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We present the first exploratory lattice quantum chromodynamics (QCD) calculation of the polarized
gluon Ioffe-time pseudodistribution in the nucleon. The Ioffe-time pseudodistribution provides a frame-
independent and gauge-invariant framework to determine the gluon helicity in the nucleon from first
principles. We employ a high-statistics computation using a 323 × 64 lattice ensemble characterized by a
358 MeV pion mass and a 0.094 fm lattice spacing. We establish the pseudodistribution approach as a
feasible method to address the proton spin puzzle with successive improvements in statistical and
systematic uncertainties anticipated in the future. Within the statistical precision of our data, we find a good
comparison between the lattice determined polarized gluon Ioffe-time distribution and the corresponding
expectations from the state-of-the-art global analyses. We find a hint for a nonzero gluon spin contribution
to the proton spin from the model-independent extraction of the gluon helicity pseudodistribution over a
range of Ioffe-time, ν≲ 9.

DOI: 10.1103/PhysRevD.106.094511

I. INTRODUCTION

An outstanding question in particle and nuclear physics
is how the spin of the proton arises from its constituents,
quarks and gluons, and their interactions that are governed
by quantum chromodynamics (QCD), the fundamental
theory of strong interactions. The spin sum rules are central
to addressing this question by breaking down the proton
spin into the quark and gluon spin and angular momentum
components. The Jaffe-Manohar decomposition [1] pro-
vides one such spin sum rule,

J ¼ 1

2
ΔΣþ Lq þ LG þ ΔG; ð1Þ

where 1
2ΔΣ is the quark spin contribution, Lq and LG are

quark and gluon orbital angular momenta, and ΔG is the
gluon spin contribution. Such a decomposition is not
unique, and Ji’s spin decomposition [2] offers a frame-
independent and gauge invariant way to decompose the
proton’s spin into quark spin, quark orbital angular
momentum and gluon angular momentum contributions.
A naive expectation, based on intuition from the quark
model, would be that the quark spin term provides the
dominant contribution to the spin sum rules, but a deep
inelastic scattering (DIS) experiment, conducted by the
European Muon Collaboration, featuring polarized muons
scattering from polarized protons found that the quark
spin contribution to the proton spin is very small
(ΔΣðQ2 ¼ 10 GeV2Þ ¼ 0.060ð47Þð69Þ [3,4]. This surpris-
ing result is the so-called “proton spin crisis,” later
confirmed by modern global analyses of DIS experimental
data that show that quarks contribute roughly 30% [5–7] to
the proton spin. These results lead to the natural question:
how much do gluons contribute to the proton spin budget
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In this study, we present a determination of the unpolarized gluon Ioffe-time distribution in the nucleon
from a first principles lattice quantum chromodynamics calculation. We carry out the lattice calculation on
a 323 × 64 ensemble with a pion mass of 358 MeV and lattice spacing of 0.094 fm. We construct the
nucleon interpolating fields using the distillation technique, flow the gauge fields using the gradient flow,
and solve the summed generalized eigenvalue problem to determine the gluonic matrix elements.
Combining these techniques allows us to provide a statistically well-controlled Ioffe-time distribution
and unpolarized gluon parton distribution function. We obtain the flow time independent reduced Ioffe-
time pseudodistribution and calculate the light-cone Ioffe-time distribution and unpolarized gluon
distribution function in the MS scheme at μ ¼ 2 GeV, neglecting the mixing of the gluon operator with
the quark singlet sector. Finally, we compare our results to phenomenological determinations.

DOI: 10.1103/PhysRevD.104.094516

I. INTRODUCTION

Gluons, which carry color charge and serve as the
mediator bosons of the strong interaction, play a key role
in the nucleon’s mass and spin. Confinement in quantum
chromodynamics (QCD) ensures that no free quarks or
gluons have been observed, so analyses of hadrons involv-
ing high energy scattering rely on QCD factorization [1].
Factorization separates the perturbatively calculable hard-
scattering quark and gluon dynamics from the nonpertur-
bative collinear dynamics, described by parton distribution
functions (PDFs) of the relevant hadrons.
There are long-standing efforts to conduct global analy-

ses [2–6] of data from available deep inelastic scattering
(DIS) and related hard scattering processes to explore the
nature of the PDFs. It is essential to have a clear and precise
understanding of the gluon PDF in order to calculate the

cross section for Higgs boson production [7] and jet
production [8] at the Large Hadron Collider (LHC) and
J=ψ photo production [9] at Jefferson Lab. Future colliders,
such as the Electron Ion Collider (EIC) [10–12], which is to
be built at Brookhaven National Lab, and the Electron Ion
Collider in China (EicC) [13], are expected to make a
significant impact on the precision of the gluon PDFs.
While the precision of the extracted gluon distribution
xgðxÞ has been improved over the last decade, several
issues remain unresolved; for example, the suppression in
the momentum fraction region 0.1 < x < 0.4when ATLAS
and CMS jet data are included [3] and how to obtain a more
precise determination of gðxÞ are subjects of ongoing
efforts.
The determination of PDFs from lattice QCD is of

particular theoretical interest to directly explore the non-
perturbative sector of QCD from the first principles. To
achieve this goal, there have been several proposals for the
extraction of the x-dependent hadron structure from lattice
QCD calculations, such as the path-integral formulation of
the deep-inelastic scattering hadronic tensor [14], the
operator product expansion [15], quasi-PDFs [16,17],
pseudo-PDFs [18], and lattice cross sections [19,20].
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Abstract: We formulate the basic points of the pseudo-PDF approach to the lattice
calculation of polarized gluon PDFs. We present the results of our calculations of the
one-loop corrections for the bilocal Gµ↵(z) eG��(0) correlator of gluonic fields. Expressions
are given for a general situation when all four indices are arbitrary, and also for specific
combinations of indices corresponding to three matrix elements that contain the twist-2
invariant amplitude related to the polarized PDF. We study the evolution properties of
these matrix elements, and derive matching relations between Euclidean and light-cone
Ioffe-time distributions. These relations are necessary for extraction of the polarized gluon
distributions from the lattice data.
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We present the results that are necessary in the ongoing lattice calculations of the gluon parton 
distribution functions (PDFs) within the pseudo-PDF approach. We give a classification of possible two-
gluon correlator functions and identify those that contain the invariant amplitude determining the 
gluon PDF in the light-cone z2 → 0 limit. One-loop calculations have been performed in the coordinate 
representation and in an explicitly gauge-invariant form. We made an effort to separate ultraviolet (UV) 
and infrared (IR) sources of the ln

(
−z2)-dependence at short distances z2. The UV terms cancel in the 

reduced Ioffe-time distribution (ITD), and we obtain the matching relation between the reduced ITD 
and the light-cone ITD. Using a kernel form, we get a direct connection between lattice data for the 
reduced ITD and the normalized gluon PDF. We also show that our results may be used for a rather 
straightforward calculation of the one-loop matching relations for quasi-PDFs.

 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Lattice calculations of parton distribution functions (PDFs) are 
now a subject of considerable interest and efforts (see Ref. [1]
for a recent review and references to extensive literature). Mod-
ern efforts aim at the extractions of PDFs f (x) themselves rather 
than their xN moments. On the lattice, this may be achieved by 
switching from local operators to current-current correlators [2]. A 
further idea is to start with equal-time correlators [3].

