Single spin asymmetries in electron nucleon scattering at low and intermediate energies

Jose L. Goity

Hampton University and Jefferson Lab In collaboration with Christian Weiss and Cintia Willemyns

SPIN 2023

SINGLE SPIN ASYMMETRIES IN ELECTRON-NUCLEON SCATTERING

- Polarized beam or target
- Longitudinally polarized electron beam: test of Parity Violation (HERMES, HAPPEx, SAMPLE, QWeak)
- Transversely polarized target or beam (NSSA): test of spin effects at hadronic and partonic level: e.g. two photon exchange, Sivers function. (A1, PREX, JLab, COMPASS, HERMES, COMPASS)

$$d\sigma_{SSA} \propto \vec{k} \cdot \vec{S}$$

$$\not P \quad EW$$

 $d\sigma_{SSA} \propto (\vec{k} \wedge \vec{k}') \cdot \vec{S}$ QED & QCD

- SSAs in exclusive, semi-inclusive and inclusive processes
- historical works that initiated the theory of SSAs: Barut & Fronsdal (1960); Leroy & Piketty; De Rujula, Kaplan and De Rafael; Gunther and Rodenberg; etc
- numerous works since the 2000's on TPE and SSA's: Guichon & Vanderhaeghen; Blunden, et al;

Gorchtein et al; Afanasev et al.; Myhrer et al; in **DIS**: Metz, et al; etc

NSSAs measured in high energy regime (Pol target: COMPASS, HERMES, JLab Hall A) (Pol beam: A1 at MAMI, JLab Hall C, SAMPLE). Lmited kinematic ranges

OUTLINE

- Normal single spin asymmetries in electron scattering and two photon exchange - generalities
- Target normal SSA (TNSSA) the 1/Nc expansion framework
- Results
- Comments and summary

NORMAL SINGLE SPIN ASYMMETRIES - GENERALITIES

NSSA cross section linear in spin vector

Parity invariance requires two momentum vectors

$$d\sigma = d\sigma_U + 2\vec{e}_N \cdot \vec{S} \, d\sigma_N$$
$$\vec{e}_N = \frac{\vec{k}_f \times \vec{k}_i}{|\vec{k}_f \times \vec{k}_i|}$$

$$A_N = d\sigma_N / d\sigma_U$$

Cases with more momenta (eg semi-inclusive scattering) will present more combinations of this type (e.g. for accessing Sivers function)

QED+QCD: **Treversal** sym forbid tree level SSAs (Barut-Fronsdal (1960))

SM: has CP violation = T violation: tree level SSA possible but too small to be observable (Christ-Lee (1966))

T reversal symmetry allows SSA in the presence of absorptive part of scattering amplitude (Barut-Fronsdal (1960))

Absorptive part of amplitude results naturally from FSIs

In **inclusive case**, the FSI is EM: the absorptive part then starts at order **e**⁴

Driven by **TPE**: absorptive part of a box diagram

- Only states with invariant mass below \sqrt{s} can contribute
- $d\sigma_N$ free of collinear and IR divergencies: key role played by gauge invariance
- NSSA can be selected for exclusive and inclusive final states
- In principle electroproduction helicity amplitudes determine elastic TNSSA limited by range of experimentally established amplitudes. Not possible in inelastic or inclusive cases!.
- Energy regimes:
 - 1) low/intermediate up to onset of second resonance region (this work)
 - 2) resonance region: 1.5 to few GeV
 - 3) High energy region: e.g., partonic regime

 $N.\Delta$

 $N. \Delta$

N

 $N.\Delta$

N

1/Nc EXPANSION

- fundamental expansion of QCD: many phenomenological successes
- additional recent tests in LQCD with Nc>3
- expansion can be implemented at hadronic level
- particularly powerful for baryons
- for large Nc baryon sector develops dynamical spin-flavor SU(4) or SU(6) symmetry
- N and Δ belong to a SU(4) multiplet \longrightarrow unification of their properties
- breaking of SU(4) by subleading orders in 1/Nc: well established formalism
- Nc scaling of basic observables:

 $m_{N,\Delta} = O(N_c) \qquad m_{\Delta} - m_N = O(1/N_c)$ $\Gamma_{\Delta} = O(1/N_c^2) \qquad g_{\pi N} = O(\sqrt{N_c})$ $F_{\pi} = O(\sqrt{N_c})$

