Spin observables in Deep Processes with CLAS12 at Jefferson Lab

Gregory Matousek September 25th 2023

25th International Spin Physics Symposium

VERSI

Jefferson Lab

- US Department of Energy funded research facility in Virginia
- Home to CEBAF (polarized electron accelerator) and 4 fixed target experimental halls

Continuous Electron Beam Accelerator Facility (CEBAF)

Provides longitudinally polarized (~85%), high luminosity (up to 120µA) electron beams at 10.6 – 12 GeV to four experimental halls
 Injector: Circularly Pol. Light → GaAs photocathode → Polarized e⁻
 Transport: Spreaders/recombiners, arrays of arc dipoles
 Acceleration: Liquid helium cooled, superconducting RF linacs (1400 meters)

Superconducting RF Linac (1.09 GeV per straight-away)

CEBAF Large Acceptance Spectrometer (CLAS12)

- Wide coverage detector system capable of ranging particle ID (*e*, *p*, *n*, *γ*, *π*, *K*)
 - Near full coverage in azimuthal ϕ , $\sim 5^{\circ} 140^{\circ}$ in lab scattering θ
- Fixed-target experiment (RG-C is the first polarized target experiment at Hall-B in the 12 GeV era)
- ~10.5 GeV, ~85% longitudinally polarized electron beam at maximum luminosity of 10³⁵ cm⁻²s⁻¹

CLAS12 Detector System

Run Group C @ CLAS12

- Polarized fixed target experiment (June 2022 March 2023)
 - Dynamically polarized NH₃ (proton) and ND₃ (deuteron) targets
 - Calibration targets C, CH₂ and CD₂
- Physics Goals

DIS inclusive and flavor-tagged **spin structure functions**

Semi-inclusive DIS (SIDIS) to access **Transverse Momentum Distributions** (TMDs), dihadron production and backward baryon production

Deeply Virtual Compton Scattering (DVCS) & Timelike Compton Scattering (TCS) to access **Generalized Parton Distributions** (GPDs) - Measure target single and beam/target double spin asymmetries in proton and neutron DVCS.

Spin direction changes every 33ms (CEBAF) Polarization configurable run-by-run

List of RG-C Experiments

Experiment Title	Key Observables	Preliminary
Longitudinal Spin Structure of the Nucleon	Polarized parton distributions, gluon helicity, higher twist	
DVCS on the neutron with polarized deuterium target	Neutron Compton Form Factors	
DVCS on longitudinally polarized proton target	Helicity dependent cross sections, upgrade precision and coverage of previous CLAS DVCS measurements	\checkmark
Study of partonic distributions using SIDIS K production	Hadron multiplicities, flavor decomposition of nucleon spin dependent quark PDFs	
Spin-Orbit Correlations with longitudinally polarized target	Transverse momentum dependence of valence quark T/L spin distributions, pion SIDIS	\checkmark
Spin-Orbit correlations in K production with polarized targets	Strange sea p_T distributions, kaon SIDIS (complement above)	
Studies of Dihadron Electroproduction in DIS with Longitudinally Polarized Hydrogen and Deuterium Targets	Spin-orbit correlations in hadronization, dihadron fragmentation functions, fracture functions, twist-3 PDFs	
Studies of Single Baryon Production in the Target Fragmentation Region with a Longitudinally Polarized Target	Fracture functions, separation of current/target hadronization	\checkmark

RG-C Experimental Configuration

- Standard CLAS12 forward detectors (5° < θ < 35°)
 ★ NEW 2nd azimuthal sector RICH detector installed
- Two beam current configurations
 - (~4-4.5 months) **4nA:** Forward tagger installed ($2^{\circ} < \theta < 5^{\circ}$) for low angle *e*, γ reconstruction \rightarrow low Q^2 , widen DVCS coverage
 - (~3 months) 8nA: Forward tagger removed, additional e^-e^- scattering Moller shield installed

(Left) Back view of two installed CLAS12 RICH sectors

(Bottom) Schematic of the CLAS12 forward tagger

- Target raster system
 - Minimizes local depolarization of target

RG-C's Polarized Target

Provides longitudinally polarized \boldsymbol{p} and \boldsymbol{d}

Design Features

- 1K Refrigerator Trolley with swappable 5cm long target cartridges (videos in Pushpa's Tues. talk!)
- Target embedded within a 5T solenoid magnet
- 140GHz μ wave waveguide cavity to provide Dynamic Nuclear Polarization (DNP)
- Nested NMR system for live target polarization readings

RG-C's Polarized Target

Solid target cells kept in 80K liquid Argon bath (Ammonia freezes at 195.5K

- Crushed pellet-sized beads
- Perforated cell walls

Ammonia beads sent by collaborators at University of Virginia (UVa)

Heat removal

New Online Monitoring Tools

Live updating raster monitoring

Scattered *e*⁻ trigger asymmetries

Accumulated beam charge asymmetries

NMR Target Polarization monitoring

NMR software measuring *d* polarization

Near-Online Polarization Monitoring

Challenge: NMR unable to measure full target volume's polarization

Solution: Monitor polarization with predicted asymmetries in DIS & Elastic scattering

- Determination of dilution factors
- Corrections for beam charge asymmetries

Elastic scattering asymmetries from NH_3 (*N. Pilleux*)