X. Ji, in the paper [4] that strongly stimulated further devel-
opment, made a ground-breaking proposal to consider equal-time 
versions of nonlocal operators defining PDFs, distribution ampli-
tudes, generalized parton distributions, and transverse momentum 
dependent distributions. In the case of usual PDFs, the basic con-
cept of Ji’s approach is a “parton quasi-distribution” (quasi-PDF) 
Q (y, p3) [4,5], and PDFs are obtained from the large-momentum 
p3 → ∞ limit of quasi-PDFs.

Other approaches, such as the “good lattice cross sections” [6,
7], the Ioffe-time analysis of equal-time correlators [3,8,9] and the 
pseudo-PDF approach [10–12] are coordinate-space oriented, and 
extract parton distributions taking the short-distance z3 → 0 limit.

Both the p3 → ∞ and z3 → 0 limits are singular, and one needs 
to use matching relations to convert the Euclidean lattice data into 
the usual light-cone PDFs. In the quasi-PDF approach, such rela-
tions were studied for quark [4,13–15] and gluon PDFs [16–18], 

* Corresponding author.
E-mail address: radyush@jlab.org (A. Radyushkin).

for the pion distribution amplitude (DA) [19] and generalized par-
ton distributions (GPDs) [19–21].

Within the pseudo-PDF approach, the matching relations were 
derived for non-singlet PDFs [22–25,15]. The strategy of the lattice 
extraction of non-singlet GPDs and the pion DA using the pseudo-
PDF methods was outlined in a recent paper Ref. [26], where the 
matching conditions for these cases have been also derived. In the 
present paper, our main goal is to describe the basic points of the 
pseudo-PDF approach to extraction of unpolarized gluon PDFs, and 
also to find one-loop matching conditions.

In the gluon case, the calculation is complicated by strict re-
quirements of gauge invariance. In this situation, a very effective 
method is provided by the coordinate-representation approach of 
Ref. [27]. It is based on the background-field method and the 
heat-kernel expansion. It allows, starting with the original gauge-
invariant bilocal operator, to find its modification by one-loop cor-
rections. The results are obtained in an explicitly gauge-invariant 
form.

In this approach, there is no need to specify the nature of ma-
trix element characteristic of a particular parton distribution. This 
means that one and the same Feynman diagram calculation may 
be used both for finding matching conditions for PDFs (given by 
forward matrix elements), and for DA’s and GPDs corresponding 
to non-forward ones (see Ref. [26] for an illustration of how this 
works for quark operators).

The paper is organized as follows. In Section 2, we analyze the 
kinematic structure of the matrix elements of the gluonic bilocal 
operators, and identify those that contain information about the 
twist-2 gluon PDF.

https://doi.org/10.1016/j.physletb.2020.135621
0370-2693/ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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Introduction

“Understanding the Glue That 
Binds Us All: The Next QCD 
Frontier in Nuclear Physics”

Ji’s sum rule Jaffe-Manohar sum rule
1
2

=
1
2

ΔΣ(μ) + ΔG(μ) + Lq+g(μ)
1
2

=
1
2

ΔΣ(μ) + Lq(μ) + Jg(μ)

Lattice: Moments of Generalized Form Factors

ΔG(μ) = ∫
1

0
dx Δg(x, μ)



Gluon Helicity Distribution
• Crucial questions in global analysis - do we need to 

apply positivity constraint:
∣ Δg(x) ∣ ≤ g(x)∀x

Relaxing constraint leads to new “replicas” in global analysis:

Q
2 = 10 GeV2

0.01 0.1 0.5

x

�0.4

�0.2

0.0

0.2

0.4

x
�

g

SU(2) SU(3) SU(3)+pos

FIG. 7. Monte Carlo replicas for the spin-dependent gluon PDF x�g at Q2 = 10 GeV2 fitted

under various theory assumptions according to the SU(2) (yellow lines), SU(3) (blue lines) and

SU(3)+positivity (red lines) scenarios, with 300 replicas randomly selected from the total of 723,

647 and 639 for the three scenarios, respectively. The vertical lines indicate the range of parton

momentum fractions x constrained by data.

as well as with small negative �g values, which would generally produce very small ALL

values, in contradiction with the data in Fig. 5. While the numbers of negative solutions

found in the SU(2) and SU(3) scenarios are relatively smaller than the positive ones, their

ability to describe well the data indicates that at present the negative solutions cannot be

ruled out on phenomenological grounds.

In addition to the scenarios discussed above, we also note that some replicas give unphys-

ical values for the polarized DIS asymmetry at kinematics x & 0.8 and momentum transfer

Q
2

> 50 GeV2 that are outside the currently measured region, but which could be probed at

a future Electron-Ion Collider [71]. After removing these replicas, the result shown in Fig. 6

for the SU(2) scenario indicates that the main e↵ect is observed at high x for the quark

distributions, while the e↵ect on �g is negligible. Similarly for the other two scenarios,

the impact of imposing the observable positivity on ALL outside measured regions is only

24

Zhou, Sato and Melnitchouk, Phys. 
Rev. D 105, 074022 (2022)



PDFs from Euclidean Lattice

z 

x,y 
 

Large P 

Large-Momentum Effective Theory (LaMET)

X. Ji, Phys. Rev. Lett. 110, 262002 (2013).

X. Ji, J. Zhang, and Y. Zhao,  Phys. Rev. Lett. 111, 112002 (2013).

J. W. Qiu and Y. Q. Ma, arXiv:1404.686.

“Equal time” correlator

q(x, µ2, P z) =

Z
dz

4⇡
eizk

z

hP |  ̄(z)�ze�ig
R z
0 dz0 Az(z0) (0) | P >

+O((⇤2/(P z)2),M2/(P z)2))

q(x, µ2, P z) =

Z 1

x

dy

y
Z

✓
x

y
,
µ

P z

◆
q(y, µ2) +O(⇤2/(P z)2,M2/(P z)2)

“quasi-PDF Approach”



GLCS pPDF

qPDF
Same lattice 
building 
blocks

All approaches should give 
same after:


– Finite volume

– Discretization 

Uncertainties

– Infinite momentum

PDFs, GPDs and TMDs

X. Ji, Phys. Rev. Lett. 110, 262002 (2013).

X. Ji, J. Zhang, and Y. Zhao,  Phys. Rev. Lett. 111, 112002 (2013).

J. W. Qiu and Y. Q. Ma, arXiv:1404.686.

A.Radyushkin, Phys. Rev. D 
96, 034025 (2017)Ma and Qiu, Phys. Rev. Lett. 120 022003

Light cone reduces to a 
point
Characterized by short-
distance factorization



Pseudo-PDFs
To deal with UV divergences, introduce reduced distribution


𝔐 =
ℳ(ν, z2)
ℳ(0,z2)

≡ ( ℳ(ν, z2)
ℳ(ν,0) )/( ℳ(0,z2)

ℳ(0,0) )

M(⌫, z2) =

Z 1

0
duK(u, z2µ2,↵s)Q(u⌫, µ2)