Kinematic ranges for SSA and ordering in 1/Nc

	Energy regime	$1/N_c$ expansion regime	Channels open	Final states possible
Ι	$m_N < \sqrt{s} < m_\Delta$	$\sqrt{s} - m_N \sim N_c^{-1}, k \sim N_c^{-1}$	N	elastic
II	$m_{\Delta} < \sqrt{s} \ll m_{N*}$	$\sqrt{s} - m_N \sim N_c^{-1}, k \sim N_c^{-1}$	N, Δ	elastic or inelastic
III	$m_{\Delta} < \sqrt{s} \lesssim m_{N*}$	$\sqrt{s} - m_N \sim N_c^0, \qquad k \sim N_c^0$	$N, \Delta, N^*(\text{suppr})$	elastic or inelastic

SSA calculation will cover the three regimes

Expansions I & II - Low energy combined with $1/N_c$: $O(p) = O(1/N_c) = O(\xi)$: BChPT x $1/N_c$ III - $1/N_c$ expansion only

NR expansion $(1/m_N)$ is part of 1/Nc expansion

SYSTEMATIC EXPANSION IN 1/Nc: LO AND NLO FOR NSSA

In regime of interest 1/Nc expansion implies NR expansion: baryons have small velocities O(1/Nc) in CM frame

Expand the Baryon EM current to first subleading order in 1/Nc: O(Nc) & O(Nc⁰)

$$\{\hat{S}^i, \hat{I}^a, \hat{G}^{ia}\}$$
 generators of SU(4)

 G_{ia} spin-flavor generators of SU(4)- connect baryons of different spin

 $\langle B'|G_{ia}|B\rangle = O(N_c)$

Hierarchy of magnetic moments determined by Nc

EM current has O(Nc) term: isotriplet magnetic Nc hierarchy in isosinglet vs isotriplet N magnetic moments

$$\mu_0 = \frac{1}{2}(\mu_p + \mu_n) = 0.44\mu_N; \quad \mu_3 = \frac{1}{2}(\mu_p - \mu_n) = 2.35\mu_N$$
$$\mathcal{O}(N_c^0) \qquad \qquad \mathcal{O}(N_c)$$

Subleading terms in current

convection current: $(\vec{p}_i + \vec{p}_f)/2m_N = O(1/N_c)$ electric quadrupole current: $O(1/N_c^2)$ neglected term: $\frac{1}{m_N\Lambda}g^{\mu 0}\epsilon^{0ijk}q^i(p_i + p_f)^jG^{ka} = O(N_c^0)$ $= O(\xi^3)$ for $q = O(1/N_c)$

CALCULATION OF THE TARGET NSSA

$$e_N^{\mu}a_{\mu}\frac{d\sigma_{N_{fi,n}}}{d\Omega} = \frac{\alpha^3}{16\pi}\frac{k_f}{k_i}\frac{m_Nm_{B_f}m_n}{ts^{3/2}k_ik_fk_n}\operatorname{Im}\left(\int d\Omega_{\mathbf{\hat{k}_n}}\frac{L_{\mu\nu\rho}(k_{\mathrm{i}},k_{\mathrm{f}},k_n)H_{\mathrm{fi,n}}^{\mu\nu\rho}(k_{\mathrm{i}},k_{\mathrm{f}},k_n)}{(1-\mathbf{\hat{k}_i}\cdot\mathbf{\hat{k}_n})(\mathbf{1}-\mathbf{\hat{k}_f}\cdot\mathbf{\hat{k}_n})}\right)$$

Leptonic tensor

$$L^{\mu\nu\rho}(k_{\rm i},k_{\rm f},k_{\rm f}) = Tr(k_{\rm i}\gamma^{\mu}k_{\rm f}\gamma^{\nu}k_{\rm f}\gamma^{\rho})$$

Hadronic tensor

$$H_{\mathrm{fi},n}^{\mu\nu\rho}(k_{\mathrm{i}},k_{\mathrm{f}},k_{n}) = \langle B_{\mathrm{i}} \mid (J_{\mathrm{EM}}^{\mu}(k_{\mathrm{i}}-k_{\mathrm{f}}))^{\dagger} \mid B_{\mathrm{f}} \rangle$$
$$\times \langle B_{\mathrm{f}} \mid J_{\mathrm{EM}}^{\nu}(k_{n}-k_{\mathrm{f}})\mathcal{P}_{n}J_{\mathrm{EM}}^{\rho}(k_{\mathrm{i}}-k_{n}) \mid B_{\mathrm{i}} \rangle$$

