

Measuring Photon Beam Polarization Through Detection of e^+e

GLUE

Albert Fabrizi **SPIN Conference 2023**

GlueX Detector in Hall D at JLAB

- GlueX Experiment's purpose is to study QCD by identifying exotic mesons.
- An electron beam penetrates the diamond radiator creating coherent Bremsstrahlung photon beam with a peak between 8.2 and 9 GeV and peak polarization of 40%
- The photon beam continues to the Hall through the collimator.
- The TPOL measures the degree of polarization of the linearly polarized beam.
- The photon beam strikes the LH2 target, then we look for e^+e^- pairs utilizing the forward drift chambers and calorimeter.

Albert Fabrizi

Measuring Photon Beam Polarization

Motivation

- •Charged Pion Polarizability (CPP) experiment at GlueX •Experiment uses a polarized photon beam
 - •CPP utilizes a lead (Pb^{208}) target
 - •Desirable to know and monitor the photon polarization (currently done with a triplet polarimeter). Knowing polarization precisely is required for background separation.
 - •Measuring polarizability from primakoff pions
 - •Need a precision cross-check on triplet polarimeter that can be done synchronously with data taking
 - the polarization.

Albert Fabrizi

•Not only for CPP but analysis of GlueX-I (data taken from 2017- 2018) data requires a check on

Measuring Photon Beam Polarization

Conventional Technique:

- Triplet Polarimeter (TPOL): pair production on atomic electrons
- New Technique:
 - chambers and calorimeters

Albert Fabrizi

Measuring Photon Beam Polarization

Polarimetry with Bethe-Heitler Pairs

• Pair production with detection of both e^+ and e^- in the forward drift

Measuring Photon Beam Polarization

$$\frac{d\sigma}{dx_{1}d\Omega_{1}d\Omega_{2}} = Z^{2}\alpha^{3}\frac{P_{1}P_{2}}{4\pi^{2}E_{0}^{2}q^{4}}(\sigma_{0} + \mathcal{P}\sigma_{1})\left|F_{charge}(q) - F_{atomic}(q)\right|^{2} \xrightarrow{\frac{2E_{2}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}}} \phi_{J_{T}}$$

$$\frac{2E_{1}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}}$$

$$d\sigma_{1} = \frac{d\sigma_{\parallel} - d\sigma_{\perp}}{2} = k\left[-\left|\vec{J}_{T}\right|^{2}\cos 2\phi_{J_{T}} + \left|\vec{K}_{T}\right|^{2}\cos 2\phi_{K_{T}}\right]$$

$$\vec{J}_{T} = \frac{2E_{2}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}} + \frac{2E_{1}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}} \qquad \vec{K}_{T} = \frac{\sqrt{q^{2}}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}} - \frac{\sqrt{q^{2}}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}}$$

$$\frac{d\sigma}{x_{1}d\Omega_{1}d\Omega_{2}} = Z^{2}\alpha^{3}\frac{P_{1}P_{2}}{4\pi^{2}E_{0}^{2}q^{4}}(\sigma_{0} + \mathcal{P}\sigma_{1}) |F_{charge}(q) - F_{atomic}(q)|^{2} \frac{2E_{2}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}}$$

$$\frac{2E_{1}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}}$$

$$d\sigma_{1} = \frac{d\sigma_{\parallel} - d\sigma_{\perp}}{2} = k \left[-\left|\vec{J}_{T}\right|^{2}\cos 2\phi_{J_{T}} + \left|\vec{K}_{T}\right|^{2}\cos 2\phi_{K_{T}} \right]$$

$$\vec{J}_{T} = \frac{2E_{2}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}} + \frac{2E_{1}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}} \qquad \vec{K}_{T} = \frac{\sqrt{q^{2}}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}} - \frac{\sqrt{q^{2}}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}}$$

$$\frac{1}{Q_{2}} = Z^{2} \alpha^{3} \frac{P_{1} P_{2}}{4\pi^{2} E_{0}^{2} q^{4}} (\sigma_{0} + \mathcal{P} \sigma_{1}) |F_{charge}(q) - F_{atomic}(q)|^{2} \frac{2E_{2}}{E_{1} - p_{1} \cos \theta_{1}} \vec{p}_{1_{T}}$$

$$\frac{\varphi_{I}}{\varphi_{J_{T}}} = k \left[- \left| \vec{J}_{T} \right|^{2} \cos 2\phi_{J_{T}} + \left| \vec{K}_{T} \right|^{2} \cos 2\phi_{K_{T}} \right]$$

$$\vec{J}_{T} = \frac{2E_{2}}{E_{1} - p_{1} \cos \theta_{1}} \vec{p}_{1_{T}} + \frac{2E_{1}}{E_{2} - p_{2} \cos \theta_{2}} \vec{p}_{2_{T}} \qquad \vec{K}_{T} = \frac{\sqrt{q^{2}}}{E_{1} - p_{1} \cos \theta_{1}} \vec{p}_{1_{T}} - \frac{\sqrt{q^{2}}}{E_{2} - p_{2} \cos \theta_{2}} \vec{p}_{2_{T}}$$

