Exploring resonance structure with transition GPDs

C. Weiss (JLab), SPIN 2023, Durham NC, 26 Sep 2023

Overview of concepts, methods, processes Applications to JLab12+ and EIC Much progress in theory First results from JLab12

More resources: Workshop ECT* Trento, 21-25 Aug 2023 [Webpage]

Transition GPDs

Factorization \rightarrow QCD operators

Transition matrix elements $N \rightarrow \pi N$, resonances

Dynamics and interpretation

Chiral dynamics, $1/N_c$ expansion

EM tensor and mechanical properties

Processes

 $N
ightarrow \Delta, N^* \; ext{ in DVCS}$

- $N \rightarrow \Delta$ in π production at JLab12
- $N \rightarrow \Lambda, \Sigma$ in K, K^* production

 $[N \rightarrow X \text{ in vector meson production at small x}]$

Measurements with EIC far-forward detectors

Motivation: QCD structure of excited states

Structure of ground-state nucleon

High-momentum-transfer processes: Short-distance probe, "microscope"

Quark/gluon distributions $1D \rightarrow 3D$

Structure of interacting/excited states?

Multihadron states πN , $\pi \pi N$, KY

Baryon resonances N^*, Δ, Y^*

Limited information available from vector/axial currents $\langle N^* | V^{\mu}, A^{\mu} | N \rangle$

Need other short-distance probes...

Transition GPDs: Hard exclusive processes

Factorization

Asymptotic regime $Q^2, W^2 \gg \mu_{\rm had}^2, \, | \, t \, | \sim \mu_{\rm had}^2$

Production process communicates with target through QCD light-ray operators $\mathcal{O}(z) = \bar{\psi}(0) \dots \psi(z)_{z^2=0}$

Hadronic matrix elements $\langle N' | \mathcal{O}(z) | N \rangle \leftrightarrow \text{GPDs}$

Works for any transition with $m_{N'} - m_N \sim \mu_{\rm had}$

Interest in transitions $N \rightarrow N'$

Learn more about operator: Quantum numbers, spin-flavor components?

Learn about structure of excited states:

Use well-defined QCD operators from factorization theorem: Renormalization, scale dependence, universality \rightarrow LQCD, nonperturbative methods

Realize operators with quantum numbers not accessible with local vector/axial currents: Spin ≥ 2 — energy momentum tensor, gluon operators, quarks \leftrightarrow antiquarks C-parity

Transition GPDs: Resonances

Definition of resonance GPDs

Multihadron final state, e.g. πN

Analytic continuation in invariant mass $s_{\pi N}$: Pole at $s_{\pi N} = M_{\Delta}^2$, resonance structure defined at pole, residue factorizes

Rigorous definition of "resonance GPDs" using methods of S-matrix theory

Physical region: Resonant + non-resonant contributions, needs theory

Theoretical methods

Chiral dynamics

Near-threshold region $k_{\rm cm} \sim M_{\pi}$

Soft-pion theorems relate $N \rightarrow \pi N$ and $N \rightarrow N$ matrix elements Pobylitsa, Polyakov, Strikman 2001; Guichon, Mossé, Vanderhaeghen 2003; Chen, Savage 2004; Birse 2004

$1/N_c$ expansion of QCD

Organization scheme for non-perturbative dynamics

Spin-flavor symmetry relates $N \to N$ and $N \to \Delta$ transitions: $\langle \Delta | \mathcal{O} | N \rangle = [$ symmetry factor $] \times \langle N | \mathcal{O} | N \rangle$

Predictions for transition GPDs Frankfurt, Polyakov, Strikman 1998. FPS, Vanderhaeghen 2000

Effective degrees of freedom

Chiral soliton model, light-front quark models, holographic models, instanton vacuum

Energy-momentum tensor form factors

EMT operator as 2nd x-moment of light-ray operator

EMT form factors describe distributions of momentum, angular momentum, forces in system Ji 1996, Polyakov 2003, Lorce et al. 2013+

 $N \rightarrow N$: Extensive studies, "mechanical properties"

$N \rightarrow \Delta$ transition EMT form factors

Transition angular momentum formulated as light-front density J-Y Kim, H-Y Won, Goity, Weiss, 2023

$$J^{z}(N \to \Delta) = \int d^{2}b \mathbf{b} \times \langle \Delta | \mathbf{T}^{+T} | N \rangle$$

Probes isovector quark angular momentum u - d

Energy-momentum tensor form factors

Lattice QCD	$J^{S}_{p \to p}$	$J^S_{\Delta^+\to\Delta^+}$	$J^V_{p \to p}$	$J^V_{p o \Delta^+}$	$J^V_{\Delta^+\to\Delta^+}$
[9] $\mu^2 = 4 \text{GeV}^2$	0.33*	0.33	0.41*	0.58	0.08
$[10] \mu^2 = 4 \mathrm{GeV}^2$	0.21*	0.21	0.22*	0.30	0.04
$[11] \mu^2 = 4 \mathrm{GeV}^2$	0.24*	0.24	0.23*	0.33	0.05
$[12] \mu^2 = 1 \mathrm{GeV}^2$	_	_	0.23*	0.33	0.05
$[13] \mu^2 = 4 \mathrm{GeV}^2$	_	_	0.17*	0.24	0.03

[9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010. [12] Bali 2019. [13] Alexandrou 2020

