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2Motivation: QCD structure of excited states

[Image credits: PDG 2016, Roenchen - FZ Jülich]

N(I = 1/2)
High-momentum-transfer processes: 
Short-distance probe, “microscope”

Quark/gluon distributions 1D → 3D

Structure of ground-state nucleon

Multihadron states πN, ππN, KY

Baryon resonances N*, Δ, Y*

Limited information available from 
vector/axial currents ⟨N* |Vμ, Aμ |N⟩

Need other short-distance probes… 
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15. Quark model 285

Such analyses are of course biased against resonances which couple
only weakly to the Nπ channel. Quark model predictions for the
couplings to other hadronic channels and to photons are given in
Ref. 34. A large experimental effort is ongoing at several electron
accelerators to study the baryon resonance spectrum with real and
virtual photon-induced meson production reactions. This includes the
search for as-yet-unobserved states, as well as detailed studies of the
properties of the low lying states (decay patterns, electromagnetic
couplings, magnetic moments, etc.) (see Ref. 36 for recent reviews).
This experimental effort has currently entered its final phase with
the measurement of single and double polarization observables for
many different meson production channels, so that a much better
understanding of the experimental spectrum can be expected for the
near future.
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Figure 15.5: Excitation spectrum of the nucleon. Compared
are the positions of the excited states identified in experiment,
to those predicted by a relativized quark model calculation. Left
hand side: isospin I = 1/2 N -states, right hand side: isospin
I = 3/2 ∆-states. Experimental: (columns labeled ’exp’), three-
and four-star states are indicated by full lines (two-star dashed
lines, one-star dotted lines). At the very left and right of the
figure, the spectroscopic notation of these states is given. Quark
model [34]: (columns labeled ’QM’), all states for the N=1,2
bands, low-lying states for the N=3,4,5 bands. Full lines: at
least tentative assignment to observed states, dashed lines: so
far no observed counterparts. Many of the assignments between
predicted and observed states are highly tentative.

In quark models, the number of excited states is determined by the
effective degrees of freedom, while their ordering and decay properties
are related to the residual quark - quark interaction. An overview
of quark models for baryons is given in Ref. 32, recent discussions
of baryon spectroscopy are given in Refs. 30 and 25. The effective
degrees of freedom in the standard nonrelativistic quark model are
three equivalent valence quarks with one-gluon exchange-motivated,
flavor-independent color-magnetic interactions. The QCD aspect of
gluon-gluon interactions is emphasized by the hypercentral quark
model [37], [38], which includes in a natural way three-body forces
between the quarks. A different class of models uses interactions which
give rise to a quark - diquark clustering of the baryons: for a review
see Ref. 39. If there is a tightly bound diquark, only two degrees
of freedom are available at low energies, and thus fewer states are
predicted. Furthermore, selection rules in the decay pattern may arise
from the quantum numbers of the diquark. More states are predicted
by collective models of the baryon like the algebraic approach in
Ref. 40. In this approach, the quantum numbers of the valence
quarks are distributed over a Y-shaped string-like configuration,
and additional states arise e.g., from vibrations of the strings. More
states are also predicted in the framework of flux-tube models, see
Ref. 41, which are motivated by lattice QCD. In addition to the quark

degrees of freedom, flux-tubes responsible for the confinement of the
quarks are considered as degrees of freedom. These models include
hybrid baryons containing explicit excitations of the gluon fields.
However, since all half integral JP quantum numbers are possible
for ordinary baryons, such ‘exotics’ will be very hard to identify, and
probably always mix with ordinary states. So far, the experimentally
observed number of states is still far lower even than predicted by the
quark–diquark models.

Table 15.6: Quark-model assignments for some of the known
baryons in terms of a flavor-spin SU(6) basis. Only the dominant
representation is listed. Assignments for several states, especially
for the Λ(1810), Λ(2350), Ξ(1820), and Ξ(2030), are merely

educated guesses. † recent suggestions for assignments and
re-assignments from Ref. 33. For assignments of the charmed
baryons, see the “Note on Charmed Baryons” in the Particle
Listings.

JP (D, LP
N )S Octet members Singlets

1/2+ (56,0+
0 ) 1/2N(939) Λ(1116) Σ(1193) Ξ(1318)

1/2+ (56,0+
2 ) 1/2N(1440)Λ(1600) Σ(1660) Ξ(1690)†

1/2− (70,1−1 ) 1/2N(1535)Λ(1670) Σ(1620) Ξ(?) Λ(1405)

Σ(1560)†

3/2− (70,1−1 ) 1/2N(1520)Λ(1690) Σ(1670) Ξ(1820) Λ(1520)

1/2− (70,1−1 ) 3/2N(1650)Λ(1800) Σ(1750) Ξ(?)

