

SPIN 2023

Advancements in Online Monitoring and Visualization for SpinQuest

> Jordan Daniel Roberts Dustin Keller

Fermilab

Overview:

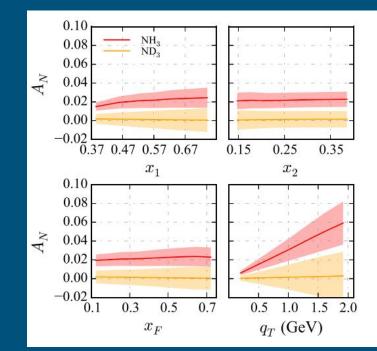
- SpinQuest and the goal
 - Studying TMD's
 - The Experimental Setup

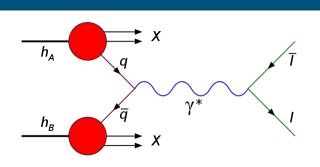
• Purpose of Online Monitoring and Visualization

- Asymmetries
- Monitoring the health of the detectors

• The process of studying reconstruction

- In depth Reconstruction Visualization
- Future work
- Summary

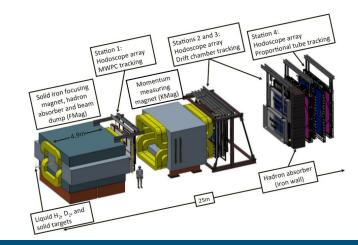

SpinQuest

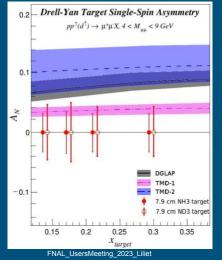


• Goal

- Are the sea quarks orbiting around the spin axis of the nucleon?
- Test QCD prediction
- Compare with other experiments
- SpinQuest will perform the first measurement of the Sivers asymmetry in Drell-Yan pp scattering from the sea quarks.
- See Ishara talk on Spin

 $f^{\perp qDY}(x, p_T^2) = -f^{\perp qSIDIS}(x, p_T^2)$




Jaffe-Manohar Sum Rule

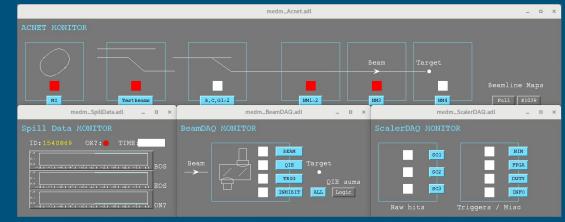
 $\Delta S = \frac{1}{2} = \frac{1}{2}\Delta \Sigma + \Delta G + \Delta G$

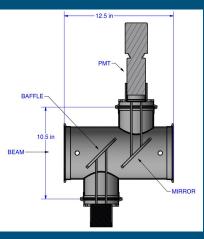
False Asymmetries

- Diurnal effects
- Weather(hot and cold cycles)
- Hardware:
 - Cooling systems malfunctioning
 - Target alignment
 - Magnet health
 - Detector health
- Predicted Sensitivity
 - Beam:
 - Luminosity ~ 1%
 - Drifts < 2%
 - Scraping ~ 1%
 - Target:
 - Polarization ~ 2%
 - Density ~ 1%
 - Alignment ~ 0.5%
 - TE Calibration: P ~ 2.5% d: ~ 4.5%
 - Radiation damage ~ 3%
 - Packing fraction ~ 2%
 - Dilution factor ~ 3%
- Detection of False Asymmetries is **VITAL**

Systems that require monitoring

- Beam cherenkov
- Luminosity monitor
- Drift Chambers
- Proportional Tubes
- Fiber hodo
- Scintillation hodo
- Nim and FPGA Trigger

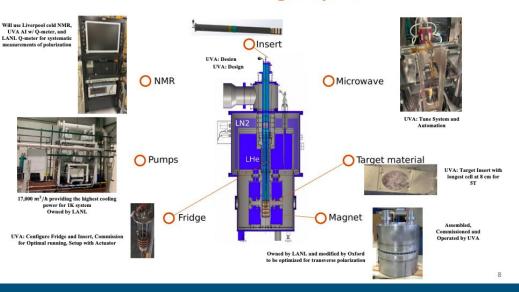




The Experimental setup

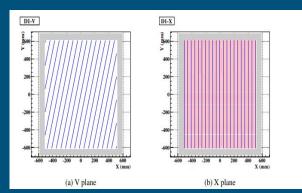
Beam

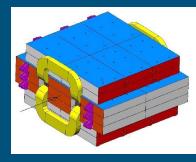
- 120 GeV Unpolarized Proton
 beam collides with polarized
 proton target
- "Slow Spill" 1 spill ~ 20-60,000 events in 4 seconds
 - max annual proton count is 7X10¹⁷ protons/year
- Highest proton intensity ever attempted on a solid polarized target.
- Beam Intensity Monitor (BIM) senses when the beam intensity is above a (programmable) threshold.
 - Cherenkov counter
 - Provide a bucket by bucket beam signal