<latexit sha1_base64="ZtaGUfmz78taQUusntJ43G8UJnY=">AAACPXicdVBNa9tAFFylH0nVL7c99vKoKdhgjORAkx4KgVwKJZBAnAS8snhar+LFq5XYj4Ir/Md6yX/ILbdccmgIufbaleNCWtqBhWHmPd7OZJUUxkbRRbD24OGjx+sbT8Knz56/eNl69frIlE4zPmSlLPVJhoZLofjQCiv5SaU5Fpnkx9lst/GPv3JtRKkO7bziSYGnSuSCofVS2jqko5AWaKe5xlm9t+hQ5XrfxoMufAIqlE2jcQwTB7QHXzquB96ihRsPekBRVlNMTRcOOq7ZgqXRDWmSttpRP1oC7pGP8eaHzQjildImK+ynrXM6KZkruLJMojGjOKpsUqO2gkm+CKkzvEI2w1M+8lRhwU1SL9Mv4L1XJpCX2j9lYane36ixMGZeZH6yCWr+9hrxX97I2Xw7qYWqnOWK3R3KnQRbQlMlTITmzMq5J8i08H8FNkWNzPrCQ1/C76Twf3I06MdRPz4YtHe2V3VskLfkHemQmGyRHfKZ7JMhYeQ7uSQ/yHVwFlwFN8Ht3ehasNp5Q/5A8PMXddmqfg==</latexit><latexit sha1_base64="ZtaGUfmz78taQUusntJ43G8UJnY="></latexit><latexit sha1_base64="ZtaGUfmz78taQUusntJ43G8UJnY="></latexit><latexit sha1_base64="ZtaGUfmz78taQUusntJ43G8UJnY="></latexit>

Perturbatively calculableComputed on lattice Ioffe-time Distribution

⟹

Q(⌫, µ) = M(⌫, z2)� ↵sCF

2⇡

Z 1

0
du


ln

✓
z2µ2 e

2�E+1

4

◆
B(u) + L(u)

�
M(u⌫, z2).

<latexit sha1_base64="yxeN9aYBawa49egk+l9imdBnDzY="></latexit><latexit sha1_base64="yxeN9aYBawa49egk+l9imdBnDzY="></latexit><latexit sha1_base64="yxeN9aYBawa49egk+l9imdBnDzY=">AAACn3icdVFdb9MwFHXC1whfBR7h4UKF1GpblXQIxgPStIkPiYE6iW5DcRo5rtNatZ0otpFKlL/FD+GNf4ObdtKG4Eq+OjrX9/r43KwUXJsw/O35167fuHlr63Zw5+69+w86Dx+d6sJWlI1pIYrqPCOaCa7Y2HAj2HlZMSIzwc6yxdGqfvadVZoX6qtZliyRZKZ4zikxjko7P3EcnPSwsjtY2j68BSyJmecVWdSfm5b/MRn2YRew42iNiSjnJNVwlL5v6iEueQOYK5OGkwimFvAOYMFyE2Oh1qgHboCb7VI7gU1c24xISdJ321HT1C8bXPHZ3PSDw57tbx+7tCaSq1rshZhBgJO00w0HYRtwCbyJ9l7thRBtmC7axCjt/MLTglrJlKGCaB1HYWmSmlSGU8GaAFvNSkIXZMZiBxWRTCd1628DLxwzhbyo3FEGWvZyR02k1kuZuZsrxfrv2or8Vy22Jt9Paq5Ka5ii64dyK8AUsFoWTHnFqBFLBwituNMKdE6cjcatNHAmXPwU/g9Oh4MoHEQnw+7B/saOLfQEPUc9FKHX6AB9RCM0RtR76h16n7xj/5n/wf/ij9ZXfW/T8xhdCf/bH0LQyQE=</latexit><latexit sha1_base64="yxeN9aYBawa49egk+l9imdBnDzY="></latexit>

Match data at different z

Q(⌫) =

Z 1

�1
dx q(x)ei⌫x

q(x) =
1

2⇡

Z 1

�1
d⌫ e�i⌫xQ(⌫)

<latexit sha1_base64="3cnBsLb9Pcqjq+SJ/6tUu4Do3Ss="></latexit><latexit sha1_base64="3cnBsLb9Pcqjq+SJ/6tUu4Do3Ss=">AAACiHicdVFNb9NAEF0bCsV8pXDkMiICpUAjO2packCq4MKxlUhbKZtE6/U4XdVeu7trFGvl38J/6q3/hk3iSgHBSKN9ejNvZnYmLjOhTRjeef6DhzuPHu8+CZ4+e/7iZWfv1bkuKsVxzIusUJcx05gJiWMjTIaXpUKWxxlexNffVvGLn6i0KOQPU5c4zdlCilRwZhw17/yiMS6EtHgjmVKs/tAEZz0qq314D1+cUyHN3B5EzSyCZEk/wU1vuQ84swJcFiwbSoM11aaninEbNXZAS9Hcq92TmrqZ2RZAstK6Yq7OgdjUgU3bgKJMtqaZd7phP1wbbIHR8Gg0GkLUMl3S2um8c0uTglc5SsMzpvUkCksztUwZwTNsAlppLBm/ZgucOChZjnpq14ts4J1jEkgL5VwaWLPbCstyres8dpk5M1f679iK/FdsUpn089QKWVYGJd80SqsMTAGrq0AiFHKT1Q4wroSbFfgVc7s07naBW8L9T+H/4HzQj8J+dDbonhy169glb8hb0iMROSYn5Ds5JWPCvR3vo3foDf3AD/1jf7RJ9b1W85r8Yf7X37/Fv+0=</latexit><latexit sha1_base64="3cnBsLb9Pcqjq+SJ/6tUu4Do3Ss="></latexit><latexit sha1_base64="3cnBsLb9Pcqjq+SJ/6tUu4Do3Ss="></latexit>

Inverse problem

Need data for all ν, or 
additional physics input

K. Orginos et al., 
PRD96 (2017), 
094503

ITD  PDF↔

 Ioffe time

 - short-distance scale

ν = p ⋅ z
z2



Ioffe-Time Distribution to PDF

To extract PDF requires additional information - use a phenomenologically 
motivated parametrization
f (x) = xa(1 − x)bP(x)

P(x) =
1 + c x + dx

B(a + a, b + 1) + cB(a + 1.5,b + 1) + dB(a + 2,b + 1)

MSTW, CJ

J.Karpie, K.Orginos, A.Radyushkin, S.Zafeiropoulos, Phys.Rev.D 96 (2017)

B.Joo et al., HEP 12 (2019) 081, J.Karpie et al., Phys.Rev.Lett. 125 (2020) 23, 232003

