Exploring resonance structure with transition GPDs

C. Weiss (JLab), SPIN 2023, Durham NC, 26 Sep 2023

Overview of concepts, methods, processes
Applications to JLab12+ and EIC
Much progress in theory
First results from JLab12

More resources: Workshop ECT* Trento,
21-25 Aug 2023 [Webpage]

Transition GPDs

Factorization \rightarrow QCD operators
Transition matrix elements $N \rightarrow \pi N$, resonances

Dynamics and interpretation
Chiral dynamics, $1 / N_{c}$ expansion
EM tensor and mechanical properties

Processes

$N \rightarrow \Delta, N^{*}$ in DVCS
$N \rightarrow \Delta$ in π production at JLab12
$N \rightarrow \Lambda, \Sigma$ in K, K^{*} production
[$N \rightarrow X$ in vector meson production at small x$]$
Measurements with EIC far-forward detectors

Motivation: QCD structure of excited states

Structure of ground-state nucleon

High-momentum-transfer processes:
Short-distance probe, "microscope"

Quark/gluon distributions 1D $\rightarrow 3 \mathrm{D}$

Structure of interacting/excited states?
Multihadron states $\pi N, \pi \pi N, K Y$

Baryon resonances N^{*}, Δ, Y^{*}

Limited information available from vector/axial currents $\left\langle N^{*}\right| V^{\mu}, A^{\mu}|N\rangle$

Need other short-distance probes...

Transition GPDs: Hard exclusive processes

Factorization

Asymptotic regime $Q^{2}, W^{2} \gg \mu_{\text {had }}^{2},|t| \sim \mu_{\text {had }}^{2}$
Production process communicates with target through QCD light-ray operators $\mathcal{O}(z)=\bar{\psi}(0) \ldots \psi(z)_{z^{2}=0}$

Hadronic matrix elements $\left\langle N^{\prime}\right| \mathcal{O}(z)|N\rangle \leftrightarrow$ GPDs
Works for any transition with $m_{N^{\prime}}-m_{N} \sim \mu_{\text {had }}$

Interest in transitions $N \rightarrow N^{\prime}$
Learn more about operator: Quantum numbers, spin-flavor components?

Learn about structure of excited states:
Use well-defined QCD operators from factorization theorem:
Renormalization, scale dependence, universality \rightarrow LQCD, nonperturbative methods
Realize operators with quantum numbers not accessible with local vector/axial currents:
Spin ≥ 2 - energy momentum tensor, gluon operators, quarks \leftrightarrow antiquarks C-parity

Transition GPDs: Resonances

Definition of resonance GPDs

Multihadron final state, e.g. πN
Analytic continuation in invariant mass $s_{\pi N}$:
Pole at $s_{\pi N}=M_{\Delta}^{2}$, resonance structure defined at pole, residue factorizes
Rigorous definition of "resonance GPDs" using methods of S-matrix theory
Physical region: Resonant + non-resonant contributions, needs theory

Theoretical methods

Chiral dynamics

Near-threshold region $k_{\mathrm{cm}} \sim M_{\pi}$
Soft-pion theorems relate $N \rightarrow \pi N$ and $N \rightarrow N$ matrix elements

Pobylitsa, Polyakov, Strikman 2001; Guichon, Mossé, Vanderhaeghen 2003; Chen, Savage 2004; Birse 2004

$1 / N_{c}$ expansion of QCD

Organization scheme for non-perturbative dynamics
Spin-flavor symmetry relates $N \rightarrow N$ and $N \rightarrow \Delta$ transitions:
$\langle\Delta| \mathcal{O}|N\rangle=$ [symmetry factor] $\times\langle N| \mathcal{O}|N\rangle$
Predictions for transition GPDs

Frankfurt, Polyakov, Strikman 1998. FPS, Vanderhaeghen 2000

Effective degrees of freedom

Chiral soliton model, light-front quark models, holographic models, instanton vacuum

```
Lattice QCD }->\mathrm{ Talks
```


Energy-momentum tensor form factors

EMT operator as 2nd x-moment of light-ray operator

EMT form factors describe distributions of momentum, angular momentum, forces in system
Ji 1996, Polyakov 2003, Lorce et al. 2013+
$N \rightarrow N$: Extensive studies, "mechanical properties"