Σ(1620)†

3/2− (70,1−1 ) 3/2N(1700)Λ(?) Σ(1940)† Ξ(?)

5/2− (70,1−1 ) 3/2N(1675)Λ(1830) Σ(1775) Ξ(1950)†

1/2+ (70,0+
2 ) 1/2N(1710)Λ(1810) Σ(1880) Ξ(?) Λ(1810)†

3/2+ (56,2+
2 ) 1/2N(1720)Λ(1890) Σ(?) Ξ(?)

5/2+ (56,2+
2 ) 1/2N(1680)Λ(1820) Σ(1915) Ξ(2030)

7/2− (70,3−3 ) 1/2N(2190)Λ(?) Σ(?) Ξ(?) Λ(2100)

9/2− (70,3−3 ) 3/2N(2250)Λ(?) Σ(?) Ξ(?)

9/2+ (56,4+
4 ) 1/2N(2220)Λ(2350) Σ(?) Ξ(?)

Decuplet members

3/2+ (56,0+
0 ) 3/2∆(1232) Σ(1385) Ξ(1530) Ω(1672)

3/2+ (56,0+
2 ) 3/2∆(1600) Σ(1690)†Ξ(?) Ω(?)

1/2− (70,1−1 ) 1/2∆(1620) Σ(1750)†Ξ(?) Ω(?)

3/2− (70,1−1 ) 1/2∆(1700) Σ(?) Ξ(?) Ω(?)

5/2+ (56,2+
2 ) 3/2∆(1905) Σ(?) Ξ(?) Ω(?)

7/2+ (56,2+
2 ) 3/2∆(1950) Σ(2030) Ξ(?) Ω(?)

11/2+ (56,4+
4 ) 3/2∆(2420) Σ(?) Ξ(?) Ω(?)

Recently, the influence of chiral symmetry on the excitation
spectrum of the nucleon has been hotly debated from a somewhat new
perspective. Chiral symmetry, the fundamental symmetry of QCD,
is strongly broken for the low lying states, resulting in large mass
differences of parity partners like the JP =1/2+ N(938)1/2+ ground
state and the JP =1/2− N(1535)1/2− excitation. However, at higher
excitation energies there is some evidence for parity doublets and
even some very tentative suggestions for full chiral multiplets of N∗

and ∆ resonances. An effective restoration of chiral symmetry at high
excitation energies due to a decoupling from the quark condensate
of the vacuum has been discussed (see Ref. 42 for recent reviews)
as a possible cause. In this case, the mass generating mechanisms
for low and high lying states would be essentially different. As a
further consequence, the parity doublets would decouple from pions,
so that experimental bias would be worse. However, parity doublets
might also arise from the spin-orbital dynamics of the 3-quark system.
Presently, the status of data does not allow final conclusions.

The most recent developments on the theory side are the first
unquenched lattice calculations for the excitation spectrum discussed
in Sec. 15.6. The results are basically consistent with the level
counting of SU(6)⊗O(3) in the standard non-relativistic quark
model and show no indication for quark-diquark structures or parity

Structure of interacting/excited states?



3Transition GPDs: Hard exclusive processes

Factorization

Asymptotic regime Q2, W2 ≫ μ2
𝗁𝖺𝖽, | t | ∼ μ2

𝗁𝖺𝖽

Production process communicates with target through 
QCD light-ray operators  𝒪(z) = ψ̄(0) . . . ψ(z)z2=0

Interest in transitions N → N′ 

Learn about structure of excited states:

Works for any transition with mN′ − mN ∼ μ𝗁𝖺𝖽

Realize operators with quantum numbers not accessible with local vector/axial currents: 
Spin  — energy momentum tensor, gluon operators, quarks  antiquarks C-parity≥ 2 ↔

Hadronic matrix elements  GPDs⟨N′ |𝒪(z) |N⟩ ↔

Learn more about operator: Quantum numbers, spin-flavor components?