Measuring Photon Beam Polarization

$$\frac{d\sigma}{dx_{1}d\Omega_{1}d\Omega_{2}} = Z^{2}\alpha^{3}\frac{P_{1}P_{2}}{4\pi^{2}E_{0}^{2}q^{4}}(\sigma_{0} + \mathcal{P}\sigma_{1}) |F_{charge}(q) - F_{atomic}(q)|^{2} \frac{2E_{2}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}}$$

$$\frac{2E_{1}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}}$$

$$d\sigma_{1} = \frac{d\sigma_{\parallel} - d\sigma_{\perp}}{2} = k \left[\left(-\left|\vec{J}_{T}\right|^{2}\cos 2\phi_{J_{T}} + \left|\vec{K}_{T}\right|^{2}\cos 2\phi_{K_{T}} \right] \right] \qquad E_{1(2)} \gg q$$

$$|\vec{J}_{T}|^{2} \gg |\vec{K}_{T}|^{2}$$

$$\vec{J}_{T} = \frac{2E_{2}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}} + \frac{2E_{1}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}} \qquad \vec{K}_{T} = \frac{\sqrt{q^{2}}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}} - \frac{\sqrt{q^{2}}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}}$$

$$\frac{d\sigma}{x_{1}d\Omega_{1}d\Omega_{2}} = Z^{2}\alpha^{3}\frac{P_{1}P_{2}}{4\pi^{2}E_{0}^{2}q^{4}}(\sigma_{0} + \mathscr{P}\sigma_{1})\left|F_{charge}(q) - F_{atomic}(q)\right|^{2} \xrightarrow{\frac{2E_{2}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}}} \phi_{J_{T}}$$

$$\frac{2E_{1}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}}$$

$$d\sigma_{1} = \frac{d\sigma_{\parallel} - d\sigma_{\perp}}{2} = k\left[-\left|\vec{J}_{T}\right|^{2}\cos 2\phi_{J_{T}}\right] \left|\vec{K}_{T}\right|^{2}\cos 2\phi_{K_{1}}\right] \qquad E_{1(2)} \gg q$$

$$|\vec{J}_{T}|^{2} \gg \left|\vec{K}_{T}\right|^{2}$$

$$\vec{J}_{T} = \frac{2E_{2}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}} + \frac{2E_{1}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}} \qquad \vec{K}_{T} = \frac{\sqrt{q^{2}}}{E_{1} - p_{1}\cos\theta_{1}}\vec{p}_{1_{T}} - \frac{\sqrt{q^{2}}}{E_{2} - p_{2}\cos\theta_{2}}\vec{p}_{2_{T}}$$

$$\frac{1}{2} = Z^{2} \alpha^{3} \frac{P_{1}P_{2}}{4\pi^{2}E_{0}^{2}q^{4}} (\sigma_{0} + \mathcal{P}\sigma_{1}) |F_{charge}(q) - F_{atomic}(q)|^{2} \frac{2E_{2}}{E_{1} - p_{1}\cos\theta_{1}} \vec{p}_{1_{T}}$$

$$\frac{2E_{1}}{E_{2} - p_{2}\cos\theta_{2}} \vec{p}_{2_{T}}$$

$$\frac{\sigma_{\parallel} - d\sigma_{\perp}}{2} = k \left[-\left|\vec{J}_{T}\right|^{2}\cos 2\phi_{J_{T}} + \left|\vec{K}_{T}\right|^{2}\cos 2\phi_{K_{T}} \right] \qquad E_{1(2)} \gg q$$

$$|\vec{J}_{T}|^{2} \gg |\vec{K}_{T}|^{2}$$

$$\vec{J}_{T} = \frac{2E_{2}}{E_{1} - p_{1}\cos\theta_{1}} \vec{p}_{1_{T}} + \frac{2E_{1}}{E_{2} - p_{2}\cos\theta_{2}} \vec{p}_{2_{T}} \qquad \vec{K}_{T} = \frac{\sqrt{q^{2}}}{E_{1} - p_{1}\cos\theta_{1}} \vec{p}_{1_{T}} - \frac{\sqrt{q^{2}}}{E_{2} - p_{2}\cos\theta_{2}} \vec{p}_{2_{T}}$$

Measuring Photon Beam Polarization

Measuring Photon Beam Polarization

Thrown 4999964 -0.05548 98.68 degrees

MC with **BH** Cross-Section

1. Generate e+e- 4 vectors using the classic BH cross-section

2. Plot ϕ_{J_T} from the 4 vectors

3. Measuring ϕ_{J_T} allows you to infer the beam polarization

Neural Nets

Trained a neural net to separate electrons and pions.

