Origin of Spin in Non-relativistic Quantum Physics

Kolahal Bhattacharya

St. Xavier's College (Kolkata) India
International SPIN Symposium 2023
25 September 2023

Rotating charged sphere

- Component of electron spin along z axis $S=\hbar / 2=5.3 \cdot 10^{-35} \mathrm{~m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-1}$
- But $S=I \omega, I=$ Moment of inertia, ω is angular speed.
- $I=\frac{2}{5} m_{e} r_{c l}^{2}$, where m_{e} is electron mass and $r_{c l}$ is classical electron radius (an upper bound of the size of the electron $\sim 2.8 \cdot 10^{-15} \mathrm{~m}$).
- Tangential speed at the equator:

$$
v=\omega r_{c l}=\frac{S}{l} r_{c l}=\frac{5 h}{4 m_{e} r_{c l}} \sim 170 c
$$

- Smaller value of $r_{c l}$ imples a greater tangential velocity.

Quantum spin can't be modeled as a charged sphere spinning around its axis.

Acceptable model of Spin

- The Hamiltonian must commute with total angular momentum $\vec{J}=\vec{L}+\vec{S}$.
- The probability density must be positive definite.
- Dirac equation: 1st order time/space derivatives [Lorentz covariant]

$$
\hat{H}_{D} \psi=(\vec{\alpha} \cdot \vec{p}) \psi=i \partial \psi / \partial t
$$

- Wavefunction has new degrees of freedom (4-component spinors).
- $\left[\hat{H}_{D}, \vec{L}+\vec{S}\right]=0$ and the probability density $\psi^{\dagger} \psi>0$.
- Origin of spin in non-relativistic domain (say just a 2-component spinor)?
- Preferably some palpable connection with angular momentum or rotation as in classical mechanics.

Alternate view of angular momentum

Geometrical Optics

- $\nabla \times \vec{k}=\mathbf{0} \Longrightarrow \oint \vec{k} \cdot d \vec{l}=0$ and $\vec{k}=\nabla \psi$.
- $\delta \int n d s=0,|\vec{k}|=\omega n / c$
- Phase integral (action variable) for the periodic motion: $J=\oint p_{i} d q_{i}$, where the integral is over a full cycle of rotation or vibration.
- Momenta $p_{i}=\frac{\partial \mathcal{S}}{\partial q_{i}}$, where \mathcal{S} is classical action.

Consider the action variable for angular momentum and angle

$$
\mathcal{S}=\int L_{i} d \theta_{i} \Longrightarrow L_{i}=\frac{\partial \mathcal{S}}{\partial \theta_{i}}
$$

- Transition to quantum mechanics as phase integral takes only discrete values: $J=\oint p_{i} d q_{i}=n h$, where h is Planck's constant. As $h \rightarrow 0, \oint p_{i} d q_{i}=0$.

Angular momentum as a field

- With the definition $\mathcal{L}_{i}=\frac{\partial \mathcal{S}}{\partial \theta_{i}}$, one can easily verify:

$$
\nabla_{\vec{\theta}} \times \overrightarrow{\mathcal{L}}=\nabla_{\vec{\theta}} \times \nabla_{\vec{\theta}} \mathcal{S}=\nabla_{\vec{\theta}} \times\left(\frac{\partial \mathcal{S}}{\partial \vec{\theta}}\right)=\left|\begin{array}{ccc}
\hat{\theta}_{x} & \hat{\theta}_{y} & \hat{\theta}_{z} \\
\frac{\partial}{\partial \partial_{x}} & \frac{\partial}{\partial \theta_{y}} & \frac{\partial}{\partial \theta_{z}} \\
\frac{\partial \mathcal{S}}{\partial \theta_{x}} & \frac{\partial \mathcal{S}}{\partial \theta_{y}} & \frac{\partial \mathcal{S}}{\partial \theta_{z}}
\end{array}\right|=\mathbf{0},
$$

- $\vec{\theta}=\left(\theta_{x}, \theta_{y}, \theta_{z}\right)$ and their conjugate momenta, i.e. $\overrightarrow{\mathcal{L}}=\left(\mathcal{L}_{x}, \mathcal{L}_{y}, \mathcal{L}_{z}\right)$ constitute a phase space.
- Transition to quantum theory: Action variable $\mathcal{S}^{(x)}=\oint \mathcal{L}_{x} d \theta_{x}=n h$, etc.