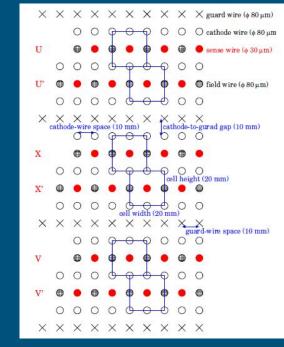
Target System

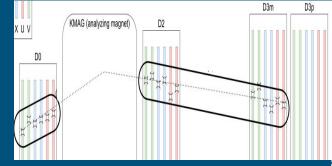
- Proton Target NH3 and Neutron Target ND3
- 5T superconducting split coil magnet
- 4He evaporation refrigerator
- 140 GHz microwave source
- 17000 m3/hr pumping system
 - *Monitoring of non-target interactions:* ladder, cup, NMR-coils


Polarized Target System

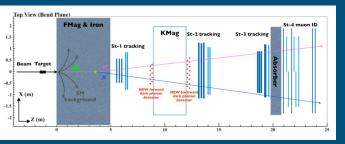


See Farooq talk on SpinQuest and Vibodhas on the fridge.


Drift Chambers

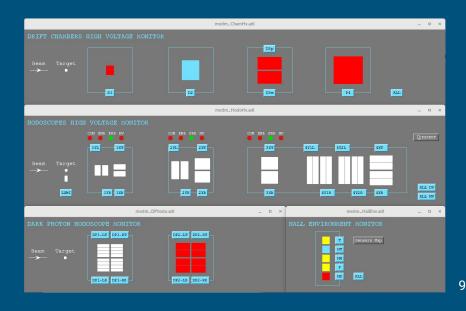

- Drift chamber: Array of wires used to determined the position.
- There are 4 drift chambers each with 6 detector planes.

https://arxiv.org/pdf/1706.09990.pdf



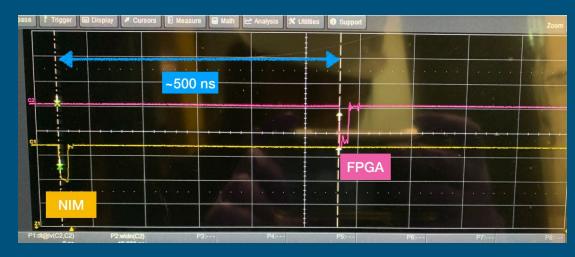
Eric Fuchey Status of GPU-based online reconstruction program

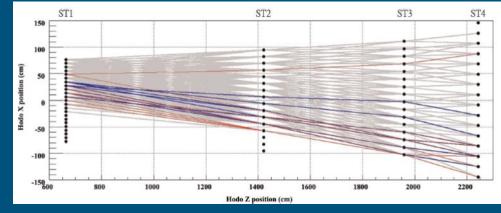
Kei Nagai: Recent Measurement of Flavor Asymmetry of Antiquarks in the


Hodoscope

- Paddle and Fiber Hodoscopes
 - There are 4 paddle hodoscopes stations
 - 2 Dark Photon (Fiber Hodo) Stations
- Pair with DC determines hit location!
 - Element ID and Detector ID
- Paddle hodos used for trigger. Requires monitoring

https://indico.cern.ch/event/782953/contributions/3460138/attachments/1887698/31 13670/DarkPhoton.pdf

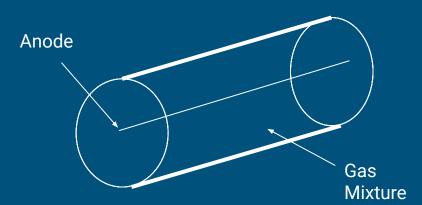


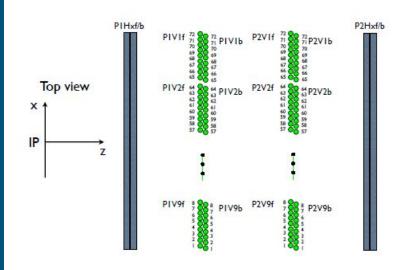


Trigger and hardware

• Triggers:

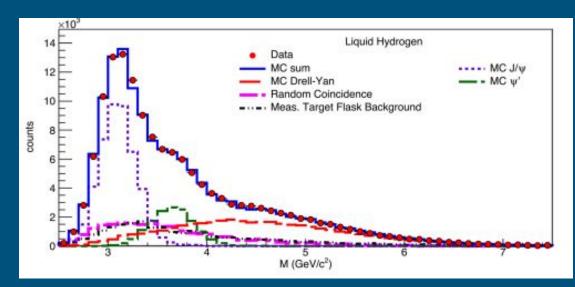
- FPGA main trigger
- Nim Trigger look for hits at the edges where DY is.
- TDC and ADC
 - Timing and channel information
- DAQ
 - monitor error rates





SpinQuest/E1039 FPGA Trigger Minjung Kim

Proportional Tubes


- Muon Identification
- 4 layers of proportional tube planes.
 - Each plane is made of 9 proportional tube modules
 - each module hold 16 proportional tubes
- Typical muon transverse two tubes per plane

Reconstruction

- Goal Obtain four-momenta!
- Poor reconstruction Correlate to:
 - Hardware Malfunctions
 - Changes in the target
 - Cool System errors
- Reconstruction is critical to calculating asymmetries

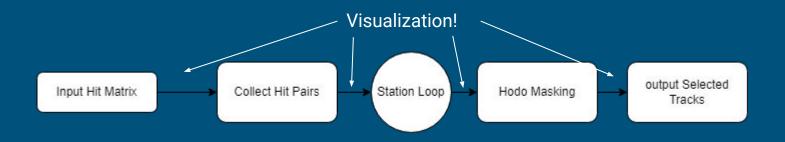
Nature 590 561-565 2021

 $d^2\sigma$ $\frac{4\pi\alpha^2}{x_b x_t s} \Sigma e_q^2 [\overline{q_t}(x_t)q_b(x_b) + q_t(x_t)\overline{q_b}(x_b)]$ $dx_b dx_b$

Challenges with Monitor Incoming Data

- We **need** to detect false asymmetries
- Target polarization must be kept at its maximum
- We want to Quickly display Event information
- We must be able to see the reconstruct a every stage
 - Roughly 1 dimuon from the target per 30k events

A new approach:

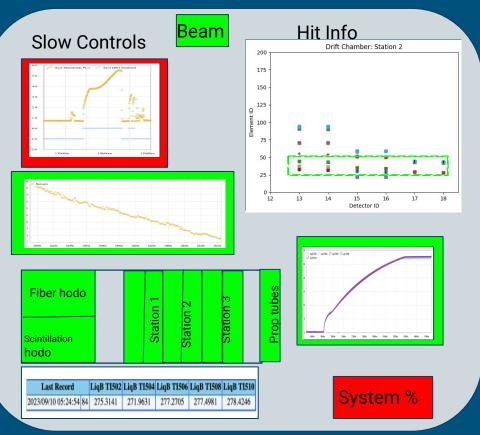

1 spill ~ 20-60,000 events in 4 seconds per minute

Geometric

- CPU focused
- Uses Geometry
- Slower reconstruction
- Efficiency:
 - Precision 92%
 - Recall 9%

Al

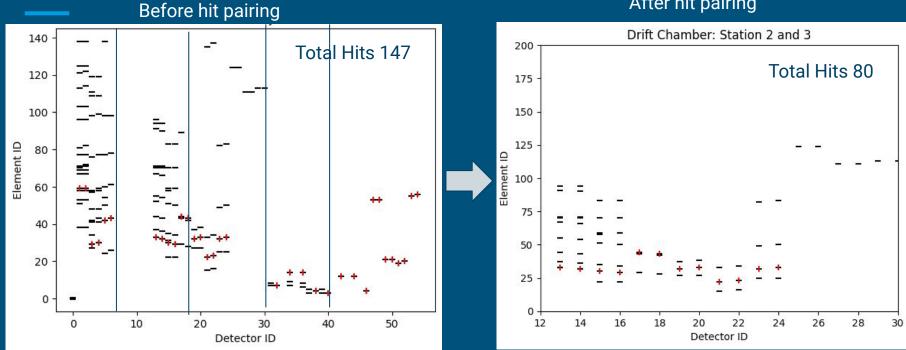
- GPU accelerated
- Uses CNN+multiple DNN's
- Quick reconstruction
- Efficiency:
 - Precision 99%
 - Recall 54%