Pion background subtraction (5.4%)

contamination)

Fiducial Cuts:

 $8.2 \,\text{GeV} < E_{\gamma} < 8.8 \,\text{GeV}$ (Coherent Peak)

$$0.25 \,\text{GeV} < W_{ee} < 0.621 \,\text{GeV}$$

 $\theta_1, \theta_2 > 1.5 \deg$

Albert Fabrizi

Measuring Photon Beam Polarization

Analysis of GlueX-I Data

 e^+e^- Invariant Mass

Calculating the Analyzing Power, Σ

 $Y_{\perp}(\phi) - Y$ $Y_{\perp} + Y_{\parallel}($

0.6 GLUE 0.4 Preliminary 0.2 -0.2 -0.4 -0.6 -150 -100 -50

Assuming 100% polarization

Albert Fabrizi

Measuring Photon Beam Polarization

$$\frac{Z_{\parallel}(\phi)}{(\phi)} = \Sigma \cos 2\phi$$

Predicted Analyzing Power = 59.6%

Simulated Yield Asymmetry

Jefferson Lab

Albert Fabrizi

Measuring Photon Beam Polarization

$\gamma p \rightarrow e^+ e^-(p)$, 50% of GlueX-I data

GlueX data

Albert Fabrizi

Measuring Photon Beam Polarization

$$= \Sigma \mathscr{P} \cos 2(\phi + \alpha)$$

Assume $P_{\perp} \approx P_{\parallel}$ And allow for angular offset

a,
$$\gamma p \rightarrow e^+ e^-(p)$$

Yield Asymmetry

9/26/23

12

50% of GlueX-I data, Average Polarization

0° and 90° BH average polarization: $\frac{\mathscr{P}_{\perp} + \mathscr{P}_{\parallel}}{2} = 0.342 \pm 0.009 \text{ (stat)}$

Albert Fabrizi

Measuring Photon Beam Polarization

Results

			$\frac{\mathscr{P}_{\perp} + \mathscr{P}_{\parallel}}{2}$	$\frac{\mathscr{P}_{\perp} + \mathscr{P}_{\parallel}}{2}$
50% of GlueX-I data	Run Period	Pol. Orientations	Triplet Polarimeter Avg. Pol.	BH Pairs Avg. Pol.
	2018 Spring GlueX-I	0° and 90°	0.341 ± 0.004	0.342 ± 0.009 (sta
	2018 Spring GlueX-I	-45° and 45°	0.344 ± 0.004	0.336 ± 0.009 (sta
30% of GlueX-I data	2018 Fall GlueX-I	0° and 90°	0.345 ± 0.005	0.337 ± 0.011 (sta
	2018 Fall GlueX-I	-45° and 45°	0.342 ± 0.005	0.332 ± 0.013 (sta

• Preliminary systematic errors dominated by pion subtraction, are small compared to statistical errors

Albert Fabrizi

Conclusions

- uncertainties
- •Two complementary methods—different systematics
- where detection of e^+e^- pairs is achieved with good particle ID

Albert Fabrizi

•The measured average polarization agrees within statistical

•Technique is general: can obtain linear beam polarization from e^+e^- events in any photo-production experiments

Acknowledgements

- Topic of Ph.D. Contact: <u>aschick@umass.edu</u>
- GlueX acknowledges the support of several funding agencies and computing facilities: http://gluex.org/thanks/

Albert Fabrizi

Measuring Photon Beam Polarization

Andrew Schick - Graduate Student UMass Amherst Physics Department,

Back ups

GlueX data

0°/90° runs

Albert Fabrizi

Measuring Photon Beam Polarization

$$= \frac{\Sigma \cos 2\phi (P_{\perp} + P_{\parallel})}{2 + \Sigma \cos 2\phi (P_{\perp} - P_{\parallel})}$$

a,
$$\gamma p \rightarrow e^+ e^-(p)$$

Yield Asymmetry

-45°/45° runs

Measuring Photon Beam Polarization

$$= \frac{\Sigma \cos 2\phi (P_{\perp} + P_{\parallel})}{2 + \Sigma \cos 2\phi (P_{\perp} - P_{\parallel})}$$

Assume $P_{\perp} \approx P_{\parallel}$ And allow for angular offset

GlueX data, $\gamma p \rightarrow e^+ e^-(p)$

Yield Asymmetry

-45°/45° runs

9/26/23

19