ln ¼
Z

1

0
duLðuÞun

¼ 2

!"Xn

k¼1

1

k

#2

þ
Xn

k¼1

1

k2
þ 1

2
−

1

ðnþ 1Þðnþ 2Þ

$
: ð12Þ

167168 The even and odd moments can be determined from the
169 coefficients of polynomials which are fit to the real and
170 imaginary components, respectively. The order of the
171 polynomial is chosen to minimize the χ2=DOF for each
172 z2 separately. As an example, the first and second moments
173 calculated on the ensemble a091m170 are shown in Fig. 2.
174 The z2 dependence of the resulting PDF moments can be
175 used to check for the size of higher-twist effects, which do
176 not seem significant.
177 Matching to MS.—As in Ref. [46], the reduced pseudo-
178 ITD from each ensemble is matched to the light-cone MS
179 ITD at a given scale μ by inverting Eq. (4). As a result, we
180 obtain a set of z2-independent curves for Qðν; μ2Þ at μ ¼
181 2 GeV [shown in Fig. 3(a)].
182 As seen in the moments, the matching procedure has a
183 small Oðαs=πÞ ∼ 0.1 effect on the distribution. The con-
184 tributions from the convolution of B and Lwith the reduced
185 pseudo-ITD appear with opposite signs. The convolution
186 with L is slightly larger in magnitude, but by a factor which
187 is approximately the same as the logarithmic coefficient of
188 B. This feature may just be a coincidence at NLO, but it
189 hints that higher-order corrections may also be small. An
190 NNLO or nonperturbative matching is required to check the
191 effects of the perturbative truncation on the matching.
192 Determination of the PDF.—The inversion of the Fourier
193 transform defining the ITD, given a finite amount of data,
194 constitutes an ill-posed problem which can be resolved
195 only by including additional information. As was shown in
196 Ref. [45], the direct inverse Fourier transform can lead to
197 numerical artifacts, such as artificial oscillations in the
198 resulting PDF. Many techniques have been proposed to
199 accurately calculate PDFs from lattice data [21,28,45,61].
200 This issue also occurs in the determination of the PDF from
201 experimental data.
202 As was done in Ref. [46], the approach which is used
203 here (and is common among phenomenological determi-
204 nations) is to include information in the form of a model-
205 dependent PDF parametrization. The parametrization used
206 here is

qvðxÞ ¼
1

N
xað1 − xÞbð1þ c

ffiffiffi
x

p
þ dxÞ; ð13Þ

207208 where N normalizes the PDF. The fits to this form, together
209 with the bands representing the statistical errors on the fit,
210 are shown in Fig. 3(b). In a future work, we will attempt to
211 study the dependence on the choice of functional forms.
212 The results of these fits are largely consistent with each
213 other. The heaviest pion mass PDF has a notably larger
214 statistical error than the others. This effect is due to a larger

215variance in the highly correlated c and d parameters. In the
216lighter two pion masses, the correlation between these
217parameters appears to be stronger, leading to a smaller
218statistical error in the resulting PDFs.
219Extrapolation to the physical pion mass.—In order to
220determine the valence PDF for the physical pion mass, our
221results must be extrapolated to 135 MeV. To do this, the
222central values of these curves are extrapolated and the
223errors are propagated. We have performed the extrapolation
224including and excluding the statistically noisy result from
225the heaviest pion ensemble. When using all three ensem-
226bles, we extrapolate the results using the form

qvðx; μ2; mπÞ ¼ qvðx; μ2; m0Þ þ aΔmπ þ bΔm2
π; ð14Þ

(a)

(b)

F3:1FIG. 3. (a) The MS ITD matched to 2 GeV from the reduced
F3:2pseudo-ITD results calculated at 358, 278, and 172. (b) The
F3:3nucleon valence distribution obtained from fitting the ITD to the
F3:4form in Eq. (13) from each of those ensembles.
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ID a(fm) M⇡(MeV) � cSW aml ams L3 ⇥ T Ncfg

a094m360 0.094(1) 358(3) 6.3 1.20536588 -0.2350 -0.2050 323 ⇥ 64 417
a094m280 0.094(1) 278(3) 6.3 1.20536588 -0.2390 -0.2050 323 ⇥ 64 500
a091m170 0.091(1) 172(6) 6.3 1.20536588 -0.2416 -0.2050 643 ⇥ 128 175

TABLE I. Parameters for the lattices generated by the JLab/W&M collaboration using 2+1 flavors of stout-smeared clover Wilson

fermions and a tree-level tadpole-improved Symanzik gauge action. More details about these ensembles can be found in [53].
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FIG. 1. The reduced pseudo-ITD calculated on ensembles
with 358 MeV, 278 MeV, and 172 MeV pion masses. The up-
per and lower plots are the real and imaginary component re-
spectively. There appears to be very small mass e↵ects within
this range of ⌫ and z2.

are the moments of the Altarelli-Parisi kernel, and

ln =

Z 1

0
duL(u)un =2

2

4
 

nX

k=1

1

k

!2

+
nX

k=1

1

k2

+
1

2
�

1

(n+ 1)(n+ 2)

�
. (12)

The even and odd moments can be determined from the
coe�cients of polynomials which are fit to the real and
imaginary components respectively. The order of the
polynomial is chosen to minimize the �

2/d.o.f. for each
z
2 separately. As an example, the first and second mo-

ments calculated on the ensemble a091m170 are shown
in Fig. 2. The z

2 dependence of the resulting PDF mo-
ments can be used to check for the size of higher twist
e↵ects, which do not seem significant.

Matching to MS.— Similarly to Ref. [46], the reduced
pseudo-ITD from each ensemble is matched to the light-
cone MS ITD at a given scale µ by inverting Eq. (4).
As a result, we obtain a set of z2-independent curves for
Q(⌫, µ2) at µ = 2 GeV, shown in Fig. 3a.
As seen in the moments, the matching procedure has

a small O(↵s/⇡) ⇠ 0.1 e↵ect on the distribution. The
contributions from the convolution of B and L with the
reduced pseudo-ITD appear with opposite signs. The
convolution with L is slightly larger in magnitude, but
by a factor which is approximately the same as the log-
arithmic coe�cient of B. This feature may just be a
coincidence at NLO, but it hints that higher order correc-
tions may also be small. An NNLO or non-perturbative
matching is required to check the e↵ects of the perturba-
tive truncation on the matching.

Determination of the PDF.— The inversion of the
Fourier transform defining the ITD, given a finite amount
of data, constitutes an ill-posed problem which can only
be resolved by including additional information. As
was shown in [45], the direct inverse Fourier transform
can lead to numerical artifacts, such as artificial os-
cillations in the resulting PDF. Many techniques have
been proposed to accurately calculate PDFs from lattice
data [21, 28, 45, 60]. This issue also occurs in the deter-
mination of the PDF from experimental data.
As was done in Ref. [46], the approach which is used

here (and is common amongst phenomenological determi-
nations) is to include information in the form of a model-
dependent PDF parameterization. The parameterization



Unpolarized Gluon PDF



Gluon Contribution to unpolarized PDF

Tf T0
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Mµ↵;��(z, p) ⌘ hp|Gµ↵(z)W [z, 0]G��(0) |pi
T.Khan et al. (Hadstruc), Phys.Rev.D 104 (2021) 9, 094516
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Og(z) = Gji(z)U(z, 0)Gij(0)U(0, z)� Gti(z)U(z, 0)Git(0)U(0, z).

“disconnected”

Two-point functions as in isovector case

Flavor-singlet quantities are subject to severe signal-to-noise problems compared with 
isovector measures:


– Use distillation and many more measurements per configuration - sampling of lattice

– Use of summed Generalized Eigenvalue Problem (sGEVP) - better control over 

excited state contributions

– Use of Gradient Flow - smoothing of short-distance fluctuations


Reduced matrix element:

<latexit sha1_base64="sDFlv31E+HrknisyqZPELiYtX40="></latexit>

M(⌫, z2) =

 
M(⌫, z2)

M(⌫, 0)|z=0

!
/

 
M(0, z2)|p=0

M(0, 0)|p=0,z=0

!

c.f. Z.Fan, H-W-Lin, arXiv:2104.06372, arXiv:2007.16113



Distillation and Hadron Structure
To control systematic uncertainties, need precise computations over a 
wide range of momentum.