Deep inelastic scattering asymmetries from NH₃ (G. Matousek)

Target Raster Calibration

- Analyze extrapolated track vertices and raster $ADC_{x,y}$
- Look at multiple track species (e, π) and detector subsystems (forward, central)
- ** Determine event-by-event beam position in *xy*-plane for future analyses to utilize **

Status of Data Processing

Total Accumulated Beam Charges

- NH3: ~13.06 mC
 •CH2: ~2.88 mC
- ND3: ~14.19 mC •CD2: ~0.42 mC
- C: ~3.43 mC •Empty: ~1.85mC
- ~5% of collected data has been processed for analysis

Preliminary analyses featured correspond to a *fraction* of the total RG-C NH3 data

> ~70% target polarization ~83% beam polarization

Timeline for Forward Tagger On 2023

- Spikes --> Individual runs
- Colors --> Target species
 - Shades --> Target spin
- Diagonal lines --> Total beam charge

Preliminary Analysis: Pion SIDIS

H. Avakian

Preliminary Analysis: **Pion SIDIS**

- Bin-by-bin determination of dilution factors
 - Analyze *NH*₃ vs. *C* yields
 - Calculate %-age of proton cross section contribution to NH_3

H.Avakian

f = 1

Depolarization factor

Preliminary Analysis: Fracture Functions

 $xF \rightarrow$ Hadron p_L relative to $\gamma^* p_L$ T. Hayward "What physics can we learn from the target remnant (TFR)?"

• Fracture Functions \rightarrow probability for the target (p/n) remnant to form a hadron given ejected quark q_f

• No hard/soft energy scale separation

$$\frac{\mathrm{d}\sigma^{\mathrm{TFR}}}{\mathrm{d}x_B\,\mathrm{d}y\,\mathrm{d}z} = \sum_a e_a^2 \left(1 - x_B\right) M_a(x_B, (1 - x_B)z) \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}y}$$

• Direct relationship to traditional PDFs by integrating over fractional longitudinal nucleon momentum ζ

$$\sum_{h} \int_{0}^{1-x} d\zeta \,\zeta \,\widehat{\boldsymbol{u}}_{1}(\boldsymbol{x},\boldsymbol{\zeta}) = (1-x)\boldsymbol{f}_{1}(\boldsymbol{x})$$

$$\sum_{h} \int_{0}^{1-x} d\zeta \,\zeta \,\hat{\boldsymbol{l}}_{1\boldsymbol{L}}(\boldsymbol{x},\boldsymbol{\zeta}) = (1-x)\boldsymbol{g}_{1\boldsymbol{L}}(\boldsymbol{x})$$

- Key for understanding how to separate *current* vs. *target* fragmentation
- **RG-C** is a great laboratory for testing TFR phenomena
 - No Collins mechanism in TFR $\rightarrow F_{UL}^{\sin 2\phi} \approx 0$ and simpler structure functions
 - Test nuclear medium modification in NH_3 's F_{LU} vs. H_2 's F_{LU} (RG-A)
 - Access familiar TMD/PDFs with different systematics

Preliminary Analysis: Fracture Functions

25th International Spin Physics Symposium

T. Hayward

Preliminary Analysis: **pDVCS on NH**₃

- GPDs give a 3-d partonic picture in terms of longitudinal momentum, transverse spatial position, and their correlations
- **pDVCS** (*NH*₃) measurements at RG-C give access to A_{LU} , A_{UL} , A_{LL}
- With **nDVCS** $(ND_3) \rightarrow$ Separation of u, d Compton Form Factors

 $\Delta \sigma_{LU} \simeq \sin(\phi) \Im \left[F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - \xi \frac{t}{4M^2} F_2 \mathcal{E} \right]$ p/n $\Delta \sigma_{UL} \simeq \sin(\phi) \Im \left[F_1 \tilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi (\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}} \right]$ $\Delta \sigma_{LL} \simeq (A + B\cos(\phi)) \Re [F_1 \tilde{\mathcal{H}} + \xi (F_1 + F_2)(\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi (\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}]$

N. Pilleux

300

Φ [°]

200

Preliminary Analysis: pDVCS on NH₃

Run Group C Summary

RG-C is the *first longitudinally polarized target experiment* using the CLAS12 detector system in JLab's 12 GeV era

- Large acceptance given by the capabilities of CLAS12 to explore a wider kinematic phase space
- Broad physics program: Structure functions, TMDs, GPDs
- Polarized *p* and *d* --> quark flavor sensitivity
- Unprecedented polarized target and beam statistics capable of performing multidimensional binning of observables
- Preliminary 5% of data has been processed (stay tuned!)

Thanks for listening!

25th International Spin Physics Symposium

2.

Extra Slides

Dynamic Nuclear Polarization

Step 1: Brute Force polarization of free e^- with 5T solenoid field

proton

0.01

0.1

 $P = \tanh\left(\frac{\mu B}{k_B T}\right)$

1 Temperature (K)

0.8

0.6

0.4

0.2

0

0.001

Polarization

5 Tesla

electron

10

100

Step 2: Induce electron-nuclei spin exchange with 140 GHz microwaves

Learn more at Pushpa Pandey's talk on Tuesday!