- SSA needs t-channel J=1 components of hadronic tensor, I=0, 1
- Box has t-channel $J_{Box}=0,1$ for $B_f=N$, and $J_{Box}=1,2$ for $B_f=\Delta$
- Large Nc limit: only isotriplet spin current contributes: LO given by J=I and $J_{Box}=I_{Box}$ (I=J rule of large Nc)
- Subleading corrections: I≠J with LO current and subleading currents
- Q² range up to 4E_e² need to include FFs in calculation: common dipole form for E and M components
- Integrals of box have IR and/or collinear divergencies: they cancel for each gauge invariant combination of terms of the hadronic current, for each J_{Box} and I_{Box} , and for different B_f and B_n key check for calculation
- Calculation checked with known purely elastic case calculated relativistically and by taking the corresponding limits

FIRST CALCULATION: LO IN 1/Nc – LARGE Nc LIMIT

given in terms of the isovector magnetic current

JLG, Weiss, Willemyns Phys Lett B835 (2022) 137580

- match magnetic coupling at Nc=3 to physical one
- pick LO terms in hadronic tensor: LO given by I=J t-channel rule
- simple results without t-dependence of FF shows dominance of the elastic SSA
- with intermediate state contribution of N equal $\frac{1}{2}$ of the Δ
- Inclusion of FF makes major difference: inelastic channel, Bf=Δ, becomes

large and of opposite sign to elastic – very significant FF interplay in box!

NLO CALCULATION

- decompose hadronic tensor into t-channel irreducible angular momentum and isospin components: SU(4) algebra organizes contributions in powers of 1/Nc
- separate effects by N and Δ channels in the box and final state
- check cancellations of IR and collinear divergences for each channel and for gauge invariant combinations of EM current components
- validated with NR expansion of the known purely elastic case
- calculation without t-dependence in FFs
- inclusion of FFs and Δ width

Results without FFs

$$\frac{d\sigma_N}{d\Omega}(N_{\rm i},N,N) = \frac{1}{4}k^2 m_N^2 \left(k(G_M^{I_3}(N_c+7) - G_M^{-I_3}(N_c-3)) - 10G_E^{I_3}\Lambda \right) \\ \times \left(G_M^{I_3}(N_c+7) - G_M^{-I_3}(N_c-3) \right)^2 \left((3+x)\log\frac{1-x}{2} - 2(1+x) \right) \mathbf{X}$$

$$\frac{d\sigma_N}{d\Omega}(N_{\rm i}, N, \Delta) = \theta(k_\Delta)k_\Delta m_\Delta m_N^3(N_c + 5)(N_c - 1)(G_M^p - G_M^n)^2 \\
\times \left(k(G_M^{I_3}(N_c + 7) - G_M^{-I_3}(N_c - 3)) + 5G_E^{I_3}\Lambda\right) \\
\times \left(\left(\frac{\mathbf{Y}}{2m_N^4} - \frac{k}{m_N^2}(1+x)\right)\log\frac{1-x}{2} - \frac{k^2}{\mathbf{Y}}(1+x)\right) \mathbf{X}$$

$$x = \cos \theta$$

$$\frac{1-x}{2} = \sin^2 \frac{\theta}{2}$$

$$\begin{split} \mathbf{X} &= \frac{m_N \alpha^3}{1000 \ s^{3/2} t (1+x) \Lambda^3} \mathbf{\hat{k}}_{\mathrm{f}} \times \mathbf{\hat{k}}_{\mathrm{i}} \cdot \mathbf{S} \\ \mathbf{Y} &= \sqrt{k^2 + m_N^2} \ (m_N^2 - m_\Delta^2) + k \left(m_N^2 + m_\Delta^2 \right) \end{split}$$

$$\begin{aligned} \frac{d\sigma_N}{d\Omega}(N_{\rm i},\Delta,N) &= \theta(k_\Delta) \frac{1}{32} \frac{m_\Delta}{m_N} (N_c + 5)(N_c - 1)(G_M^p - G_M^n)^2 \mathbf{Y} \\ &\times \left((1+x) \Big((G_M^{I_3}(N_c + 7) - G_M^{-I_3}(N_c - 3))(11k^2 - kk_\Delta + 4k_\Delta^2) + 4G_E^{I_3}(k - k_\Delta)\Lambda \right) \\ &+ 2 \Big(\Big(G_M^{I_3}(N_c + 7) - G_M^{-I_3}(N_c - 3) \Big)(2k^2 + 2(2-x)k_\Delta^2 + 3(1-x)kk_\Delta) \\ &+ 20G_E^{I_3}(2k - (1+x)k_\Delta)\Lambda \Big) \log \frac{1-x}{2} \Big) \mathbf{X} \end{aligned}$$