Use well-defined QCD operators from factorization theorem:  
Renormalization, scale dependence, universality  LQCD, nonperturbative methods→

2

B

N, *N
GPD

π

γ, M

Q,

∆, 
N

operator

x

N

hard



4Transition GPDs: Resonances

⟨πN |𝒪 |N⟩ =
⟨πN |Δ⟩ ⟨Δ |𝒪 |N⟩

sπN − M2
Δ

+ less singular

Multihadron final state, e.g. πN

N

π

N

π

∆

pole

GPD

N
N

GPD sπN}

Analytic continuation in invariant mass :  
Pole at , resonance structure defined at pole, residue factorizes

sπN
sπN = M2

Δ

Rigorous definition of “resonance GPDs” using methods of S-matrix theory

Physical region: Resonant + non-resonant contributions, needs theory

Definition of resonance GPDs



5Theoretical methods

Near-threshold region kcm ∼ Mπ
GPD

N
N

π

k cm

Soft-pion theorems relate  and  matrix elementsN → πN N → N
Pobylitsa, Polyakov, Strikman 2001; Guichon, Mossé, Vanderhaeghen 2003; Chen, Savage 2004; Birse 2004

Chiral dynamics

 expansion of QCD1/Nc

Organization scheme for non-perturbative dynamics

Spin-flavor symmetry relates  and  transitions: N → N N → Δ
⟨Δ |𝒪 |N⟩ = [symmetry factor] × ⟨N |𝒪 |N⟩

Predictions for transition GPDs spin−flavor symmetry

∆

GPD

QCD operator

N N,

Effective degrees of freedom

Chiral soliton model, light-front quark models, holographic models, instanton vacuum

Lattice QCD → Talks

Frankfurt, Polyakov, Strikman 1998. FPS, Vanderhaeghen 2000



6Energy-momentum tensor form factors

EMT operator as 2nd x-moment of light-ray operator

: Extensive studies, “mechanical properties”N → N

 transition EMT form factorsN → Δ

Transition matrix elements: Form factors, multipoles

Transition angular momentum formulated as light-front density

J-Y Kim 2022 + in progress

Ji 1996, Polyakov 2003, Lorce et al. 2013+

J-Y Kim, H-Y Won, Goity, Weiss, 2023

N,

t

µν

N ∆

T

T
+T (b)

b

N N, ∆

EMT form factors describe distributions of momentum, 
angular momentum, forces in system

Jz(N → Δ) = ∫ d2b b × ⟨Δ |T+T |N⟩

Probes isovector quark angular momentum u − d



7Energy-momentum tensor form factors

 expansion connects AM in  and  1/Nc N → Δ N → N

Large-Nc light-front chiral quark-soliton model: J-Y Kim 2023

Goeke, Vanderhaeghen, Polyakov 2000; Kim, Won, Goity, Weiss, 2023

JV(p → p) =
1

2
JV(p → Δ+) = 5JV(Δ+ → Δ+)

expansion of the 3D components of the EMT matrix element re-
spects 3D rotational invariance, the matching procedure imple-
ments 3D rotational invariance for the light-front components
of the matrix element; this property is not manifest in the light-
front formulation and imposes conditions on the light-front ma-
trix elements.2

We have computed the 1/Nc expansion of the 3-dimensional
multipoles of the EMT in the symmetric frame Eq. (15) using a
method based on the soliton picture of large-Nc baryons [3, 35];
equivalently one can use methods based on the algebra of the
spin-flavor symmetry group [22, 23]. The full results will be
presented elsewhere [36]; in the following we quote only the
multipoles relevant to the AM. In leading order of 1/Nc, the
matrix elements of the isoscalar and isovector components [see
Eq.(2)] of T 0k are of the form

hB0,�/2|(T̂ S )0k |B,��/2i = 2m2hS iiB0B
"
i✏kil�

l

m
J

S
1 (t) + ...

#
,

(19)

hB0,�/2|(T̂ V )0k |B,��/2i = 2m2hD3iiB0B
"
i✏kil�

l

m
J

V
1 (t) + ...

#
,

(20)

where we have omitted spin-independent terms / �k that do not
contribute to the AM. The spin/isospin dependence is contained
in the structures (here i = 0,±1 denote the spherical 3-vector
components)

hS iiB0B =
p

S (S + 1) hS S3, 1i|S 0S 03i �S 0S �I0I�I03I3 , (21)

hD3iiB0B = �
r

2S + 1
2S 0 + 1

hS S3, 1i|S 0S 03i hII3, 10|I0I03i. (22)

S i has only matrix elements between same spin/isospin, while
D3i can connect states with spin/isospin di↵ering by one.3 Thus
(T̂ )S in Eq. (19) contributes only to N ! N and � ! � transi-
tions, while N ! � transitions arise only from (T̂ )V in Eq. (20).
J

