Tensor polarized deuteron structure

Wim Cosyn

Spin 2023
September 25-29, 2023

Supported by

Outline

- Introduction: tensor polarization, deuteron
- Inclusive DIS Tensor asymmetry: interpretation
- Tagged DIS tensor asymmetry: nuclear structure

Tensor polarization

- Present for any particle with spin ≥ 1
- Additional (\leftrightarrow nucleon) spin degrees of freedom \rightarrow experimental challenge [\rightarrow talk Zec]
- Focus is on spin 1
- Deuteron
- Vector mesons [\rightarrow talk Feng Li]
- Link with partonic properties $[\rightarrow$ talk Slifer]
- Link with nuclear structure [\rightarrow talks Sargsian, Long]

Deuteron

- Only stable 2 nucleon system (pn)

An Electrical Quadrupole Moment of the Deuteron*

- Small binding energy $\sim 2 \mathrm{MeV}$
- $J^{\pi}=1^{+}$, isospin $0 \rightarrow L=0,2$
- $\frac{\mu_{d}-\mu_{p}-\mu_{n}}{\mu_{d}}=-0.026$ \rightarrow S-wave dominates
- Quadrupole moment $0.282 \mathrm{fm}^{2}$

- requires D-wave
- non-central (tensor) $N N$-force

Spin-1 Density Matrix

- Characterizes statistical ensemble of quantum system
- Spin-1: 3×3 matrix
- Multipole decomposition

$$
\rho\left(\lambda, \lambda^{\prime}\right)=\left[\begin{array}{ccc}
\frac{1}{3}+\frac{1}{2} S_{L}+\frac{1}{2} T_{L L} & \frac{1}{2 \sqrt{2}} S_{T} e^{-i\left(\phi_{n}-\phi_{S}\right)} & \frac{1}{2} T_{T} e^{-i\left(2 \phi_{n}-2 \phi_{T_{Y}}\right)} \\
& +\frac{1}{\sqrt{2}} T_{L T} e^{-i\left(\phi_{n}-\phi_{T_{L}}\right)} & \\
\frac{1}{2 \sqrt{2}} S_{T} e^{i\left(\phi_{n}-\phi_{s}\right)} & \frac{1}{3}-T_{L L} & \frac{1}{2 \sqrt{2}} S_{T} e^{-i\left(\phi_{n}-\phi_{s}\right)} \\
+\frac{1}{\sqrt{2}} T_{L T} e^{i\left(\phi_{n}-\phi_{T_{L}}\right)} & & -\frac{1}{\sqrt{2}} T_{L T} e^{-i\left(\phi_{n}-\phi_{T_{L}}\right)} \\
\frac{1}{2} T_{T T} e^{i\left(2 \phi_{K_{n}}-2 \phi_{\left.T_{T}\right)}\right)} & \frac{1}{2 \sqrt{2}} S_{T} e^{i\left(\phi_{k}-\phi_{S}\right)} & \frac{1}{3}-\frac{1}{2} S_{L}+\frac{1}{2} T_{L L}
\end{array}\right]
$$

$\rightarrow 5$ tensor parameters

- Values determined in polarimetry
- If spin quantization axis = polarization direction \rightarrow diagonal matrix
- All pure states have tensor polarization
- $\lambda=0$ pure state has no vector polarization

Tensor Asymmetries

- Density matrix parameters appear in cross section decomposition
- multiply independent structure functions
- richer structure for spin 1 compared to nucleon
- harder to disentangle experimentally

$$
\begin{aligned}
F_{T}=T_{L L} & \left.\mid F_{U T_{L L}, T}+\epsilon F_{U T_{L L}, L}+\sqrt{2 \epsilon(1+\epsilon)} \cos \phi_{h} F_{U T_{L L}}^{\cos \phi_{h}}+\epsilon \cos 2 \phi_{h} F_{U T_{L L}}^{\cos 2 \phi_{h}}\right] \\
& +T_{L L} h \sqrt{2 \epsilon(1-\epsilon)} \sin \phi_{h} F_{L T_{L L}}^{\sin \phi_{h}} \\
& +T_{L T}[\cdots]+T_{L T} h[\cdots] \\
& +T_{T T}\left[\operatorname { c o s } \left(2 \phi_{h}-2 \phi_{\left.T_{T}\right)}\left(F_{U T_{T T}, T}^{\cos \left(2 \phi_{h}-2 \phi_{T}\right)}+\epsilon F_{U T_{T T}, L}^{\cos \left(2 \phi_{h}-2 \phi_{T}\right)}\right)\right.\right. \\
& +\epsilon \cos 2 \phi_{T_{T}} F_{U T_{T T}}^{\cos 2 \phi_{T}}+\epsilon \cos \left(4 \phi_{h}-2 \phi_{T_{T} T}\right) F_{U T_{T T}}^{\cos \left(4 \phi_{h}-2 \phi_{T}\right)} \\
& \left.+\sqrt{2 \epsilon(1+\epsilon)}\left(\cos \left(\phi_{h}-2 \phi_{\left.T_{T}\right)}\right) F_{U T_{T T}}^{\cos \left(\phi_{h}-2 \phi_{T} T_{T}\right)}+\cos \left(3 \phi_{h}-2 \phi_{\left.T_{T}\right)}\right) F_{U T_{T T}}^{\cos \left(3 \phi_{h}-2 \phi T_{T}\right)}\right)\right] \\
& +T_{T T} h[\cdots]
\end{aligned}
$$