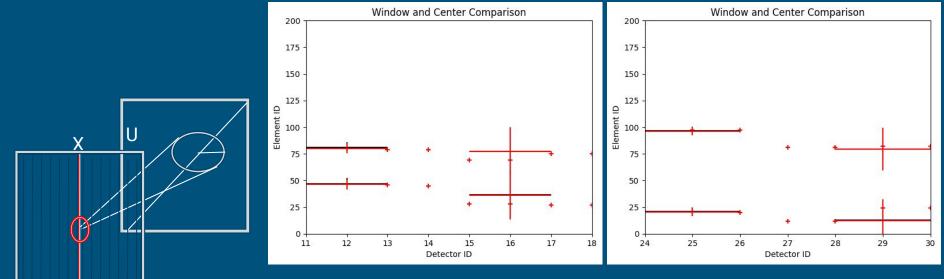

AI Monitoring

• Used in

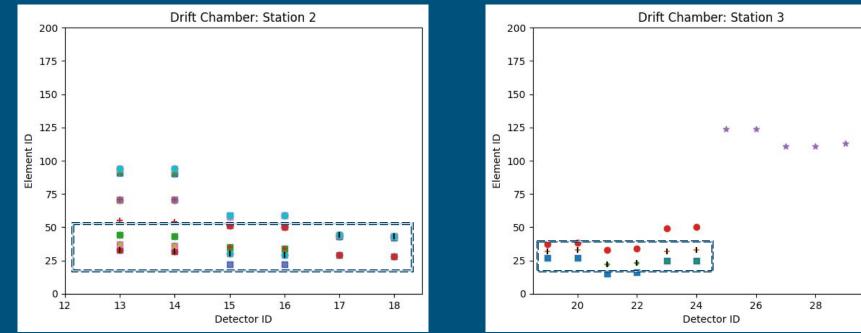
- Online monitoring:
 - Pattern recognition
 - Alarm systems
- Visualization
 - Quickly create script chart
 - Slow Controls
 - Numerical display. Spill Rate
 - Detector health

• Want:

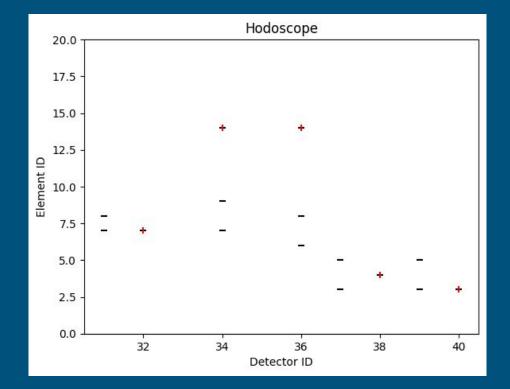

- Ability to choose trigger or trigger mask (set of triggers) for each monitoring plot.
- Ability to overlay any histogram with a reference histogram
- Reliable Event display


Interface mockup

Visualization of a Spill

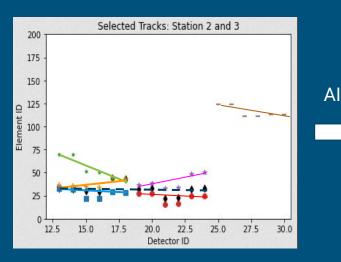

After hit pairing

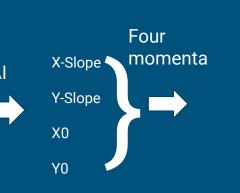
Window Visualization


Tracklet Visualization

58 Hits 45 Tracklets combinations 30

Hodoscope Matching


- Compares hits from DC to hit range on hodoscope.
- Can be tuned for cleaner results.


Tracklets Before AI integration

- Selected Tracks: Station 2 and 3 200 175 150 125 Element ID 100 75 50 25 0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 Detector ID
- 6 Track combinations.
- 36 hits remain.
- A removal of 44 hits!