Eigenvalue equation

$$
\begin{align*}
-i \hbar \frac{\partial \psi_{L}}{\partial \vec{\theta}} & =\overrightarrow{\mathcal{L}} \psi_{L} \\
\Longrightarrow\left(-i \hbar \frac{\partial}{\partial \vec{\theta}}\right) \cdot\left[-i \hbar \frac{\partial \psi_{L}}{\partial \vec{\theta}}\right] & =\left(-i \hbar \frac{\partial}{\partial \vec{\theta}}\right) \cdot \overrightarrow{\mathcal{L}} \psi_{L} \\
-\hbar^{2} \frac{\partial^{2} \psi_{L}}{\partial \overrightarrow{\theta^{2}}} & =\left(-i \hbar \frac{\partial}{\partial \vec{\theta}} \cdot \overrightarrow{\mathcal{L}}\right) \psi_{L}+\overrightarrow{\mathcal{L}} \cdot\left(-i \hbar \frac{\partial \psi_{L}}{\partial \vec{\theta}}\right) \\
\hbar^{2} \nabla_{\vec{\theta}}^{2} \psi_{L}+\mathcal{L}^{2} \psi_{L} & =i \hbar\left(\nabla_{\vec{\theta}} \cdot \overrightarrow{\mathcal{L}}\right) \psi_{L}=i \hbar\left(\nabla_{\vec{\theta}}^{2} S\right) \psi_{L} \tag{1}
\end{align*}
$$

RHS non-zero: source charge of angular momentum field?

Quantum Theory of Light Rays ${ }^{1}$

Transition to the quantum description of light by treating momenta by appropriate linear differential operators: $p_{x} \rightarrow \hat{p}_{x} \equiv-i \frac{\lambda}{2 \pi} \frac{\partial}{\partial x}$ etc.

$$
\hat{p}_{x} \psi=n_{x} \psi \quad \Longrightarrow \quad \hat{p}_{x}^{2} \psi=n_{x}^{2} \psi \quad \Longrightarrow \quad \bar{\lambda}^{2} \nabla^{2} \psi+n^{2} \psi=0
$$

Quantum effect manifests in the limit $\bar{\lambda} \nrightarrow 0$ Geometrical optics emerges in the limit when $\bar{\lambda} \rightarrow 0$.

[^0]
Semi-classical description of electrostatic fields

Wavefunctions of electrostatic fields ψ satisfy:

$$
\begin{array}{cc}
\bar{\gamma}^{2} \nabla^{2} \psi+\mathcal{E}^{2} \psi=0 & \text { in absence of source charge. }{ }^{2} \tag{2a}\\
\bar{\gamma}^{2} \nabla^{2} \psi+\mathcal{E}^{2} \psi=i \frac{\rho \bar{\gamma}}{\epsilon_{0}} \psi & \text { in presence of source charge. }{ }^{3}
\end{array}
$$

Basis solutions of this equation are given by $e^{-i \phi(r) / \bar{\gamma}}$. For a non-zero electric field, the solution is given by: $\Psi:=\int c(\vec{E}) \mathbf{e}^{-i \Phi / \gamma} d \vec{E}$

- This model was used to argue that:
- Aharonov-Bohm effect is actually a local phenomenon
- electric charge quantization is possible without magnetic monopoles.

[^1]
Klein-Gordon type anomaly

- Note similarity of Eq.(1) with KG equation.
- Set $W^{2}=\mathcal{L}^{2}-i \hbar \nabla_{\vec{\theta}}^{2} S$
- Treat θ_{z} as a pseudotime variable in Eq.(1):

$$
\hbar^{2} \frac{\partial^{2} \psi}{\partial \theta_{z}^{2}}=\left(-W^{2}-\hbar^{2} \frac{\partial^{2}}{\partial \theta_{x}^{2}}-\hbar^{2} \frac{\partial^{2}}{\partial \theta_{y}^{2}}\right) \psi
$$

- Thus $\psi\left(\theta_{x}, \theta_{y}, 0\right)$ and $\partial \psi /\left.\partial \theta_{z}\left(\theta_{x}, \theta_{y}, 0\right)\right|_{\theta_{z}=0}$ should be independently specified. This arbitrary specification may lead to -ve probability density. ${ }^{4}$

[^2]
- Action-angle model of angular momentum

Following Eichmann's track...

- First, set

$$
H=-i \hbar \frac{\partial}{\partial \theta_{z}} \Longrightarrow H^{2}=-\hbar^{2} \frac{\partial^{2}}{\partial \theta_{z}^{2}}
$$

- Consider:

$$
-H=i \hbar \frac{\partial}{\partial \theta_{z}}=\sqrt{W^{2}+\left(i p_{\theta x}\right)^{2}+\left(i p_{\theta y}\right)^{2}}
$$

where $p_{\theta x}=-i \hbar \frac{\partial}{\partial \theta_{x}}$, and: $\left(i p_{\theta x}\right)^{2}=\hbar^{2} \frac{\partial^{2}}{\partial \theta_{x}^{2}}$, etc.