– Use a low-mode projector to capture states of interest 
“distillation”


– Enables momentum projection at each temporal point.
M.Peardon et al (Hadspec), Phys.Rev.D 80 (2009) 054506

Momentum projection

Variational basis

+ momentum 
smearing

G.Bali et al, Phys.Rev.D 
93 (2016) 9, 094515

C.Egerer et al (Hadstruc), Phys. Rev. 
D 103, 034502 (2021)
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Spatial momentum Interpolators
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TABLE I. Nucleon interpolators used in the calculation. The interpolators with asterisk (*) on them are hybrid in nature.

interpolators with gauge-covariant derivatives acting on the quark fields to capture the e↵ect of the non-zero angular
momenta between the quarks [75]. All these interpolators are “non-relativistic”, in the sense that they feature only
the upper components of the Dirac spinors. We also include the interpolators that have derivatives of second order
and form combinations corresponding to the commutation of two gauge-covariant derivatives acting on the same
quark field. These interpolators, also referred to as hybrid interpolators [76], vanish in the absence of a gauge-field
and correspond to the chromomagnetic components of the gluonic field-strength tensor. We tabulate our choice of
interpolators for the nucleon at rest as the first row in Table I, using the spectroscopic notation of: X 2S+1

L⇡J
P where

X is the nucleon, N ; S is the Dirac spin; L = S, P, D, . . . is the orbital angular momentum; ⇡ = S, M or A is the
permutation symmetry of the derivatives; J is the total angular momentum; and P is the parity. For the construction
of the three-point correlators needed for the unpolarized distributions, we take the sum of the spin = + 1

2 and spin =
- 12 nucleon two-point correlators.

For the case of the correlation functions at non-zero spatial momentum, parity is no longer a good quantum number
and further operators are classified according to their helicity. We therefore include operators corresponding both to
higher spin, and to negative parity, in our basis within the little group Dic4. We choose the direction of momenta
to be in the same direction of the polarization to ensure longitudinal polarization. We access the unpolarized gluon
PDF by taking the sum of helicity = + 1

2 and helicity = - 12 nucleon two-point correlators. The basis of interpolators
is tabulated as the second row in Table I.

E. Momentum Smearing

To access a wide range of Io↵e-times, we perform the lattice calculation at multiple spatial momenta. On the lattice,
the spatial momentum is discretized and expressed as

p =
2⇡ l

a L
. (26)

Here, L = 32, is the spatial extent of the lattice. For p, where l > 3, we enhance the overlap of the interpolators
onto the lowest-lying states in motion by applying momentum smearing [77]. We follow the procedure introduced
in [74] and add a phase to the distillation eigenvectors for higher momenta to preserve translational invariance, which
is essential for the projection onto the states of definite momenta. The “phased” distillation eigenvector becomes,

⌫̃
(k)
x ( #»

z , t) = e
i

#»
⇣ · #»z

⌫
(k)
x ( #»

z , t) . (27)

It is su�cient to modify the previously computed eigenvectors to perform calculation at the higher lattice momenta,
though the perambulators and the elementals need to be recalculated with these “phased” eigenvectors. For our
calculation, choosing

#»
⇣ = 2 ·

2⇡

L
ẑ (28)

gives the momentum smearing needed for boosts up to p = 6⇥ 2⇡
aL .

IV. LATTICE DETAILS

We perform our calculation on an isotropic ensemble with (2 + 1) dynamical flavors of clover Wilson fermions with
stout-link smearing [68] of the gauge fields and a tree-level tadpole-improved Symanzik gauge action, with approximate



Ioffe-time distributions
Use Gradient flow - to further reduce UV fluctuations
Insert flowed link variable ·Vμ(τ, x) − −g2

0{∂x,μS(Vμ(τ, x))Vμ(τ, x)}Vμ(τ, x)

14

FIG. 7. Reduced matrix elements, M(⌧) extrapolated to ⌧ ! 0 limit for di↵erent nucleon momenta and di↵erent field
separations. The functional form used to fit the reduced matrix elements is: M(⌧) = c0 + c1⌧ . The top-left panel shows the fit
for p = 1⇥ 2⇡

aL = 0.41 GeV and z = a = 0.094 fm. The top-middle panel shows the fit for p = 2⇥ 2⇡
aL = 0.82 GeV and z = 2a

= 0.188 fm. The top-right panel shows the fit for p = 2⇥ 2⇡
aL = 0.82 GeV and z = 6a = 0.564 fm. The bottom-left panel shows

the fit for p = 4⇥ 2⇡
aL = 1.64 GeV and z = 6a = 0.564 fm. The bottom-middle panel shows the fit for p = 5⇥ 2⇡

aL = 2.05 GeV
and z = 4a = 0.376 fm. The bottom-right panel shows the fit for p = 6⇥ 2⇡

aL = 2.46 GeV and z = a = 0.094 fm.

FIG. 8. Reduced Io↵e-time pseudo-distribution, M(⌫, z2) plotted with respect to the Io↵e-time ⌫. For each nucleon momentum
and field separation, the reduced matrix elements for di↵erent flow times are extrapolated to the limit, ⌧ ! 0 , extracting the
flow time independent reduced pseudo-ITD.

Finally, we consider a model that we denote
⇥
2-param (Q)+P1

⇤
for which we add a nuisance term to capture

possible O
�
a/|z|

�
e↵ects. This nuisance term can be parametrized by a transformed Jacobi polynomial [23]

M(⌫, z2) =

Z 1

0
dxK(x⌫, µ2

z
2)

x
↵ (1� x)�

B(↵+ 1,� + 1)
+

✓
a

|z|

◆
P1(⌫) , (37)

where

P1(⌫) = p
(↵,�)
1

Z 1

0
dx cos(⌫x)x↵(1� x)�J (↵,�)

1 (x) . (38)

τ ⟶ 0



ITD to PDF

Implementation for obtaining the PDFs follows that of the isovector distribution

– Expand in Jacobi Polynomials

xα(1 − x)β

+Jα,β
1

+a / ∣ z ∣

Matching:
<latexit sha1_base64="Za5OtVhAtL1jMTSonqJsXF8J0l0="></latexit>

M(⌫, z2) =
Ig(⌫, µ2)

Ig(0, µ2)
� ↵sNc

2⇡

Z 1

0
du

Ig(u⌫, µ2)

Ig(0, µ2)

(
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✓
z2µ2e2�E
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)
I.Balitsky,W.Morris,A.Radyushkin,Phys.Lett.B 808 (2020) 135621

N.B neglecting quark-gluon mixing



Require normalization of xg(x)
<latexit sha1_base64="NozQhlwqSMZ4ejFhe4LG62OTAMQ="></latexit>

hxiMS
g (µ = 2GeV) = 0.427(92)

C.Alexandrou et al., Phys. Rev. Lett. 119, 142002 (2017)



Helicity Gluon PDF



Matrix elements of spatially separated gluon fields

m̃μα;λβ = ⟨p, s |Gμα(x)W[z,0]G̃αβ(0) |p, s⟩

Combination corresponding to polarized gluon distribution
M̃μα;λβ(z, p, s) = m̃μα;λβ(z, p, s) − m̃μα;λβ(−z, p, s)

Ioffe-time distribution is related to gluon distribution through inverse problem

ℐ̃(ν) =
i
2 ∫

1

−1
e−ixνxΔg(x)

5

ID a (fm) m⇡ (MeV) L3
⇥Nt Ncfg Nsrcs

a094m358 0.094(1) 358(3) 323 ⇥ 64 1901 64

TABLE I. The parameters of the ensemble used in this work. Here, Ncfg is the number of gauge configurations. The same
number of configurations has been used for the determination of e↵ective matrix elements associated with all the momenta.

though the perturbative matching formula in Eq. (14) has been derived up to the next-to-leading order, we will only
perform the analysis at leading order, which is also consistent with excluding the quark singlet contribution. This is
because the statistical uncertainty in the lattice QCD matrix elements is quite large, as we will see in the subsequent
sections. Future studies with improved precision will require both the gluon and quark singlet O(↵s) contributions
when they become statistically significant.