S ,V
1 (t) in Eqs. (19) and (20) are the isoscalar and isovector

dipole form factors. They are found to be of the order [36]

J
S
1 = O(N0

c ), J
V
1 = O(Nc). (23)

The matrix elements of T 3k are suppressed by 1/Nc compared to
those of T 0k in both the isoscalar and isovector sector. The light-
front component T+i is therefore given by T 0k in leading order
of the 1/Nc expansion, and we can compute the AM Eq. (8)
from Eqs. (20)–(23). We find:

2A similar procedure of matching light-front matrix elements with 3-
dimensional Breit frame matrix elements is used in the construction of current
operators in dynamical models of interacting few-body systems in light-front
quantization (so-called angular conditions); see Refs. [31, 32, 33, 34] and ref-
erences therein. In our study here we do not construct an EMT operator in terms
of constituent degrees of freedom but work directly with the matrix elements
provided by the 1/Nc expansion.

3The matrix elements Eq. (21) and (22) appear from the collective quan-
tization of the soliton rotations [3, 35]. In the formulation of the 1/Nc ex-
pansion based on the SU(4) spin-flavor symmetry [21, 22, 23], hDaiiB0B(i, a =
1, 2, 3) is related to the matrix element of the spin-flavor generator Gia, namely
hDaiiB0B = �4/(Nc + 2)hGiaiB0B + O(N�2

c ).

Lattice QCD JS
p!p JS

�+!�+ JV
p!p JV

p!�+ JV
�+!�+

[9] µ2 = 4 GeV2 0.33⇤ 0.33 0.41⇤ 0.58 0.08
[10] µ2 = 4 GeV2 0.21⇤ 0.21 0.22⇤ 0.30 0.04
[11] µ2 = 4 GeV2 0.24⇤ 0.24 0.23⇤ 0.33 0.05
[12] µ2 = 1 GeV2 � � 0.23⇤ 0.33 0.05
[13] µ2 = 4 GeV2 � � 0.17⇤ 0.24 0.03

Table 1: Estimates of the isoscalar and the isovector AM for p ! p, p ! �+
and �+ ! �+ obtained from lattice QCD data on JS

p!p and JV
p!p and the

relations provided by the leading-order 1/Nc expansion. Here S ,V ⌘ u ± d,
and the nucleon matrix elements are normalized as in Eq. (14). Input values are
marked by an asterisk ⇤.

(i) The isovector AM in the nucleon is leading in 1/Nc; the
isoscalar is subleading.

JS
N!N = J

S
1 (0) = O(N0

c ), JV
p!p = �

2
3
J

V
1 (0) = O(Nc). (24)

This explains the observed large flavor asymmetry of the AM.
Note that this scaling is consistent with that of the quark spin
contribution to the nucleon spin as given by the axial coupling,
gS

A = O(N0
c ) and gV

A = O(N1
c ).

(ii) The isoscalar component of the AM in the nucleon and �
are related by

JS
N!N = JS

�!� = J
S
1 (0). (25)

This provides insight into the spin structure of � resonance.
Note that this relation is consistent with the spin sum rule for
the � state.

(iii) The isovector AM in the nucleon, the AM in the N ! �
transitions, and the isovector AM in the � are related by

JV
p!p =

1p
2

JV
p!�+ = 5JV

�+!�+ = �
2
3
J

V
1 (0). (26)

This suggests that the N ! � transition AM is large and pro-
vides a way to probe the isovector nucleon AM with N ! �
transition measurements.

4. N ! � transition angular momentum from lattice QCD

We now evaluate the transition AM using the leading-order
1/Nc expansion relations together with lattice QCD results for
the EMT matrix elements. This provides a numerical estimate
of the transition AM and illustrates the dominance of the isovec-
tor component of the nucleon AM. Lattice QCD calculations
of N ! N matrix elements of the symmetric EMT Eq. (1)
have been performed in various setups (fermion implementa-
tion, normalization scale, pion mass) [9, 10, 11, 12, 13]. Using
these as input, we obtain the values listed in Table 1. One ob-
serves that a sizable isovector component of the nucleon AM
is obtained in all lattice calculations (similar large values are
obtained in the chiral quark-soliton model [37]). Note that the
lattice results for the isoscalar nucleon AM in Refs. [9, 10, 11]
are more uncertain than the isovector, as they involve discon-
nected diagrams and require careful treatment of the mixing of

4

 transition AM estimated using  
lattice QCD results for  
N → Δ

p → p

Measurements of  transition AM could 
explain/constrain flavor asymmetry of proton AM 

N → Δ
Ju−d

Many interesting questions: Separation of spin and  
orbital AM in  transition — dynamics?N → Δ

8

FIG. 2. OAM quark distribution functions for the proton (upper left panel), �+ baryon (upper right panel), and p ! �+

transition (lower panel). The solid (black), dashed (red), dot-dashed (blue), and dotted (green) lines represent the lu+d, lu�d,
lu, and ld contributions, respectively.

