini and Vladimirov, JHEP 08 (2022).

YONG ZHAO, 09/28/2023

Lorentz-invariant (LI) approach

- Wilson line geometry ensuring maximal Lorentz symmetry.
- Lorentz-covariant decomposition of the lattice TMD correlator.
- Amplitudes related to the beam function by Lorentz invariance.
- Ratios of TMDs can be calculated at leading order in perturbation theory.

Hägler, Musch, Engelhardt, Negele, Schäfer, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 (2016), 1601.05717, PRD96 (2017).

• Factorization theorem yet to be derived.

TMDs from experiments

Lattice methods for TMD calculation

Results from lattice QCD

Ratio of TMD moments from the LI approach

M. Engelhardt, et al., *PoS* LATTICE2022 (2023)

M. Engelhardt, et al., TMD Handbook, 2304.03302.

Collins-Soper kernel from LaMET

$$\gamma_{\zeta}^{q}(\mu, b_{T}) = \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C(\mu, xP_{2}^{z}) \int db^{z} \ e^{ib^{z}xP_{\zeta}^{z}} \widetilde{\mathcal{Z}}'(b^{z},\mu) \mu_{z} \widetilde{\mathcal{A}}_{\mathcal{A}}^{\mathcal{A}}(b^{z},\mu) \mathcal{A}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}} \widetilde{\mathcal{A}}} \widetilde{\mathcal{A}}}$$

Current status for the Collins-Soper kernel

	Pion mass	Renormalization	Operator mixing	Fourier transform	Matching	<i>x</i> -plateau search
SWZ20 PRD 102 (2020) Quenched	$m_{\pi} = 1.2 \text{ GeV}$	Yes	Yes	Yes	LO	Yes
LPC20 PRL 125 (2020)	$m_{\pi} = 547 \text{ MeV}$	N/A	No	N/A	LO	N/A
SVZES JHEP08 (2021), 2302.06502	$m_{\pi} = 422 \text{ MeV}$	N/A	No	N/A	NLO	N/A
PKU/ETMC 21 PRL 128 (2022)	$m_{\pi} = 827 \text{ MeV}$	N/A	No	N/A	LO	N/A
SWZ21 PRD 106 (2022)	$m_{\pi} = 580 \text{ MeV}$	Yes	Yes	Yes	NLO	Yes
LPC22 PRD 106 (2022)	$m_{\pi} = 670 \text{ MeV}$	Yes	No	Yes	NLO	Yes
LPC23 JHEP 08 (2023)	$m_{\pi} = 220 \text{ MeV}$	Yes	No	Yes	NLO	Yes
ASWZ23 2307.12359	$m_{\pi} = 148.8 \text{ MeV}$	Yes	Yes	Yes	NNLL	Yes

$= \underbrace{\frac{d_{1} \overline{MS}}{dt_{1}^{TMS}(\mu, xP_{2}^{r}) \int db^{z} e^{ib^{z} xp_{1}^{2}} B_{q}^{MS}(b^{z}, b_{T}, \eta, \mu, p_{1}^{2})}{db^{z} e^{ib^{z} xp_{1}^{2}} \int db^{z} e^{ib^{z} xp_{1}^{2}} B_{q}^{MS}(b^{z}, b_{T}, \eta, \mu, p_{1}^{2})}}{g_{TM}^{MS} DPOVED CONTACTION AT PHYSICAL PION MASS}$

- Close-to-Physical pion mass
 - Better suppressed power corrections
 - More stable Fourier transform

Renormalization of nonlocal operator

- Systematic treatment of operator mixing using the RI-xMOM scheme
- Green, Jansen and Steffens, PRL 121 (2018) and PRD 101 (2020).
- Constantinou, Panagopoulos, and Spanoudes, PRD 99 (2019).

A. Avkhadiev, P. Shanahan, M. Wagman and YZ, 2307.12359.

Matching and (perturbative) power corrections

Matching correction:

$$\delta \gamma_q(x, P_1^z, P_2^z, \mu) = \frac{1}{\ln(P_1^z/P_2^z)} \left[\ln \frac{C(xP_2^z, \mu)}{C(xP_1^z, \mu)} + x \to \bar{x} \right] \,,$$

- Collinear v.s. TMD factorization:
 - $p^z \gg \Lambda_{\rm QCD}$ so a factorization exists.
 - If $p^z b_T \gg 1$, TMD region.
 - If $p^z b_T \ll 1$, collinear region.
 - If $p^z b_T \sim 1$, collinear but with calculable power corrections. e.g., $p^z=2$ GeV, $b_T=0.2$ fm.

,
$$C(p^z, \mu) = C(p^z, 2p^z) \exp \left[K(p^z, 2p^z)\right]$$

Up to NNLO Up to N³LL

- del Río and Vladimirov, 2304.14440.
- Ji, Liu and Su, JHEP 08 (2023).
- Braun, Chetyrkin and Kniehl, JHEP 07 (2020).
- Stewart, Tackmann and Waalewijn, JHEP 09 (2010).