[WC, C. Weiss, in preparation]

- $d \sigma^{+}+d \sigma^{-}-2 d \sigma^{0}$ selects tensor polarized contributions
- no electron polarization needed
- normalized to $d \sigma^{\text {avg }}: A_{z z}, T_{20}$.
- Polarization direction $\rightarrow T_{L L}, T_{L T}, T_{T T}, \phi_{L T}, \phi_{T T}$

Hadronic Matrix Elements

- Same quark/gluon operators: currents \& correlators \rightarrow FF, pdfs, gpds, ...
- QCD evolution independent of (hadron) spin
- Tensor polarization \rightarrow more independent structures
- Quadrupole FF in elastic ed

[Gilman, Gross '02]
- Wealth of tensor polarized distributions to be explored
- experiment, global fits, lattice QCD, model calculations

Inclusive DIS: b_{1}

- $b_{1}, b_{2}, b_{3}, b_{4}$ are tensor polarized structure functions [Hoodbhoy, Jaffe, Manohar '88]
- Leading twist $b_{1} \rightarrow$ pdf $f_{L L}$
\rightarrow difference between unpolarized quark distributions $q^{\lambda= \pm 1}-q^{\lambda=0}$
- Kumano-Close sum rule $\int d x b_{1}=0$ in parton model
- HERMES measurement, upcoming JLab12
- General convolution model does not describe the data
- Small b_{1} due to D-wave and averaging over all configurations

[WC, Dong, Kumano, Sargsian '17]
- Possible window onto non-nucleonic components (pions, hidden color) [G. Miller '13]

From $A_{z z}$ to b_{1}

- Linear relations (no global fit needed)
- Asymmetry contains all 4 tensor polarized SF

$$
A_{z z}=2 \frac{\left[T_{L L}\right]\left(F_{U T_{L L}, T}+\epsilon F_{U T_{L L, L}, L}\right)+\left[T_{L T} \cos \phi_{T_{L}}\right] \sqrt{2 \epsilon(1+\epsilon)} F_{U T_{L T}}^{\cos \phi_{L}}+\left[T_{T T} \cos 2 \phi_{T_{T}}\right] \epsilon F_{U T_{T T}}^{\cos 2 \phi_{T}}}{F_{U U, T}+\epsilon F_{U U, L}}
$$

- Experimental extraction uses $A_{z z}=-\frac{2}{3} \frac{b_{1}}{F_{1}}$ \rightarrow only valid
- In Bjorken limit
- For deuteron polarized along virtual photon
- Difference will depend on polarization direction and Q^{2}
- Additional systematic uncertainty on extraction

b_{1} extraction: estimates

Deuteron Spectator tagging

- Detection of nucleon in target fragmentation region: "spectator"
- Control over your initial nuclear state
\rightarrow Active nucleon identified, create effective targets
- Spectator can reinteract with other final-state hadrons
\rightarrow "Simple" for deuteron
- Spectator kinematics gives handle on initial state
\rightarrow On-shell extrapolation for free nucleon
\rightarrow Larger momenta for medium modifications
$p_{p T}^{2}>0$
physical region
$p_{p T}^{2} \rightarrow-a_{T}^{2}$
on-shell extrapolation
- Well developed pheno for Tagged DIS [Sargsian, Strikman '03; Kaptari et al.; WC, Weiss '19+,...]

Tagged $A_{z z}$ for nuclear structure wiv, c. wisoss, in properation

- Maximize tensor asymmetry $A_{z z}$ with tagging.
- Tensor polarization is sensitive to unpolarized quark distributions, partonic factor cancels out \rightarrow ratio of LF densities remains

$$
A_{z z}\left(\alpha_{p}, \boldsymbol{p}_{T}\right)=-\frac{\frac{f_{0}(k) f_{2}(k)}{\sqrt{2}}+\frac{f_{2}^{2}(k)}{4}}{f_{0}^{2}(k)+f_{2}^{2}(k)}\left(3 \cos 2 \theta_{k}+1\right) \quad \alpha_{p}=\frac{2 p_{p}^{+}}{p_{D}^{+}}=\left(1+\frac{k^{3}}{\sqrt{m^{2}+k^{2}}}\right) ; \quad \boldsymbol{p}_{p T}=\boldsymbol{k}_{T}
$$

- Maximal $A_{z z}$ at $f_{2}(k)=\sqrt{2} f_{0}(k)$, not the S wave node!
- Needs quantification of FSI effects
\rightarrow Constraints on deuteron D-wave

Other observables / distributions of interest w tensor pol.

- Gluon helicity flip pdf [Jaffe, Manohar '89]
- impossible in nucleon
- probes multinucleon gluons
- resides in twist-4 SF, hard to extract?
- existing LOI at JLab
- More complicated final states
- Hard exclusive channels

```
spin-1 GPDS [Berger et al. 04; wc, Pire 18]
```

- Semi-inclusive DIS
- Drell-Yann (NICA, Spinquest)
\rightarrow spin-1 TMDs [Bacchetta, Mulders 00; Kumano, Song 18+]
- QE breakup \rightarrow short-range deuteron structure
- ... add spectator tagging

Conclusions

- Tensor polarization offers new avenues to probe hadronic and nuclear structure
- Proliferation of observables / distributions
- Theory provides connections, corrections
- Experimentally challenge to disentangle
- New generation of experiments can be the start of a tensor craze
- Lots of reactions to explore, both from theory and experimental side

