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Figure: The timeline of the upper bound on the neutron EDM from previous and future
experiments. BY, TB, and RG (2018)

Possible outcome of nEDM:

1. Non-zero nEDM: new source of GF
— Sakharov’s condition

g. Constraints on BSM theories
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e Current experimental bound d,, < 1.8 x 10~%¢e-cm
¢ Planned experiment aims d,, ~ 3 x 10™2%e-cm
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Effective CPV Lagrangian at Hadronic scale

2 ~
£o58 = - 338 meler d =4 QCD f-term
™
— % Z dqq(o - F)vsq; d = 5 quark EDM
q=u,d,s
{ =
~3 Z dq9sq(o - G)5¢; d = 5 quark chromo EDM
q=u,d,s
+ dw%sGéG; d = 6 Weinberg’s 3g operator
+ Z CZ»(A‘Q)OZGQ) ; d = 6 Four-quark operators

* 0 <0O(107% —10~!) : strong CP problem
e gEDM, qcEDM suppressed by ~ “£W

ABSM
e dim-6 operators are suppressed by A21
BSM
Q UNCLASSIFIED
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QCD 6/-term

2
9s p~ A
e External electric field method: (NN)4(E,t) = (N(t)N(0)e?)
Aoki and Gocksch (1989), Aoki,Gocksch,Manohar, and Sharpe(1990),
CP-PACS Collaboration (2006), Abramzyk et al(2017)
* Simulation with imaginary 8: 6 = i, S? = 657=- 3 Gysq

2ms+my

Horsley, et al. (2008), Guo, et al. (2005)
e Expansionin : (O(x)) = ZL /d[U, ¢, 1O (z)e~Seop=10Q
0

= (0())g—y — i0(0(2)Q)g—o + O (67)

Shintani, et al.(2005), Berruto, Blum, Originos, and Soni

Shindler, T. Luu, J. de Vries (2015), Shintani, Blum, Izubuchi, and Soni
Alexandrou, et al., (2016), Abramczyk, et al. (2017), Dragos, et al.
Bhattacharya, et al.

(3)

2006
2016
2019
2021
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Quark Chromo Electric Dipole Moment

—% > dygsd(o - G)ysg (4)

q=u,d,s

¢ Dimension-5 operator arising from Dimension-6 operator beyon electroweak
symmetry breaking

® SU(3) color analog of quark EDM: d,q(c - F)ysq
® breaks P, CP symmetry
¢ Fermion bilinear, can computed by Schwinger source trick

P = [¢+m—gD2+CSWE-G}_1—> [¢+m—gD2+2- (cst—l-ieTé)]_(lS)

® ¢/a needs to be small
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Lattice setup
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e 2+1+1 highly improved staggered quark(HISQ) by MILC is used (Phys. Rev. D87,
054505 (2013))

e Mixed action: Clover-on-HISQ

e M.L>39
enslD a(fm) Mea(MeV) | My (MeV) | L3 xT | Neons € €5
al2m310 | 0.1207(11) | 305.3(4) 310.2(2.8) | 24> x 64 | 1013 | 0.008 | 0.0024
al2m220L | 0.1189(09) | 217.0(2) 227.6(1.7) | 40° x64 | 475 | 0.001 | 0.0003
a09m310 | 0.0888(08) | 312.7(6) 313.0(2.8) | 323 x 96 447 | 0.008 | 0.0024
a06m310 | 0.0582(04) | 319.3(5) 319.3(0.5) | 483 x 144 72 0.009 | 0.0012

)
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Nucleon 3point function
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Figure: arXiv:2301.08161

_* Alldisconnected contributions are neglected or cancel for isovector cEDM
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Nucleon wave function
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Power divergent mixing

e C =Y - Gr has power divergent
mixing with P = vy573).

¢ Allowed even with good chiral
symmetry

e Does not mix with GG due to isospin
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AWI for Wilson-like fermions

Za(m)d, Al + iacA0*Ps + 2imPs
=iaKC5+ O (az)

where
e C =C —a 2APis free of power
divergence

invariance even when chiral symmetry * K comes from c,, mistuning

is broken

Isovector CPV mass term P can be
rotated away by nonsingle axial rotation

)

Apart from field redefinition,

2am Ps 2am 9
23 o 7
K a 2am+Ka03+O(a) (7)

and is power divergence free.

UNCLASSIFIED 9/25/2023 | 10



Mixing: determination of nonperturbative parameters

UNCLASSIFIED

Ensemble ng /F??CEDM KXl
Q=1 ] @*=2 | Q*=3 | Q=4 [ Q°=5 | 2am+ AKx,
al2m310 | 0.879(17) | 0.863(14) | 0.867(18) | 0.844(23) | 0.864(13) | 0.694(48)
al2m220L | 0.81(10) | 0.769(77) | 0.869(75) | 0.98(18) | 0.94(11) | 0.7807(70)
a09m310 | 1.063(35) | 1.042(40) | 1.078(45) | 1.006(58) | 1.039(44) | 0.740(61)
ao6m310 0.859(64)

Table: The ratio F3* / F{FPM for the ~5 and qcEDM unsubtracted lattice operators for the five

smallest values of Q2. The data for F;; are obtained using the “standard” method

¢ independent of @2 and the quark mass
e close to the Kxi/(2am + AK x1) obtained from the pion correlators

¢ No significant signal in a06m310.

)
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Renormalization

All power-law mixing subtracted

Mixing with only dimension-5 operators

dim-5 gEDM: 9% - F'r31 has mixing ~ 1% at O(agay).
[ d*zC3JEM AM has mixing with gEDM at O(avs).
Tree-level matching and 1-loop running

—

Osps(p) =
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Extrapolation
8 : ‘ ‘ ‘
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Figure: Extrapolation to the continuum and physical pion mass limit using the fit ansatz
c1 + c2M?2 + c3a where ES fit with (Left) Standard excited state (Right) Nw-excited state
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Extrapolation
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Figure: Extrapolation to the continuum and physical pion mass limit using the fit ansatz
c1 + c2M?2 + c3a where ES fit with (Left) Standard excited state (Right) Nw-excited state
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Final Result

Standard excited fit X. = — 2% _ 2 6(2.9)
aMpye

Nr excited fit X, = — 29 — 14(10)

aMpye

Q UNCLASSIFIED 9/25/2023 | 15
-



UNCLASSIFIED

Current Challenges and Conclusion

)

Possibly large O(a?) effects
difference in estimates between removing ESC with and without N7 excited states

Power divergence in isovector cEDM present even with good chiral symmetry

The power-divergent mixing is with Ps which implements chiral rotation, but no
CP-violation in the continuum

Any lattice artifact in it is enhanced by 1/ma. Important to demonstrate control

Perturbative O(a)-improved Wilson fermions still have large uncertainty, though
chiral rotation agrees with xPT at 10%.

Control over Excited State Contamination needs to be demonstrated

Disconnected diagrams and possible chiral+isospin breaking mixing with GG
need to be considered
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