Accuracy	K_{Γ}	K_{γ_C}	$K_{\gamma_{\mu}}$	η	C_{ϕ}
NLL	2	1	1	1	0
NNLL	3	2	2	2	1

YONG ZHAO, 09/28/2023

Matching and (perturbative) power corrections

Unexpanded matching coefficient:

 $C^{\text{uNLO}}(p^{z}, b_{T}, \mu) = C(p^{z}, \mu) + \delta C(p^{z}, b_{T})$ $\lim_{p^{z}b_{T} \to \infty} \delta C(p^{z}, b_{T}) = 0$ $C^{\text{uNNLL}}(p^{z}, b_{T}, \mu) = C^{\text{uNLO}}(p^{z}, b_{T}2p^{z})$ $\times \exp \left[K^{\text{NNLL}}(p^{z}, 2p^{z})\right]$

- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Deng, Wang and Zeng, JHEP 09 (2022).
- The CS kernel has a unphysical imaginary part which cannot be cancelled by NLO/NNLO matching.
 - Significantly reduced with the unexpanded matching!
 - Convergence in P^z also improved.

Collins-Soper kernel from lattice at NNLL

Final result in comparison with global fits and perturbative QCD

SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) Pavia19: A. Bacchetta et al., JHEP 07 (2020) BLNY: Landry, Brock, Nadolsky and Yuan, PRD 67 (2003)

Reduced soft factor at NLO accuracy

Ensemble	$a(\mathrm{fm})$	$N_{\sigma}^3 \times N_{\tau}$	m_π^{sea}	m_π^{val}	Measure
X650	0.098	$48^3 \times 48$	$333 { m MeV}$	$662 {\rm ~MeV}$	911×4
A654	0.098	$24^3 \times 48$	$333 { m MeV}$	$662 {\rm ~MeV}$	4923×20
a12m120	0 1 9 1	18 ³ × 61	$120 M_{\odot}V$	$310 {\rm ~MeV}$	1000×4
a12111130	0.121	40 × 04	132 WeV	$220~{\rm MeV}$	1000×16
a12m310	0.121	$24^3 \times 64$	$305 { m MeV}$	$670 {\rm ~MeV}$	1053×8

M.-H. Chu et al., LPC, JHEP 08 (2023).

(x, b_T) dependence of the unpolarized proton TMD

Conclusion

- The quark and gluon quasi TMDs can be factorized into the physical TMDs, without any mixing.
- Lattice calculation of the Collins-Soper kernel has made significant progress in reducing the systematics.
- First calculations of the soft function and TMD are available, but the systematics needs to be under control.
- Understanding the power corrections is important!

Outlook

Observables	Status
Non-perturbative Collins-Soper kernel	Better understanding of the systematics, with room for improvement (e.g., np power corrections, $a \rightarrow 0$)
Soft factor	to be under systematic control
Spin-dependent TMDs (in ratios)	In progress
Proton v.s. pion TMDs, (x, b_T) (in ratios)	In progress
Flavor dependence of TMDs, (x, b_T) (in ratios)	to be studied
TMDs and TMD wave functions, (x, b_T)	to be under systematic control
Gluon TMDs (x, b_T)	to be studied
Wigner distributions (x, b_T, Δ_T)	to be studied

Backup Slides

Factorization relation with the TMDs

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

Continuum

Factorization relation with the TMDs

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

Collins Soper kernel from Lattice QCD

Comparison between lattice results and global fits

MAP22: Bacchetta, Bertone, Bissolotti, et al., JHEP 10 (2022) SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) Pavia19: A. Bacchetta et al., JHEP 07 (2020) Pavia 17: A. Bacchetta et al., JHEP 06 (2017) CASCADE: Martinez and Vladimirov, PRD 106 (2022)

Approach	Collaboration
Quasi beam functions	P. Shanahan, M. Wagman and YZ (SWZ21), PRD 104 (2021)
	QA. Zhang, et al. (LPC20), PRL 125 (2020).
Quasi TMD wavefunctions	Y. Li et al. (ETMC/PKU 21), PRL 128 (2022).
	MH. Chu et al. (LPC22), PRD 106 (2022) JHEP 08 (2023)
Moments of quasi TMDs	Schäfer, Vladmirov et al. (SVZES21), JHEP 08 (2021), 2302.06502

$= \underbrace{\underbrace{\frac{d_{1_{fMS}}}{f_{fp_{2}}^{TMS}}(\mu, xP_{2}^{r}) \int db^{z}e^{ib^{z}xP_{1}^{r}} \tilde{B}_{q}^{MS}(b^{z}, b_{T}, \eta, \mu, p_{1}^{r})}}_{x}{f_{fp_{2}}^{MS}} \underbrace{Improved}_{TMT} \underbrace{I$

- Close-to-Physical pion mass
 - Better suppressed power corrections
 - More stable Fourier transform

Renormalization of nonlocal operator

- Systematic treatment of operator mixing using the RI-xMOM scheme
- Green, Jansen and Steffens, PRL 121 (2018) and PRD 101 (2020).
- Constantinou, Panagopoulos, and Spanoudes, PRD 99 (2019).

A. Avkhadiev, P. Shanahan, M. Wagman and YZ, 2307.12359.

YONG ZHAO, 09/28/2023