Display

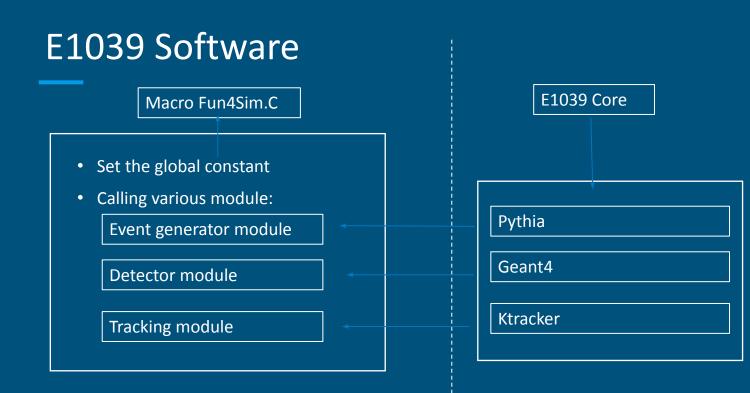
- Options for interface
 - Dearpygui
 - VisPy
 - **plotoptix**

Summary

- We need a robust online monitoring and visualization package for SpinQuest that can benefit from gpu acceleration and AI.
- We already have created some visualizations for the target and hodoscope.
- This software is written to utilize:
 - Numba GPU Acceleration
 - DearpyGui Interface Display
 - Tensorflow Machine Learning
- Future work:
 - Global track Display and Vertex Display
 - create displays for slow controls and create an interface.
 - Display track information in a XY view

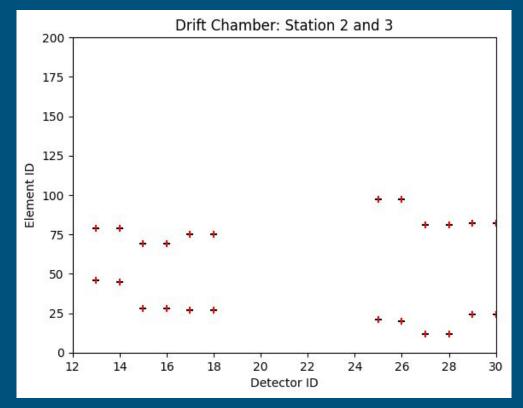
Thank You

Backup Slides


Geometry

$$\begin{split} &URadius = \mid \frac{1}{2} * XWireSpan * \sin(UWireAngle) \mid + TXMax \mid \\ &(ZPosition of Uhit - ZPosition of Xhit) \mid \cos(UWireAngle) + \\ &TYMax \mid (ZPosition of Uhit - ZPosition of Xhit) \mid \sin(UWireAngle) + \\ &2 * WireSpacing + \delta \end{split}$$

$$\begin{split} & VRadius = UHitWireSpacing*2*\cos(UWire) + \mid (ZPosition of UHit + ZPosition of VHit - 2*ZPostion of XHit)*\cos(UWire)*TXMax \mid \\ & + \mid (ZPostion of VHit - ZPostion of UHit)*\sin(UWire)*TYMax \mid \\ & + 2*UHitWireSpacing \\ & VCenter = 2*UCenter - WirePosition of UHit \\ & UCenter = WirePosition of XHit*\cos(UWire) \\ & WirePosition = (elementID - \frac{(Number of Elements + 1)}{2}) \\ & WireSpacing + [XPlaneOffSet + X0*\cos(UWire) + y0*sin(UWire) + \delta \end{split}$$


Precision:(true positive)/(true positive + false positive) Recall: (true positive)/(true positive + false negative)