$N \rightarrow \Delta$ transition EMT form factors

Transition matrix elements: Form factors, multipoles J-Y Kim 2022 + in progress

Transition angular momentum formulated as light-front density J-Y Kim, H-Y Won, Goity, Weiss, 2023
$J^{z}(N \rightarrow \Delta)=\int d^{2} b \mathbf{b} \times\langle\Delta| \mathbf{T}^{+T}|N\rangle$

Probes isovector quark angular momentum $u-d$

Energy-momentum tensor form factors

Lattice QCD	$J_{p \rightarrow p}^{S}$	$J_{\Delta^{+} \rightarrow \Delta^{+}}^{S}$	$J_{p \rightarrow p}^{V}$	$J_{p \rightarrow \Delta^{+}}^{V}$	$J_{\Delta^{+} \rightarrow \Delta^{+}}^{V}$
$[9] \mu^{2}=4 \mathrm{GeV}^{2}$	0.33^{*}	0.33	0.41^{*}	0.58	0.08
$[10] \mu^{2}=4 \mathrm{GeV}^{2}$	0.21^{*}	0.21	0.22^{*}	0.30	0.04
$[11] \mu^{2}=4 \mathrm{GeV}^{2}$	0.24^{*}	0.24	0.23^{*}	0.33	0.05
$[12] \mu^{2}=1 \mathrm{GeV}^{2}$	-	-	0.23^{*}	0.33	0.05
$[13] \mu^{2}=4 \mathrm{GeV}^{2}$	-	-	0.17^{*}	0.24	0.03

[9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010.
[12] Bali 2019. [13] Alexandrou 2020

$1 / N_{c}$ expansion connects AM in $N \rightarrow \Delta$ and $N \rightarrow N$
Goeke, Vanderhaeghen, Polyakov 2000; Kim, Won, Goity, Weiss, 2023
$J^{V}(p \rightarrow p)=\frac{1}{\sqrt{2}} J^{V}\left(p \rightarrow \Delta^{+}\right)=5 J^{V}\left(\Delta^{+} \rightarrow \Delta^{+}\right)$
$V=u-d$

$$
V \equiv u-d
$$

$N \rightarrow \Delta$ transition AM estimated using lattice QCD results for $p \rightarrow p$

Measurements of $N \rightarrow \Delta$ transition AM could explain/constrain flavor asymmetry of proton AM J^{u-d}

Many interesting questions: Separation of spin and orbital AM in $N \rightarrow \Delta$ transition - dynamics?
Large-Nc light-front chiral quark-soliton model: J-Y Kim 2023

Processes: $N \rightarrow \Delta$ in DVCS

$$
\begin{aligned}
& e+p \rightarrow e^{\prime}+\gamma+\pi^{0} p, \pi^{+} n\left(\Delta^{+} \text {resonance }\right) \\
& e+n \rightarrow e^{\prime}+\gamma+\pi^{0} n, \pi^{-} p\left(\Delta^{0} \text { resonance }\right)
\end{aligned}
$$

Probes chiral-even GPDs
Detailed modeling: Semenov-Tian-Shansky, Vanderhaeghen 2023

Experiments

HERMES: Beam spin asymmetry $A_{L U}$, large exp. uncertainties

JLab12: First results from CLAS12 Δ^{+}

EIC: Far-forward Delta reconstruction? Various channels, should be simulated

Processes: $N \rightarrow \Delta$ in pion production

$$
\begin{aligned}
& \left\langle H_{T}\right\rangle: u-d \text { leading in } 1 / N_{c} \\
& \left\langle\bar{E}_{T}\right\rangle: u+d \text { leading }
\end{aligned}
$$

Twist-2 mechanism: Chiral-even helicity-conserving GPDs + DA, L photon
Frankfurt, Pobylitsa, Polyakov, Strikman 1998

Large twist-3 mechanism: Chiral-odd helicity-flip GPD + DA, T photon
Goldstein, Liuti et al 08+, Goloskokov, Kroll 09+

Describes well JLab $6 \mathrm{GeV} N \rightarrow N$ data CLAS6 2017 Bedlinskiy et al. π^{0}, η
$1 / N_{c}$ expansion predicts/explains flavor structure Schweitzer, Weiss 2016; Kubarovsky 2019