III. COMPUTATIONAL FRAMEWORK

We construct the gluonic operators and compute the nucleon two- and three-point functions using the same method-
ologies and numerical techniques as in our previous work on the unpolarized gluon distribution. We therefore refer
readers to our previous work in Ref. [65] for a more detailed description and briefly summarize our procedure in the
following.

We perform our calculation on an isotropic ensemble with (2 + 1) dynamical flavors of clover Wilson fermions with
stout-link smearing [81] of the gauge fields and a tree-level tadpole-improved Symanzik gauge action. The approximate
lattice spacing is a ⇠ 0.094 fm and the pion mass is m⇡ ⇠ 358 MeV [82]. We use 64 temporal sources over 1901 gauge
configurations, with each configuration separated by 10 hybrid Monte Carlo [83] trajectories. We take the two light
quark flavors, u and d, to be degenerate, the lattice spacing was determined using the w0 scale [84], and the strange
quark mass is tuned by setting the quantity, (2m2

K+ � m
2
⇡0)/m2

⌦� equal to its physical value. We summarize the
parameters of the ensemble in Table I.

On the lattice, the gluonic currents are constructed using the gradient flow [85–87]. The gradient flow exponentially
suppresses the UV gauge field fluctuations, which physically corresponds to smearing out the original degrees of
freedom in coordinate space, therefore improving the signal-to-noise ratio for the gluon observables. In this work, we
perform the calculation of the gluonic matrix elements for flow times ⌧/a2 = 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, and 3.8.
Below ⌧/a

2 = 1.0, the calculation is limited by poor signal-to-noise ratios, and more gauge configurations are essential
for the calculation at lower values of flow time.

We calculate nucleon two-point correlators using the framework of distillation [88], a low-rank approximation to
the gauge-covariant Jacobi-smearing kernel. Within this framework, the two-point correlator factorizes into distinct
computational components, the so-called elementals and perambulators. The elementals have a well-defined momen-
tum and encode the structure of the interpolating operators, while the perambulators encode the propagation of the
quarks within the distillation space and do not feature an explicit momentum projection. We use an extended basis
of interpolators to facilitate a high-fidelity isolation of the nucleon ground state matrix elements, which is achieved
numerically by solving a summed generalized eigenvalue problem (sGEVP) [89]. Within our operator basis we include
interpolators that feature derivatives of first and second-order to capture the e↵ect of nonzero angular momenta be-
tween the quarks [90] and the breaking of parity when the nucleon interpolators are projected to nonzero momenta;
combinations corresponding to the commutation of two gauge-covariant derivatives acting on the same quark field are
also considered. To minimize the computational cost for the extended set of configurations compared to our previous
work on the unpolarized gluon distribution in [65], we perform some tests to remove the interpolators that have min-
imal contributions to the gluonic matrix elements. We compare the restricted and full basis of operators in Fig. 11 of
the appendix A. Fig. 11 shows that the restricted basis of interpolators reproduces the gluonic matrix elements with
similar accuracy and control of excited states over a range of z and pz. To reduce the cost of the construction of the
nucleon two-point correlators, we therefore use the smaller basis of interpolators. This reduced basis of interpolators
found to be most relevant for this calculation is listed in Table II.

We apply momentum smearing [91] to enhance the overlap of our nucleon interpolators onto the lowest-lying states
at high momenta. Following the procedure introduced in [92], the momentum smearing algorithm is realized through
computation of a “phased” distillation space. This modified eigenvector space is obtained by applying spatially varying

phases of the form e
i~⇣·~x onto a precomputed Laplace eigenvector basis, where we use phases of the form

#»
⇣ = 2 ·

2⇡

L
ẑ . (16)

4

(UV) divergences discussed in the next paragraph, can be used to extract the invariant amplitude associated with the
matrix elements relevant for the polarized gluon ITD and corresponding PDF.

The bilocal quark and gluon operators separated by a spacelike Wilson line [such as the operator in Eq. (3)] have
additional link-related UV divergences that are multiplicatively renormalizable (see Refs. [72–74] for the quark case).
In particular, various combinations of spatially separated gluon operators are shown to be multiplicatively renormal-
izable in [27, 75–77]. For our calculation of the matrix elements corresponding to the gluon helicity distribution, these
UV divergences can be canceled by forming the following ratio proposed in [27]:

fM(⌫, z2) ⌘ i
[fM00(z, pz)/pzp0]/ZL(z/aL)

M00(z, pz = 0)/m2
p

, (11)

where we have defined fM00(z, pz) ⌘ [fM0i;0i(z, pz) + fMij;ij(z, pz)], and M00(z, pz) ⌘ [M0i;i0(z, pz) + Mji;ij(z, pz)]
is the spin averaged matrix element corresponding to the unpolarized gluon PDF [65, 77]. The factor 1/ZL(z3/aL)

[z3 7! z] determined in [27] cancels the UV logarithmic vertex anomalous dimension of the fM00 matrix element. The

factor i in (11) is introduced in accordance with the definition of the ITD �ieIp(⌫) ⌘ fM(+)
ps (⌫)� ⌫ fMpp(⌫). The ratio

in Eq. (11) utilizes the presence of the same linear UV divergence in fM00(z, pz) and M00(z, pz = 0) related to the
gluon link self energy and cancels this common divergent factor. Still, this ratio in Eq. (11) preserves the logarithmic
IR divergence at small z-separations that corresponds to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution of the PDF [78–80]. The ratio in (11) is referred to as the reduced pseudo-ITD in the rest of the paper.

As mentioned above (and shown in [27]), the reduced pseudo-ITD (11) contains a contamination term that is not
present in the definition of the light-cone gluon helicity ITD in (7). Indeed, writing the right-hand side of Eq. (11) in
terms of the invariant amplitudes of Eq. (10) and using z = ⌫/pz [which is valid when zµ = (0, 0, 0, z)], we obtain,

fM(⌫, z2) =
h
fM(+)

sp (⌫, z2)� ⌫ fMpp(⌫, z
2)
i
�

m
2
pz

2

⌫

fMpp(⌫, z
2) , (12)

or, alternatively,

fM(⌫, z2) =
h
fM(+)

sp (⌫, z2)� ⌫ fMpp(⌫, z
2)
i
�

m
2
p

p2z

⌫ fMpp(⌫, z
2) , (13)

where mp is the nucleon mass.

There are other combinations derived in [27] that also contain the invariant amplitudes fMpp and fM(+)
sp , but these

combinations involve more contamination terms. In this work, our goal therefore is to calculate the matrix elements
of the combination in Eq. (10), try to eliminate the O(m2

p/p
2
z) contamination term present in Eq. (13), and extract

[fM(+)
ps (⌫, z2)� ⌫ fMpp(⌫, z2)], necessary for determining the gluon helicity distribution in the nucleon.

