Tensor polarized deuteron structure

Wim Cosyn

Spin 2023 September 25-29, 2023

Supported by

- Introduction: tensor polarization, deuteron
- ► Inclusive DIS Tensor asymmetry: interpretation
- ► Tagged DIS tensor asymmetry: nuclear structure

Tensor polarization

• Present for any particle with spin ≥ 1

- Additional (↔ nucleon) spin degrees of freedom
 → experimental challenge [→ talk Zec]
- ► Focus is on spin 1
 - Deuteron
 - Vector mesons $[\rightarrow talk Feng Li]$
- ▶ Link with partonic properties [→ talk Slifer]
- Link with nuclear structure [\rightarrow talks Sargsian, Long]

- Only stable 2 nucleon system (pn)
- ► Small binding energy ~ 2 MeV

•
$$J^{\pi} = 1^+$$
, isospin $0 \rightarrow L = 0, 2$

►
$$\frac{\mu_d - \mu_p - \mu_n}{\mu_d} = -0.026$$

→ S-wave dominates

- Quadrupole moment 0.282 fm²
 - requires D-wave
 - non-central (tensor) NN-force

An Electrical Quadrupole Moment of the Deuteron*

Col

	J. M. B. Kellogg
umbia University. lunter College (JRZ), New York, New York. January 15, 1939.	I. I. Rabi
	N. F. RAMSEY, JR.
	J. R. Zacharias

Spin-1 Density Matrix

- Characterizes statistical ensemble of quantum system
- ► Spin-1: **3** × **3** matrix
- ► Multipole decomposition → 5 tensor parameters
- Values determined in polarimetry
- ► If spin quantization axis = polarization direction → diagonal matrix
- All pure states have tensor polarization
- $\lambda = 0$ pure state has no vector polarization

Tensor Asymmetries

- Density matrix parameters appear in cross section decomposition
 - multiply independent structure functions
 - richer structure for spin 1 compared to nucleon
 - harder to disentangle experimentally

$$\begin{split} \mathbf{r} &= T_{LL} \left[F_{UT_{LL},T} + \epsilon F_{UT_{LL},L} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_h F_{UT_{LL}}^{\cos\phi_h} + \epsilon \cos 2\phi_h F_{UT_{LL}}^{\cos2\phi_h} \right] \\ &+ T_{LL} \hbar \sqrt{2\epsilon(1-\epsilon)} \sin \phi_h F_{LT_{LL}}^{\sin\phi_h} \\ &+ T_{LT} [\cdots] + T_{LT} \hbar [\cdots] \\ &+ T_{TT} \left[\cos(2\phi_h - 2\phi_{T_T}) \left(F_{UT_{TT},T}^{\cos(2\phi_h - 2\phi_{T_T})} + \epsilon F_{UT_{TT},L}^{\cos(2\phi_h - 2\phi_{T_T})} \right) \right. \\ &+ \epsilon \cos 2\phi_{T_T} F_{UT_T}^{\cos2\phi_{T_T}} + \epsilon \cos(4\phi_h - 2\phi_{T_T}) F_{UT_{TT}}^{\cos(4\phi_h - 2\phi_{T_T})} \\ &+ \sqrt{2\epsilon(1+\epsilon)} \left(\cos(\phi_h - 2\phi_{T_T}) F_{UT_{TT}}^{\cos(\phi_h - 2\phi_{T_T})} + \cos(3\phi_h - 2\phi_{T_T}) F_{UT_{TT}}^{\cos(3\phi_h - 2\phi_{T_T})} \right) \right] \\ &+ T_{TT} \hbar [\cdots] \end{split}$$

[WC, C. Weiss, in preparation]

• $d\sigma^+ + d\sigma^- - 2d\sigma^0$ selects tensor polarized contributions

- no electron polarization needed
- normalized to $d\sigma^{\text{avg}}$: A_{zz} , T_{20} .
- Polarization direction $\rightarrow T_{LL}$, T_{LT} , T_{TT} , ϕ_{LT} , ϕ_{TT}

Wim Cosyn (FIU)

Hadronic Matrix Elements

- Same quark/gluon operators: currents & correlators → FF, pdfs, gpds, . . .
- QCD evolution independent of (hadron) spin
- ► Tensor polarization → more independent structures
- Quadrupole FF in elastic ed

[Gilman, Gross '02]

Wealth of tensor polarized distributions to be explored
 experiment, global fits, lattice QCD, model calculations