Since the quark has no relativistic motion in this limit, all observables relevant to the OAM should be zero.
In the case of the proton, the OAM l

u+d is similar in magnitude to l
u�d, indicating that l

d is close to zero.
However, in the �+ baryon, l

u
�+ is twice as large as l

d
�+ . This relation holds exactly for the intrinsic spin �q,

specifically �u�+ = 2�d�+ . In addition, it is noteworthy that there is a significant flavor asymmetry of the OAM
in the p ! � transition. The normalizations of these quantities can be found in Table I. The equal but opposite
contributions of the u and d quarks to the OAM result in l

u+d
p!�+ = 0. When the OAM and the intrinsic spin are

combined, they give the total AM. As shown in Eq. (28), numerically the total AM is indeed normalized to the baryon
spin.

IV. LARGE Nc ANALYSIS OF THE QUARK DISTRIBUTION FUNCTIONS

Another way to estimate the value of the quark distribution function is to use the spin-flavor structure in the
large Nc limit of QCD. In practice, this structure can be obtained within the chiral soliton approach. One of the
most realistic and representative models of this approach is the �QSM. In this model the various quark distribution
functions have been evaluated [36, 37, 48–50]. From the given quark distribution functions of the nucleon, one can
easily map those of the N ! � transitions by using the spin-flavor symmetry. In fact, the results of this approach are
more reliable than those of the LC�QSM. While in the LC�QSM the infinite tower of higher-fock states is truncated,
all sea-quark contributions (quark-antiquark pairs) are explicitly taken into account in their estimation.

Thus, this section is devoted to the extraction of the quark distribution functions for the N ! � transitions from
those for the nucleon using the leading order 1/Nc expansion relations. While the numerical data for the longitudinally
polarized quark distribution functions for the nucleon in the �QSM are given in Ref. [36, 37], those for the OAM

7

fig1a.pdf

FIG. 1. Longitudinally polarized quark distribution functions for the proton (upper left panel), � baryon (upper right panel),
and p ! �+ transition (lower panel). The solid (black), dashed (red), dot-dashed (blue), and dotted (green) lines represent
the �u+�d, �u��d, �u, and �d contributions, respectively.

D. Numerical results

To estimate the AM quark distribution functions and their normalizations, we use the explicit quark wave functions
f? and fk, where the values of the dynamical parameters are taken from Refs. [22–24, 45]. We will provide not only
the quark distribution functions for the N ! � transition, but also how many fractions of the intrinsic spin and the
OAM contribute to the N ! � transition AM.

In Fig. 1 we first examined the longitudinally polarized quark distribution functions for the proton, the � baryon,
and theN ! � transition. These distribution functions are parameterized with respect to the single quark distribution
�A, which is normalized as follows:

Z
dx�A(x) = ↵

A = 0.861,

Z
dx�A

NR(x) = ↵
A
NR = 1, (30)

where we have reproduced the numerical values given in Ref. [26]. It is observed that the �u and �d values for the
proton have opposite signs, with �u being positive and �d being negative. However, for the �+ baryon, both �u

and �d have positive signs. Interestingly, in the case of the proton, the isovector component of the axial charge is
significantly larger than the isoscalar component. Conversely, for the � baryon, this relation is reversed. Turning to
the quark distribution functions for the p ! �+ transition, they are naturally induced from the group relation. While
the isoscalar quark distribution functions in the p ! �+ transition are zero, a substantial asymmetry between the light
valence quarks is obtained. The normalizations of these distribution functions are summarized in Table I. Consistent
with the large Nc analysis [7], it is noteworthy that the flavor asymmetries in the intrinsic spin [�u � �d]p!�+ =

�0.812 and in the total AM J
u�d
p!�+ = �0.887 are estimated to be substantial. Note that the sign di↵erence for Ju�d

p!�+

compared to Ref. [7] might depend on the choice of the phases of the baryon states.
Figure 2 illustrates the OAM quark distribution functions. We observe that the OAM contribution l

q to the
baryon spin is relatively small compared to �q. This suggests that the nonrelativistic approximation is a reasonable
approximation for describing the total AM. The OAM is parameterized in terms of the three quark distributions
�L1,L2,L3(x), and their normalizations ↵L1,L2,L3 are estimated as follows:

Z
dx�L1(x) = ↵

L1 = 0.050,

Z
dx�L2,L3(x) = ↵

L2,L3 = �0.010, with �L2(x) = �L3(x). (31)

We then arrive at the value of the isoscalar OAM

l
u+d
p,�+ =

Z
dx

⇥
�L1(x)� �L2(x)� �L3(x)

⇤
=

Z
dx�L(x) = ↵

L = 0.070. (32)

This result is in agreement with the numerical estimate made in Ref. [21]. In the nonrelativistic limit, the OAM quark
distributions apparently become null

�L1,L2,L3

NR (x) = 0. (33)

[9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010.  
[12] Bali 2019. [13] Alexandrou 2020 V ≡ u − d



8Processes:  in DVCSN → Δ

e + p → e′ + γ + π0p, π+n (Δ+ resonance)

Experiments

HERMES: Beam spin asymmetry ,  
large exp. uncertainties

ALU

JLab12: First results from CLAS12 Δ+

e + n → e′ + γ + π0n, π−p (Δ0 resonance)
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Figure 4: Dependence on the invariant mass of the ⇡+
n system (M⇡N ) of the e�p ! e

�
��(1232) ! e

�
�⇡

+
n cross section (upper panels)

and corresponding beam-spin asymmetry (lower panels), integrated over the pion solid angle, with the cut M⇡� > 1 GeV, for three values of
�t. Blue dashed-dotted curves: p ! �(1232) Bethe-Heitler (BH) process; red dashed curves: p ! �(1232) DVCS process; black solid
curves: BH + DVCS processes. The magenta dotted curves show the ⇡

0-pole contribution to the p ! �(1232) DVCS process separately.

��+ and ⇢
+
n channels, as both decay into the same final state

�⇡
+
n.

Since the main interest in this reaction is to extract informa-
tion on the N ! � GPDs, we pursue in this work the first step
towards a theoretical interpretation of forthcoming e

�
p !

e
�
�⇡

+
n data, by calculating the e

�
p ! e

�
��+(1232) !

e
�
�⇡

+
n contribution. We aim to minimize the contribution

arising from the e
�
p ! e

�
⇢
+
n ! e

�
�⇡

+
n background

process, which is expected to yield a peaked structure around
M⇡� ' 770 MeV with a width around 150 MeV. Therefore,
we show in Fig. 4 the results for the M⇡N invariant mass
dependence in the �(1232) region of the e

�
p ! e

�
�⇡

+
n

cross section and corresponding beam-spin asymmetry (BSA)
in CLAS12 kinematics, with the additional cut M⇡� > 1 GeV.
The latter is chosen to ensure that one is above the ⇢+ produc-
tion region. Furthermore, we choose the angle between the
lepton plane and the �⇤

� production plane in Fig. 1 to be � =
90�, where the BSA becomes maximal. By comparing the t-
dependence between �t = 0.5 GeV2 and �t = 1.0 GeV2, we
notice that in the lower t-range, the BH process dominates the
cross section. In the BH amplitude, the virtual photon prop-
agator has a 1/t behavior, which leads at fixed value of Q2

and xB to a much faster decrease in the cross section, with in-
creasing values of �t, as compared to the DVCS process. We

also note from Fig. 4 that the DVCS process in the �-region
is dominated by the ⇡

0-pole contribution to the N ! � GPD
C2. For the corresponding BSA, which is obtained by flipping
the helicity of the electron beam, we notice that in the lower
�t range, the interference of the imaginary part of the DVCS
amplitude with the BH process leads to a BSA in the range of
10 %. With increasing values of �t, due to the decrease of the
BH process relative to the DVCS process, we notice that the
BSA also gradually decreases.

In Fig. 5, we show the M⇡� invariant mass dependence of
the e

�
p ! e

�
��+(1232) ! e

�
�⇡

+
n cross section con-

tribution when integrating over the �+(1232) peak, i.e. for
1.13 GeV  M⇡N  1.33 GeV. We note that the �+(1232)
production process yields a dependence which is rising with
increasing value of M⇡� , with the dominant strength located
in the region M⇡� > 1 GeV. It thus displays a distinctive dif-
ference from an expected e

�
p ! e

�
⇢
+(770)n ! e

�
�⇡

+
n

contribution, which is peaked around M⇡� ' 770 MeV, and
has a strength largely located in the region M⇡� < 1 GeV.