- Assume $-H=\sum_{i=1}^{3} \alpha_{i} \tau_{i}$. This leads to:

$$
\begin{array}{lll}
W^{2}-p_{\theta x}^{2}-p_{\theta y}^{2}=\sum_{i, j} \alpha_{i} \alpha_{j} \tau_{i} \tau_{j} & \\
\alpha_{1}=i p_{\theta x} & \alpha_{2}=i p_{\theta y} & \alpha_{3}=W \\
\tau_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) & \tau_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) & \tau_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

Only for constant W

- Note:

$$
\begin{aligned}
H^{2} & =i^{2} \alpha_{1}^{2}+i^{2} \alpha_{2}^{2}+\alpha_{3}^{2}+2\left(\alpha_{1} \alpha_{2} \tau_{1} \tau_{2}+\alpha_{2} \alpha_{1} \tau_{2} \tau_{1}\right) \\
& +2\left(\alpha_{2} \alpha_{3} \tau_{2} \tau_{3}+\alpha_{3} \alpha_{2} \tau_{3} \tau_{2}\right)+2\left(\alpha_{3} \alpha_{1} \tau_{3} \tau_{1}+\alpha_{1} \alpha_{3} \tau_{1} \tau_{3}\right) \\
& =W^{2}-p_{\theta x}^{2}-p_{\theta y}^{2}+2 \cdot 0-2 i\left(\tau_{2} \tau_{3} p_{\theta y} W+\tau_{3} \tau_{2} W p_{\theta y}\right) \\
& -2 i\left(\tau_{1} \tau_{3} p_{\theta x} W+\tau_{3} \tau_{1} W p_{\theta x}\right) \\
& =W^{2}-p_{\theta x}^{2}-p_{\theta y}^{2} \quad \text { Only for constant } \mathrm{W}
\end{aligned}
$$

- The resulting wave equation becomes

$$
i \hbar(\partial / \partial z)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{u_{1}}{u_{2}}=\left[\hbar(\partial / \partial x)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\hbar(\partial / \partial y)\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)+W\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right]\binom{u_{1}}{u_{2}}
$$

- Eichmann shows $u^{\dagger} u>0$.
- Commutation of angular momentum \& spin with Hamiltonian yet to be done.

Let there be light

Fermat's principle for such media still conceives light rays as lines in space (i.e., no polarisation vectors yet), but the refractive index along the paths of the rays in the medium is allowed to depend on both position and direction ${ }^{4}$

- For wavefront surface denoted by $S, \nabla S=\mathcal{N} \frac{d r}{d s}$.
- Scalar eikonal equation:

$$
|\nabla S|^{2}=\left(\frac{d \mathbf{r}}{d s}\right)^{T}\left(\mathcal{N}^{T} \mathcal{N}\right)\left(\frac{d \mathbf{r}}{d s}\right)=\left(\frac{d \mathbf{r}}{d s}\right)^{T} \mathcal{G}\left(\frac{d \mathbf{r}}{d s}\right)=n^{2}\left(\mathbf{r}, \frac{d \mathbf{r}}{d s}\right)
$$

- Set $d \sigma=n\left(\mathbf{r}, \frac{d \mathbf{r}}{d s}\right) d s$. Then one can show that the geodesic paths can be found from the Variational principle:

$$
\delta A=\delta \int \frac{1}{2} \mathbf{r}^{\prime}(\sigma) \mathcal{G} \mathbf{r}^{\prime}(\sigma) d \sigma=0
$$

[^3]
Analogy with angular momentum

- Angular momentum:

$$
\overrightarrow{\mathcal{L}}=\frac{1}{2} \nabla_{\vec{\omega}} F
$$

where F represents energy (Poinsot) ellipsoid ${ }^{9}$:

$$
2 T=I_{x x} \omega_{x}^{2}+I_{y y} \omega_{y}^{2}+I_{z z} \omega_{z}^{2}+2 I_{x y} \omega_{x} \omega_{y}+2 I_{y z} \omega_{y} \omega_{z}+2 I_{z x} \omega_{z} \omega_{z}
$$

- Energy expression:

$$
T=\frac{1}{2} \vec{\omega} \cdot \overrightarrow{\mathcal{L}}=\frac{1}{2} \vec{\omega} \cdot \mathcal{I} \cdot \vec{\omega}
$$

Unmistakable similarity with variational principle in anisotropic medium
${ }^{9}$ Classical Mechanics, by W Greiner (Springer), pp.217-219

Summary

- Understanding of quantum spin from a classical mechanics point of view.
- For constant angular momentum, we find a wave equation for states with two components.
- It is possible that 4-component spinors will emerge as a consequence of anisotropy in the system.

[^0]: ${ }^{1}$ Gloge \& Marcuse, Journal of Optical Society of America, 1969

[^1]: ${ }^{2}$ Kolahal Bhattacharya, Physica Scripta, vol. 96(8), 2021
 ${ }^{3}$ Kolahal Bhattacharya, Physica Scripta, vol. 98(8), 2023

[^2]: ${ }^{4} \mathrm{G}$ Eichmann, Journal of the Optical Society of America, Vol. 61(2),1971

[^3]: ${ }^{4}$ Geometric Mechanics Part I: Dynamics and Symmetry, Darryl D Holm