Wim Cosyn (FIU)

Tensor polarized deuteron structure

Inclusive DIS: b₁

- ► *b*₁, *b*₂, *b*₃, *b*₄ are tensor polarized structure functions [Hoodbhoy, Jaffe, Manohar '88]
- ► Leading twist $b_1 \rightarrow \text{pdf } f_{LL}$ $\rightarrow \text{ difference between unpolarized quark distributions } q^{\lambda=\pm 1} - q^{\lambda=0}$
- Kumano-Close sum rule $\int dx b_1 = 0$ in parton model
- ▶ HERMES measurement, upcoming JLab12
- General convolution model does not describe the data
 - Small *b*₁ due to D-wave and averaging over all configurations

[WC, Dong, Kumano, Sargsian '17]

 Possible window onto non-nucleonic components (pions, hidden color) [G. Miller '13]

From A_{zz} to b_1

- Linear relations (no global fit needed)
- Asymmetry contains all 4 tensor polarized SF

 $A_{zz} = 2 \frac{[T_{LL}](F_{UT_{LL},T} + \epsilon F_{UT_{LL},L}) + [T_{LT}\cos\phi_{T_L}]\sqrt{2\epsilon(1+\epsilon)}}{F_{UT_{LT}}} \frac{F_{UT_{LT}}^{\cos\phi_{T_L}} + [T_{TT}\cos2\phi_{T_T}]}{F_{UU,T} + \epsilon F_{UU,L}}$

- Experimental extraction uses $A_{zz} = -\frac{2}{3} \frac{b_1}{F_1}$ \rightarrow only valid
 - In Bjorken limit
 - For deuteron polarized along virtual photon
- Difference will depend on polarization direction and Q²
- Additional systematic uncertainty on extraction

b_1 extraction: estimates

pol. along *e*

pol. along **q**

WC, Alan Sosa, Brandon Roldan Tomei, in preparation

Wim Cosyn (FIU)

Tensor polarized deuteron structure

Deuteron Spectator tagging

- Detection of nucleon in target fragmentation region: "spectator"
- ► Control over your initial nuclear state → Active nucleon identified, create effective targets
- Spectator can reinteract with other final-state hadrons
 - \rightarrow "Simple" for deuteron

- \rightarrow Larger momenta for medium modifications
- Well developed pheno for Tagged DIS [Sargsian, Strikman '03; Kaptari et al.; WC, Weiss '19+,...]

Tagged A_{zz} for nuclear structure [WC, C. Weiss, in preparation]

- Maximize tensor asymmetry Azz with tagging.
- ► Tensor polarization is sensitive to unpolarized quark distributions, partonic factor cancels out → ratio of LF densities remains

$$A_{zz}(\alpha_p, \boldsymbol{p}_T) = -\frac{\frac{f_0(k)f_2(k)}{\sqrt{2}} + \frac{f_2^2(k)}{4}}{f_0^2(k) + f_2^2(k)} (3\cos 2\theta_k + 1) \qquad \alpha_p = \frac{2p_p^+}{p_D^+} = \left(1 + \frac{k^3}{\sqrt{m^2 + k^2}}\right); \quad \boldsymbol{p}_{pT} = \boldsymbol{k}_T$$

• Maximal A_{zz} at $f_2(k) = \sqrt{2}f_0(k)$, not the *S* wave node!

Needs quantification of FSI effects

→ Constraints on deuteron D-wave

Wim Cosyn (FIU)

Other observables / distributions of interest w tensor pol.

- ► Gluon helicity flip pdf [Jaffe, Manohar '89]
 - impossible in nucleon
 - probes multinucleon gluons
 - resides in twist-4 SF, hard to extract?
 - existing LOI at JLab
- More complicated final states
 - Hard exclusive channels
 - \rightarrow spin-1 GPDS [Berger et al. 04; WC, Pire 18]
 - Semi-inclusive DIS
 - Drell-Yann (NICA, Spinquest)
 - \rightarrow spin-1 TMDs [Bacchetta, Mulders 00; Kumano, Song 18+]
 - QE breakup \rightarrow short-range deuteron structure
 - ... add spectator tagging

- Tensor polarization offers new avenues to probe hadronic and nuclear structure
- Proliferation of observables / distributions
 - Theory provides connections, corrections
 - Experimentally challenge to disentangle
- ► New generation of experiments can be the start of a tensor craze
- ► Lots of reactions to explore, both from theory and experimental side