With the removal of the O(m2
p/p

2
z) terms present in Eqs. (12) and (13), the resulting reduced pseudo-ITD fM(⌫, z2)

can be related, up to power corrections, to the light-cone polarized gluon ITD eIg(⌫, µ2) and singlet quark ITD eIS(⌫, µ2)
in the MS scheme through the following short distance factorization relation [27]:
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2) , (14)

where z
2 provides the hard scale in the one-loop perturbative matching formula [27], ⇤QCD is the scale of QCD,

Nc = 3, ū ⌘ (1� u), �E is the Euler–Mascheroni constant, and the plus-prescription is defined by

Z 1

0
du

h
f(u)

i

+
g(u) =

Z 1

0
du f(u)

h
g(u)� g(1)

i
. (15)

We note that for a complete implementation of the one-loop matching, one requires the calculation of the singlet
quark Io↵e-time distribution. In this proof-of-principle calculation, we exclude this quark singlet contribution. Even

“Nuisance term”
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TABLE II. Nucleon interpolators used in the calculation classified according to the spectroscopic notation: X 2S+1L⇡J
P where

X is the nucleon, N ; S is the Dirac spin; L = S, P, D, . . . is the orbital angular momentum of the continuum interpolator;
⇡ = S, M or A is the permutational symmetry of any derivatives; J is the total angular momentum; and P is the parity. The
interpolators with an asterisk (*) are hybrid in nature. The sets of interpolators used in our previous work on the unpolarized
gluon distribution in [65] are given in the middle column, and the sets of interpolators implemented in this calculation are given
in the rightmost column.

The largest momentum along the z-direction we access through this procedure is pz = n ⇥
2⇡
La with n = 6 ( 2.46

GeV in physical units). The momentum smearing is applied for momenta pz > 3⇥ 2⇡
La . As in [65], we will simply use

the notation p ⌘ pz to describe the nucleon boost along the z-direction in the rest of the paper.
For each momentum, we extract the three lowest-lying principal correlators, and therefore the energy states of the

nucleon two-point correlators, by performing a variational analysis using the fitting procedure discussed in [65, 93].
We plot the ground state nucleon energies for the accessible spatial momenta in Fig. 1 and compare with expectations
from the continuum dispersion relation. The resulting energies as a function of the momentum agree with the
continuum dispersion relation within error, with a slight deviation at the highest momentum where O

�
(ap)2

�
errors

are significant.

FIG. 1. The ground state nucleon dispersion relation on the ensemble a094m358, the solid line being the continuum dispersion
relation. Energies without phasing are in green and energies with phasing are in blue.

We construct the nucleon gluonic matrix elements relevant to the gluon helicity ITD using the combination of gluonic
currents in Eq. (10), and numerically implement a summed generalized eigenvalue problem (sGEVP) [89, 94] to extract
the ground-state matrix elements with high fidelity from the three-point correlators. In the sGEVP analysis, the ef-
fective matrix elements are calculated for the value of source-sink separation, t/a = 2 to 14. The t0/a value is the time
slice with respect to which the orthogonality of the generalized eigenvectors is defined so that the excited-state contri-
butions in the e↵ective matrix elements would be minimum. We have used di↵erent values of t0/a for each momentum
and the chosen values of t0/a are: t0/a = 8, 9, 6, 7, 7, 7, 6 for momenta pz = 0, 0.41, 0.82, 1.23, 1.64, 2.05, 2.46 GeV,
respectively. The solution to the sGEVP is marked by excited-state contamination that decays as

⇥
t exp(��E t)

⇤
-

a stronger suppression than the
⇥
exp(��E t/2)

⇤
decay in the GEVP method, where �E is the energy gap between
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FIG. 7. Simultaneous fit to the gluonic matrix elements at all momenta used in this calculation. The lattice data points in the
upper panel are the reduced pseudo-ITD in the zero flow time limit and the fitted bands that describe the lattice data points
are generated using the fit parameters listed in Table III. After correcting for the O(m2

p/p
2
z) contamination term in the matrix

element, the desired reduced pseudo-ITDs associated with the gluon helicity distribution from both fits are shown in the lower
panel. For an appropriate comparison of the magnitude of these extrapolations, the fitted pseudo-ITD bands in the bottom
panel are normalized by the gluon momentum fraction, hxig from [17].

this, Eq. (10) allows access to ⌫ = 0 value of fMpp(⌫, z2), i.e. to the first term in the Taylor expansion of fMpp(⌫, z2)
over ⌫. Indeed, taking pz = 0 in Eq. (10), it follows

[fM0i;0i + fMij;ij ](z, pz = 0) = 2m3
pz

fMpp(⌫ = 0, z2). (22)

Now, we define a “subtracted” matrix element

[fM0i;0i + fMij;ij ]sub(z, p) ⌘ [fM0i;0i + fMij;ij ](z, p)�
p0

mp
[fM0i;0i + fMij;ij ](z, 0) , (23)

which vanishes for pz = 0. Dividing the subtracted matrix element by (�2pzp0) and introducing

fMsub(z, p) ⌘ (�2p0 pz)
�1

h
fM0i;0i + fMij;ij

i

sub
(z, p) , (24)

we derive the representation

fMsub(z, pz) = fM(+)
sp (⌫, z2)� ⌫ fMpp(⌫, z

2)� ⌫
m

2
p

p2z

h
fMpp(⌫, z

2)� fMpp(⌫ = 0, z2)
i
. (25)

Although the subtracted representation still contains an O(m2
p/p

2
z) contamination term, it now contains Mpp in a

subtracted [fMpp(⌫, z2)� fMpp(⌫ = 0, z2)] form, the Taylor expansion (in ⌫) of which starts with ⌫
2 and is accompanied

by the coe�cient b1. As Fit-2 suggests that this coe�cient is very small, we expect that the contamination term for
fMsub to be even smaller than that for fM.

Simultaneous fit to all p



Rather than fitting to  directly define subtracted matrix elementℳ̃
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FIG. 7. Simultaneous fit to the gluonic matrix elements at all momenta used in this calculation. The lattice data points in the
upper panel are the reduced pseudo-ITD in the zero flow time limit and the fitted bands that describe the lattice data points
are generated using the fit parameters listed in Table III. After correcting for the O(m2

p/p
2
z) contamination term in the matrix

element, the desired reduced pseudo-ITDs associated with the gluon helicity distribution from both fits are shown in the lower
panel. For an appropriate comparison of the magnitude of these extrapolations, the fitted pseudo-ITD bands in the bottom
panel are normalized by the gluon momentum fraction, hxig from [17].

this, Eq. (10) allows access to ⌫ = 0 value of fMpp(⌫, z2), i.e. to the first term in the Taylor expansion of fMpp(⌫, z2)
over ⌫. Indeed, taking pz = 0 in Eq. (10), it follows

[fM0i;0i + fMij;ij ](z, pz = 0) = 2m3
pz

fMpp(⌫ = 0, z2). (22)

Now, we define a “subtracted” matrix element

[fM0i;0i + fMij;ij ]sub(z, p) ⌘ [fM0i;0i + fMij;ij ](z, p)�
p0

mp
[fM0i;0i + fMij;ij ](z, 0) , (23)

which vanishes for pz = 0. Dividing the subtracted matrix element by (�2pzp0) and introducing

fMsub(z, p) ⌘ (�2p0 pz)
�1

h
fM0i;0i + fMij;ij

i

sub
(z, p) , (24)

we derive the representation

fMsub(z, pz) = fM(+)
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Although the subtracted representation still contains an O(m2
p/p

2
z) contamination term, it now contains Mpp in a

subtracted [fMpp(⌫, z2)� fMpp(⌫ = 0, z2)] form, the Taylor expansion (in ⌫) of which starts with ⌫
2 and is accompanied

by the coe�cient b1. As Fit-2 suggests that this coe�cient is very small, we expect that the contamination term for
fMsub to be even smaller than that for fM.