$$\begin{aligned} \frac{d\sigma_N}{d\Omega}(N_{\rm i},\Delta,\Delta) &= \theta(k_\Delta) \frac{1}{160} \frac{k_\Delta m_\Delta^2}{k m_N^2} (N_c + 5)(N_c - 1) \mathbf{Y} (G_M^p - G_M^n)^2 \\ &\times \left((1+x) \Big((23k_\Delta - 9k) (G_M^{I_3}(N_c + 27) - G_M^{-I_3}(N_c - 23)) + 200 G_E^{I_3}(k - k_\Delta) \Lambda \right) \\ &+ 2 \Big((G_M^{I_3}(N_c + 27) - G_M^{-I_3}(N_c - 23)) (6(k^2 + k_\Delta^2) - (3 + 5x)kk_\Delta) \\ &+ 100 G_E^{I_3} ((1+x)k - 2k_\Delta) \Lambda \Big) \log \frac{1-x}{2} \Big) \mathbf{X} \end{aligned}$$

$$A_N = \frac{d\sigma_N}{d\sigma_{U\,\text{elastic}}}$$
no FF, vanishing Γ_Δ

- Electric component of current only appears linearly
- Large Nc limit checked
- Dominance of elastic asymmetry
- Very small inelastic asymmetry
- Kinematics taken exactly
- Threshold enhancement at Δ mass
- Δ in box gives important contribution ~ twice as N

A_N with common dipole FF and $\Gamma_\Delta=125 MeV$

- FFs play crucial role enhances inelastic channel
- inelastic channel gives opposite sign asymmetry to elastic one: changes sign of inclusive asymmetry
- sensitive energy dependence
 of asymmetry we keep kinematic
 factors exact

Other TSSA contributions

πN Continuum

 π baryon coupling: $\propto \frac{g_A}{F_\pi} k_\pi^i G^{ia} = O(\sqrt{N_c})$

$$[G^{ia}, G^{ib}] = O(N_c^0); \quad [G^{ia}, S^i] = O(N_c); \quad [G^{ia}, I^b] = O(N_c)$$

 $O(1/N_c)$ wrt LO, and $O(\xi^3)$ wrt LO term in ξ expansion domain

N* resonances

EM N-N* couplings carry extra factor $1/\sqrt{N_c}$

Individual resonances contribute $O(1/N_c)$ wrt N and Δ

Case of a few resonances was studied (Vanderhaeghen et al) - still a lot to be done New developments with the beam SSA (previous talk by Peter Blunden)

THE EXPERIMENTAL SIDE

- Very old expts at relatively low energy errors too large, no definite signal of asymmetry
- JLab Hall A SIDIS (³He target): E_e=1.2, 2.4 & 3.6 GeV energy a bit high for direct comparison consistent with magnitude – more complicated target
- HERMES on proton: SIDIS with e- and e+ beam E_e=27.6 GeV
- new proposal for JLab Hall A (Grauvogel et al): E_e>2.2 GeV (may use e+)
- only e- beam energy in region of our interest is MAMI @ Mainz: A4 experiment measures normal beam SSAs on various targets
- important evolution of target NSSA from low to intermediate energies: first significant measurements would be very important and interesting!

COMMENTS & SUMMARY

- SSAs are important tool to study baryon structure in all energy regimes
- 1/Nc expansion provides one systematic approach in the energy range below second resonance region with N and Δ as effective dof
- it organizes the contributions by ordering in powers of 1/Nc; helps sort out the physics in more detail
- LO qualitatively OK, but NLO is important to describe the transition from purely elastic to inclusive
- very important role played by form factors: big enhancement of Δ final state asymmetry changes of inclusive asymmetry
- The resonance region needs further theoretical exploration interesting and important problem
- Lack of experimental results from low energy to onset of partonic regime: need for experiments eN from ~.3 to few GeV -
- SSAs can provide important insights on spin physics in baryon resonances, an area still open for exploration by experiment and theory