In Fig. 6, we show the decay pion angular distribution of the
e
�
p ! e

�
��+(1232) ! e

�
�⇡

+
n process integrating over

the �+(1232) peak, i.e. for 1.13 GeV  M⇡N  1.33 GeV.
We note from Eq. (110) that a flat dependence in cos ✓⇤⇡ re-
sults from a �+ produced with same probability in helicity

+ γ

∆

e e

N

e

γ

N

e

∆ π

GPD

N,π N,

FF Probes chiral-even GPDs
Detailed modeling: Semenov-Tian-Shansky, Vanderhaeghen 2023

EIC: Far-forward Delta reconstruction?
Various channels, should be simulated

Semenov-Tian-Shansky, Vanderhaeghen 2023



9Processes:  in pion productionN → Δ

Large twist-3 mechanism: Chiral-odd helicity-flip 
GPD + DA, T photon
Goldstein, Liuti et al 08+, Goloskokov, Kroll 09+ 

Describes well JLab 6 GeV  dataN → N

Twist-2 mechanism: Chiral-even helicity-conserving 
GPDs + DA, L photon

 transitionsN → Δ

 expansion predicts/explains flavor structure1/Nc
Schweitzer, Weiss 2016; Kubarovsky 2019

:     leading in ⟨HT⟩ u − d 1/Nc

:     leading⟨ĒT⟩ u + d
CLAS6 2017 Bedlinskiy et al. π0, η

Predictions for  final states using π−Δ++ 1/Nc

JLab12: First results from CLAS12 and Hall C

Frankfurt, Pobylitsa, Polyakov, Strikman 1998

0.3 0.6 0.9 1.2
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dσT/dt
[nb/GeV2]

Q2 = 2.48GeV2

xB = 0.27
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0.3 0.6 0.9 1.2
−t′[GeV2]

dσL/dt
[nb/GeV2]

Q2 = 2.48GeV2

xB = 0.27

π+n

π−∆++

101

102

103

0π , η

0∆

Q
2

GPD

L,T

−

+

+

flip

+
p

−

+

p,

hard

Kroll, Passek-Kumericki 2023



10Processes: First JLab12 results

Event Selection and Background Rejection
8

ρ
M(π+π-) > 1.1 GeV

Δ

Δ

Δ

ρ

full M(π+π-)

M(pπ+) < 1.3 GeV

−+→→ SSU epepep

back-
ground

ρ contamination 

< 0.8 %

Stefan Diehl, JLU + UConn ECT*-APCTP workshop on transition GPDs, Trento 2023 08/24/2023
Q² - xB Integrated Result

14

Different sources of systematic uncertainty have been studied:

beam polarisation, background subtraction, fiducial volume, extraction method, 

acceptance, bin migration, radiative effects

Stefan Diehl, JLU + UConn ECT*-APCTP workshop on transition GPDs, Trento 2023 08/24/2023

sys. uncertainty

8/24/2023 Ali Usman 20

Event Selection - 𝚫𝟎

𝑴𝒎 = 𝑬𝒆 + 𝒎𝒑 − 𝑬𝒆′ − 𝑬𝝅+
𝟐 − 𝒑𝒆 − 𝒑𝒆′ − 𝒑𝝅+ 𝟐

SIDIS MC provided by P. Bosted (Hall C SIDIS collaboration)
𝑸𝟐 = 𝟐. 𝟏𝟏𝟓 , 𝑾 = 𝟐. 𝟗𝟓

8/24/2023 Ali Usman 23

BSA - 𝒑 𝒆, 𝒆′𝝅+ 𝚫𝟎

𝑸𝟐 = 𝟐. 𝟏𝟏𝟓 , 𝑾 = 𝟐. 𝟗𝟓

➢ BSA is calculated by 
integrating 𝒑 𝒆, 𝒆′𝝅+ 𝚫𝟎

MC missing mass.

➢ Small asymmetry 
observed 

➢ ~ 1.5 𝜎 from zero.

➢ Only statistical errors 
shown here.

CLAS12 ep → e′ π−Δ++ Hall C ep → e′ π+Δ0

S. Diehl, ECT* Trento Workshop Aug 2023 A. Usman, ECT* Trento Workshop Aug 2023



11Processes: Other transitions

K

*

+

+

+ −

2
Q, T

N

flip

Λ, Σ

Σ
GPD

hard

 in kaon productionN → Λ, Σ, Σ*

Transition GPDs from SU(3) flavor symmetry and 1/Nc

Experiments JLab12, esp CLAS12

...