Still contains nuisance term - but smaller
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FIG. 9. The lattice data points represent the reduced Io↵e-time pseudo-distribution, fM(⌫, z2) in the zero flow-time limit
obtained through the subtraction method using p = 0 matrix elements. The lattice data points and the fit bands are normalized
using the gluon momentum fraction, hxig from [17]. Left panel: the red and cyan bands represent the target mass corrected
reduced Io↵e-time pseudo-distribution using the fit of moments in Sec. IVA. Right panel: the blue band is a fit to the subtracted
pseudo-ITD using the functional form in Eq. (20) with a0, a1, b1 as fit parameters and b0 = 0 fixed by construction.

FIG. 10. A comparison between the lattice reduced Io↵e-time pseudo-distribution fM(⌫, z2) in the zero flow-time limit obtained
through the subtraction method using the p = 0 matrix elements, and the gluon helicity ITD constructed from global fits of
PDFs. The lattice data points are the same as in Fig. 9, plotted on a smaller vertical scale for better comparison with the
phenomenological ITD bands. In the left plot, the red band denotes the ITD constructed from the gluon helicity distribution
by the NNPDF collaboration. The green band labeled by eI(+)

p and the cyan band labeled by eI(+/�)
p represent the gluon helicity

ITD determined by the JAM collaboration with and without the positivity constraint on the gluon helicity PDF, respectively.
On the right plot, the gluon helicity ITDs for positive and negative helicity PDFs are compared with the lattice data. The
green band labeled by eI(+)

p and the maroon band labeled by eI(�)
p represent the gluon helicity ITD determined by the JAM

collaboration associated with the positive and negative gluon helicity PDF solutions, respectively.

polarization in the nucleon cannot be properly constrained. In other words, the ITD extracted from the JAM global fit

(labeled by JAM eI(+/�)
p in Fig. 10) may have a similar or even larger magnitude of uncertainty than our lattice QCD

calculation. We show a comparison of the polarized gluon ITDs obtained from global fits and our lattice calculation
in Fig. 10. Most importantly, Fig. 10 shows that the ITD data in the ⌫ . 6 region is primarily controlled by whether
the gluon polarization in the nucleon is positive or negative, according to the JAM analysis.

The positivity constraint on the gluon distributions, namely helicity-aligned and helicity-antialigned both being non-
negative, in the analysis of experimental data in [11] leads to a substantial reduction of the variance of x�g(x) in the
large-x region, as seen in Fig. 6 of [11]. Specifically, the PDFs without the positivity assumption were organized into
a band of solutions with a negative PDF and a band of solutions with a positive PDF. We compare the ITDs resulting
from the two bands with positive and negative x�g(x) to our results in the right panel of Fig. 10. The current
matrix elements, albeit with an unphysical pion mass and finite lattice spacing, are inconsistent within statistical
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polarization in the nucleon cannot be properly constrained. In other words, the ITD extracted from the JAM global fit

(labeled by JAM eI(+/�)
p in Fig. 10) may have a similar or even larger magnitude of uncertainty than our lattice QCD

calculation. We show a comparison of the polarized gluon ITDs obtained from global fits and our lattice calculation
in Fig. 10. Most importantly, Fig. 10 shows that the ITD data in the ⌫ . 6 region is primarily controlled by whether
the gluon polarization in the nucleon is positive or negative, according to the JAM analysis.

The positivity constraint on the gluon distributions, namely helicity-aligned and helicity-antialigned both being non-
negative, in the analysis of experimental data in [11] leads to a substantial reduction of the variance of x�g(x) in the
large-x region, as seen in Fig. 6 of [11]. Specifically, the PDFs without the positivity assumption were organized into
a band of solutions with a negative PDF and a band of solutions with a positive PDF. We compare the ITDs resulting
from the two bands with positive and negative x�g(x) to our results in the right panel of Fig. 10. The current
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Caveat!  Mixing with sea quarks not yet included



Lattice QCD + Experiment: Greater than their 
parts



Pion PDF
Pion PDF has high level of uncertainty - no free-pion targets

q⇡v (x) =
x↵(1� x)�(1 + �x)

B(↵+ 1,� + 1) + �B(↵+ 2,� + 1)
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T.Izubuchi et al., Phys. Rev. D 100, 034516

J-H Zhang et al., Phys. Rev. D 100, 034505

Ma and Qiu, Phys. Rev. Lett. 120 022003
“Good Lattice Cross Sections”

OS(⇠) = ⇠4Z2
S [ ̄q q](⇠)[ ̄q ](0)

OV 0(⇠) = ⇠2Z2
V 0 [ ̄q⇠ · � q0 ](⇠)[ ̄q0⇠ · � ](0)



Back to expt……..

Can we use LQCD + expt in global analysis: what is the impact?
<latexit sha1_base64="Y3tb5dD3tJ/OLXF5scaEdzqGtvM="></latexit>
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FIG. 5. Impact of lattice QCD’s Io↵e time distributions on gluon helicity pdfs. Left column

indicates the status before the inclusion of lattice QCD data and the left column indicates the

results with the lattice QCD data. The negative and positive gluon helicity PDFs are indicated

with di↵erent colors also for the Io↵e time distribution. The color of the fit results correspond to

the sign of �g in the same Monte Carlo replica prior to lattice QCD data’s inclusion. Blue are

negative and red are positive. The non-smooth behavior of M is a plotting artifact from di↵erent

z23 at the same ⌫.

spread in the positive solutions decreased slightly, but the overall trend appears unchanged.

Fig 5 shows the positive and negative �g replicas matched to the reduced pseudo-ITD. The

magnitude of the negative solutions both in x and ⌫ space decrease. In x space, the most

dramatic change was the larger x region where lattice QCD is most sensitive and fewer

experimental results exist.

In this analysis, the unpolarized gluon PDF was held fixed while the helicity gluon PDF

varied. We can also consider the e↵ect of lattice QCD in a di↵erent manner. That is on the

helicity aligned and anti-aligned gluon PDFs g"/# by taking the sum and di↵erence of g and

�g. The positivity constraints are explicit constraints on the sign of distributions. Fig. 7

shows the results before and after the inclusion of lattice QCD data. The anti-aligned PDF
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Work in progress
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Summary
• The gluon PDF is both a theoretical and computational 

challenge.

• Distillation + boosting enables both far increased reach in 

momentum, and improved sampling of lattice

– Essential in calculations of gluon contributions


• Inclusion of sea-quark/disconnected contributions - work in 
progress.


• Lattice QCD + Expt - global analysis; what calculations would 
have greatest impact?