$N \rightarrow \Delta$ transitions

Predictions for $\pi^{-} \Delta^{++}$final states using $1 / N_{c}$ Kroll, Passek-Kumericki 2023

JLab12: First results from CLAS12 and Hall C

CLAS12 $e p \rightarrow e^{\prime} \pi^{-} \Delta^{++}$
S. Diehl, ECT* Trento Workshop Aug 2023

Hall C $e p \rightarrow e^{\prime} \pi^{+} \Delta^{0}$
A. Usman, ECT* Trento Workshop Aug 2023

Processes: Other transitions

$N \rightarrow \Lambda, \Sigma, \Sigma^{*}$ in kaon production
Transition GPDs from $\operatorname{SU}(3)$ flavor symmetry and $1 / N_{c}$
Experiments JLab12, esp CLAS12

$N \rightarrow X$ in vector meson production at small \mathbf{x}

Transitions $p \rightarrow X$ (low-mass): Inelastic diffraction
Connected with quantum fluctuations of gluon density
Frankfurt, Strikman, Treleani, Weiss 2008; Schlichting, Schenke, Mäntisaari 2014/2016

Can be viewed/analyzed in context of transition GPDs

Experiments HERA, LHC ultraperipheral, EIC

EIC: Far-forward detection

Far-forward detection

Charged hadrons: Forward spectrometer Neutral hadrons: Zero-Degree Calorimeter

Transition GPDs present "new"final states, complement/extend elastic channels
E.g. forward π^{0}, forward $\pi^{ \pm}$rigidity \ll beam

Channels that should be simulated

$$
\begin{array}{lll}
e p \rightarrow e^{\prime} \gamma \Delta^{+} \text {DVCS } & \Delta^{+} \rightarrow \pi^{+} n, \pi^{0} p & \text { Strong decay, at vertex } \\
e p \rightarrow e^{\prime} \pi^{+} \Delta^{0} & \Delta^{0} \rightarrow \pi^{-} p, \pi^{0} n & \\
e p \rightarrow e^{\prime} K^{+} \Lambda & \Lambda \rightarrow \pi^{-} p, \pi^{0} n & \text { Weak decay, downstream }
\end{array}
$$

Different decay modes of same Δ activate different detectors - charged-neutral, neutral-neutral, charged-charged. Could be used for tests and calibration besides physics interest

Cross section models for MC generators can be developed

Summary

- Factorization of hard exclusive processes as "source" of new operators for studying resonance structure: well-defined, simple, new spin/charge quantum numbers
- $1 / N_{c}$ expansion relates $N \rightarrow N$ and $N \rightarrow \Delta$ transitions [or $8 \rightarrow 8$ and $8 \rightarrow 10$ for strange] through dynamical spin-flavor symmetry: systematic, predictive
- Energy-momentum tensor form factors and "mechanical properties" can be generalized to $N \rightarrow \Delta, N^{*}$ transitions
- First results on $N \rightarrow \Delta$ in pion production at JLab CLAS12 and Hall C
- Δ reconstruction with EIC far-forward detectors should be simulated.
- Emerging field of study... major opportunities

Supplemental material

Processes: Vector meson production at small x

Diffractive vector meson production $\left(V=J / \psi, \phi, \rho^{0}\right)$ with $N \rightarrow X$ (low-mass) transitions

Probes quantum fluctuations of gluon density in nucleon:
Frankfurt, Strikman, Treleani, Weiss PRL 101:202003, 2008

$$
\omega_{g} \equiv \frac{\left\langle G^{2}\right\rangle-\langle G\rangle^{2}}{\langle G\rangle^{2}}=\left.\frac{d \sigma / d t\left(\gamma^{*} N \rightarrow V X\right)}{d \sigma / d t\left(\gamma^{*} N \rightarrow V N\right)}\right|_{t=0}
$$

Fluctuations formulated in context of collinear factorization and transition GPDs. Alt formulation in dipole model Schlichting, Schenke 2014; Mäntisaari, Schenke 2016

Discussed as part of diffraction at HERA and EIC: Inelastic diffraction

High rates at EIC; detection being simulated