 $1/N_c$ expansion connects AM in $N\to\Delta$ and $N\to N$ Goeke, Vanderhaeghen, Polyakov 2000; Kim, Won, Goity, Weiss, 2023

$$J^{V}(p \to p) = \frac{1}{\sqrt{2}} J^{V}(p \to \Delta^{+}) = 5J^{V}(\Delta^{+} \to \Delta^{+})$$
$$V \equiv u - d$$

 $N \rightarrow \Delta$ transition AM estimated using lattice QCD results for $p \rightarrow p$

Measurements of $N \to \Delta$ transition AM could explain/constrain flavor asymmetry of proton AM J^{u-d}

Many interesting questions: Separation of spin and orbital AM in $N \rightarrow \Delta$ transition — dynamics? Large-Nc light-front chiral quark-soliton model: J-Y Kim 2023

Processes: $N \rightarrow \Delta$ in **DVCS**

$$e + p \rightarrow e' + \gamma + \pi^0 p, \pi^+ n \ (\Delta^+ \text{ resonance})$$

 $e + n \rightarrow e' + \gamma + \pi^0 n, \pi^- p \ (\Delta^0 \text{ resonance})$

Probes chiral-even GPDs Detailed modeling: Semenov-Tian-Shansky, Vanderhaeghen 2023

Experiments

Processes: $N \rightarrow \Delta$ in pion production

$$L,T \xrightarrow{\text{hard}} \pi^{0}, \eta$$

$$Q^{2} \xrightarrow{\text{flip}} + -$$

$$p \xrightarrow{\text{GPD}} p, \Delta^{0}$$

$$\langle H_T \rangle$$
: $u - d$ leading in $1/N_c$
 $\langle \bar{E}_T \rangle$: $u + d$ leading

Twist-2 mechanism: Chiral-even helicity-conserving GPDs + DA, L photon Frankfurt, Pobylitsa, Polyakov, Strikman 1998

Large twist-3 mechanism: Chiral-odd helicity-flip GPD + DA, T photon Goldstein, Liuti et al 08+, Goloskokov, Kroll 09+

Describes well JLab 6 GeV $N \rightarrow N$ data CLAS6 2017 Bedlinskiy et al. π^0, η

 $1/N_c$ expansion predicts/explains flavor structure Schweitzer, Weiss 2016; Kubarovsky 2019

$N \rightarrow \Delta$ transitions

Predictions for $\pi^-\Delta^{++}$ final states using $1/N_c$ Kroll, Passek-Kumericki 2023

JLab12: First results from CLAS12 and Hall C

Processes: Other transitions

 $N \to \Lambda, \Sigma, \Sigma^*$ in kaon production

Transition GPDs from SU(3) flavor symmetry and $1/N_c$

Experiments JLab12, esp CLAS12

$N \rightarrow X$ in vector meson production at small x

Transitions $p \rightarrow X(\text{low-mass})$: Inelastic diffraction

Connected with quantum fluctuations of gluon density Frankfurt, Strikman, Treleani, Weiss 2008; Schlichting, Schenke, Mäntisaari 2014/2016

Can be viewed/analyzed in context of transition GPDs

Experiments HERA, LHC ultraperipheral, EIC

EIC: Far-forward detection

Far-forward detection

Charged hadrons: Forward spectrometer Neutral hadrons: Zero-Degree Calorimeter

Transition GPDs present "new"final states, complement/extend elastic channels

E.g. forward π^0 , forward π^{\pm} rigidity \ll beam

Channels that should be simulated

$\rightarrow \pi^+ n, \pi^0 p$
)

- $ep \to e'\pi^+\Delta^0 \qquad \Delta^0 \to \pi^- p, \pi^0 n$
- $ep \to e'K^+\Lambda \qquad \Lambda \to \pi^- p, \pi^0 n$

Strong decay, at vertex

Weak decay, downstream

Different decay modes of same Δ activate different detectors — charged-neutral, neutral-neutral, charged-charged. Could be used for tests and calibration besides physics interest

Cross section models for MC generators can be developed

Summary

- Factorization of hard exclusive processes as "source" of new operators for studying resonance structure: well-defined, simple, new spin/charge quantum numbers
- $1/N_c$ expansion relates $N \rightarrow N$ and $N \rightarrow \Delta$ transitions [or $8 \rightarrow 8$ and $8 \rightarrow 10$ for strange] through dynamical spin-flavor symmetry: systematic, predictive
- Energy-momentum tensor form factors and "mechanical properties" can be generalized to $N \to \Delta, N^*$ transitions
- First results on $N \to \Delta$ in pion production at JLab CLAS12 and Hall C
- Δ reconstruction with EIC far-forward detectors should be simulated.

• Emerging field of study... major opportunities

Supplemental material

Processes: Vector meson production at small *x*

Diffractive vector meson production ($V = J/\psi, \phi, \rho^0$) with $N \rightarrow X$ (low-mass) transitions

Probes quantum fluctuations of gluon density in nucleon: Frankfurt, Strikman, Treleani, Weiss PRL 101:202003, 2008

$$\omega_g \equiv \frac{\langle G^2 \rangle - \langle G \rangle^2}{\langle G \rangle^2} = \frac{d\sigma/dt \; (\gamma^* N \to VX)}{d\sigma/dt \; (\gamma^* N \to VN)} \bigg|_{t=0}$$

Fluctuations formulated in context of collinear factorization and transition GPDs. Alt formulation in dipole model Schlichting, Schenke 2014; Mäntisaari, Schenke 2016

Discussed as part of diffraction at HERA and EIC: Inelastic diffraction

High rates at EIC; detection being simulated

Frankfurt, Strikman, Treleani, Weiss 2008