Done with realistic simulated Dimuon events

E1039 is designed to be modular & user friendly

Ktracker comparison

	0	1	2	4	5	7	10	11	12	15	26
	DetID	Z	NumElems	Spacing	X-offset	x0	Cosine	wireSpan	y0	Sine	delta
1	1	594.582	201	0.635	0.159	-0.794	0.971457	121.92	2.689	0.237214	-0.04147
2	2	595.218	201	0.635	-0.159	-0.794	0.971457	121.92	2.689	0.237214	0.002111
3	3	617.274	160	0.635	0.159	-0.552	1	121.92	2.743	-0.00054	-0.19835
4	4	616.638	160	0.635	-0.159	-0.552	1	121.92	2.743	-0.00054	-0.27684
5	5	640.444	201	0.635	0.159	-0.423	0.971109	121.92	2.791	-0.23864	-0.3835
6	6	641.079	201	0.635	-0.159	-0.423	0.971109	121.92	2.791	-0.23864	-0.40794
7	7	688.614	384	0.5	0	0.349	0.970595	137.16	-0.173	-0.24072	0
8	8	689.214	384	0.5	-0.25	0.349	0.970595	137.16	- <mark>0.173</mark>	-0.24072	0
9	9	689.814	320	0.5	0	0.349	0.999998	137.16	-0.173	0.00187	0
10	10	690.414	320	0.5	-0.25	0.349	0.999998	137.16	-0.173	0.00187	0
11	11	691.014	384	0.5	0	0.349	0.969688	137.16	-0.173	0.244345	0
12	12	691.614	384	0.5	-0.25	0.349	0.969688	137.16	-0.173	0.244345	0
13	13	1315.01	128	2.021	-0.505	-2.45704	0.969546	264.16	-0.73359	-0.24491	-0.04574
14	14	1321.99	128	2.021	0.505	-2.44096	0.969546	264.16	-0.73641	-0.24491	-0.06071
15	15	1340.31	112	2.083	-0.521	-0.82135	0.999996	264.16	-0.04402	0.002721	0.150169
16	16	1347.29	112	2.083	0.521	-0.81665	0.999996	264.16	-0.06198	0.002721	0.172412
17	17	1365.43	128	2.021	-0.505	-0.46511	0.968944	264.16	-0.80055	0.247278	-0.00335
18	18	1372.42	128	2.021	0.505	-0.48147	0.968944	264.16	-0.78931	0.247278	-0.00033
19	19	1922.59	134	2	0.5	-1.009	0.970033	166	78.6891	0.242974	-0.29897
20	20	1924.59	134	2	-0.5	-1.01243	0.970033	166	78.6905	0.242974	-0.30135
21	21	1928.49	116	2	0.5	-1.01929	1	166	78.6933	0.000462	0.038053
22	22	1930.49	116	2	-0.5	-1.02271	1	166	78.6947	0.000462	0.03978
23	23	1934.76	134	2	0.5	-1.02957	0.970302	166	78.6975	-0.2419	0.376155
24	24	1936.76	134	2	-0.5	-1.033	0.970302	166	78.6989	-0.2419	0.379188
25	25	1885.91	134	2	-0.5	-2.69882	0.97043	166	-79.5892	0.241385	-0.14254
26	26	1887.91	134	2	0.5	-2.69402	0.97043	166	-79.5889	0.241385	-0.14075
27	27	1891.64	116	2	-0.5	-2.6844	0.999999	166	-79.5882	-0.00114	0.080718
28	28	1893.64	116	2	0.5	-2.6796	0.999999	166	-79.5878	-0.00114	0.08174
29	29	1897.89	134	2	-0.5	-2.66998	0.969927	166	-79.5871	-0.2434	0.290204
30	30	1899.89	134	2	0.5	-2.66518	0.969927	166	-79.5868	-0.2434	0.292514
31	31	669.055	23	7.0025	0	-0.76518	1	69.85	-35.062	0.000997	-0.1464
32	32	669.409	23	7.0025	0	-0.83482	1	69.85	34.788	0.000997	-0.0732
33	33	656.125	20	7.0025	0	39.19	0.00099	140.117	-0.04913	1	0.6588
34	34	655.755	20	7.0025	0	-39.55	0.00099	140.117	0.029134	1	0.4758
35	35	1405.08	19	12.6825	0	64.4455	5.74E-05	241.285	-0.41043	1	-0.52
36	36	1404.78	19	12.6825	0	-67.5545	5.74E-05	241.285	-0.40237	1	-0.65
37	37	1420.95	16	12.6825	0	-0.93741	0.999996	152	-76.0406	0.002939	0.52
38	38	1421.27	16	12.6825	0	-1.38415	0.999996	152	75.9594	0.002939	0.52
39	39	1958.34	16	14.27	0	0.016535	1	167.64	-84.1908	-0.00053	0.145875
40	40	1958.9	16	14.27	0	0.105385	1	167.64	83.4492	-0.00053	0.145875
41	41	2130.27	16	23.16	0	66.04	-3.7E-06	365.797	0	1	-2.11297
42	42	2146.45	16	23.16	0	-66.04	-3.7E-06	365.797	0	1	-0.35216
43	43	2200.44	16	23.16	0	66.04	-3.7E-06	365.797	0	1	-1.17387
44	44	2216.62	16	23.16	0	-66.04	-3.7E-06	365.797	0	1	-1.40865
45	45	2251.71	16	19.33	0	-0.27492	1	182.88	-92.0383	-0.00011	0.49119
46	46	2234.29	16	19.33	0	-0.29404	1	182.88	90.7328	-0.00011	-0.19647