2
V

Q

N

elasticGPDN N

X inelasticGPD

 in vector meson production at small xN → X

Transitions : Inelastic diffractionp → X(low-mass)

Connected with quantum fluctuations of gluon density

Experiments HERA, LHC ultraperipheral, EIC

Frankfurt, Strikman, Treleani, Weiss 2008; Schlichting, Schenke, Mäntisaari 2014/2016

Can be viewed/analyzed in context of transition GPDs



12EIC: Far-forward detection

Transition GPDs present “new”final states,  
complement/extend elastic channels

Channels that should be simulated

 DVCSep → e′ γΔ+ Δ+ → π+n, π0p

ep → e′ π+Δ0 Δ0 → π−p, π0n

ep → e′ K+Λ Λ → π−p, π0n

Strong decay, at vertex

Weak decay, downstream

Cross section models for MC generators can be developed

Revealing the structure of light pseudoscalar mesons at the EIC 32

contributions of gluons in pions and kaons as compared to protons. It will finally settle

questions relating to the gluon content of Nature’s NG modes when they are viewed

with very high resolution, and vastly extend the (x, Q
2) range of pion and kaon charts

and meson structure knowledge.

4. Kinematic coverage and detector requirements

4.1. Far-forward area setup.

The far-forward EIC detector is described in detail in the EIC Yellow Report [177].

Figure 10 shows the main elements of this far-forward region. For the detection of

particles of relevance to meson structure studies, all sub-components of the far-forward

area play an important role: detection in the B0 area, detection of decay products

with o↵-momentum detectors, and detection of forward-going protons and neutrons

with the Roman Pots and the Zero-Degree Calorimeter (ZDC).

Figure 10: A sketch of the integrated beam line and detector setup in the Far-Forward

area, along the direction of the proton/ion beam. The sketch is not to scale. The

initial B0-tracker is integrated in the warm area of a combined electron-proton/ion

beam magnet. Then a set of beam line magnetic elements follows that is integrated in

one cryostat. This is followed by o↵-momentum detectors that capture the charged-

particle decay products, roman pots that capture far-forward going protons with nearly

the energy of the proton/ion beams, and the Zero-Degree Calorimeter to capture far-

forward-going neutral particles.

Far-forward detection

Charged hadrons: Forward spectrometer 
Neutral hadrons: Zero-Degree Calorimeter

E.g. forward , forward  rigidity  beamπ0 π± ≪

Different decay modes of same  activate different detectors — charged-neutral, neutral-neutral, 
charged-charged. Could be used for tests and calibration besides physics interest

Δ



13Summary

• Factorization of hard exclusive processes as “source” of new operators for studying 
resonance structure: well-defined, simple, new spin/charge quantum numbers

•  expansion relates  and  transitions [or  and  for strange] 
through dynamical spin-flavor symmetry: systematic, predictive
1/Nc N → N N → Δ 8 → 8 8 → 10

• First results on  in pion production at JLab CLAS12 and Hall CN → Δ

•  reconstruction with EIC far-forward detectors should be simulated.Δ

• Energy-momentum tensor form factors and “mechanical properties” can be generalized  
to  transitionsN → Δ, N*

• Emerging field of study… major opportunities
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Supplemental material



15Processes: Vector meson production at small x

Frankfurt, Strikman, Treleani, Weiss PRL 101:202003, 2008

...

2
V

Q

N

elasticGPDN N

X inelasticGPD

Diffractive vector meson production ( ) 
with  transitions

V = J/ψ, ϕ, ρ0

N → X(low-mass)

Probes quantum fluctuations of gluon density in nucleon:

Discussed as part of diffraction at HERA and EIC: 
Inelastic diffraction

High rates at EIC; detection being simulated

ωg ≡
⟨G2⟩ − ⟨G⟩2

⟨G⟩2
=

dσ/dt (γ*N → VX)
dσ/dt (γ*N → VN )

t=0

 0

 0.1

 0.2

 0.3

10-4 10-3 10-2 10-1

G
lu

on
  d

is
pe

rs
io

n 
 ω
g

x

Q2 [GeV2] = 3
10

100
H1 09 ρ

φ

Fluctuations formulated in context of collinear factorization 
and transition GPDs. Alt formulation in dipole model
Schlichting, Schenke 2014; Mäntisaari, Schenke 2016

Frankfurt, Strikman, Treleani, Weiss 2008


