Gluon Helicity from Lattice QCD

David Richards
Jefferson Lab and Hadstruc Collaboration

HadStruc Collaboration

Robert Edwards, Colin Egerer, Joe Karpie, Jianwei Qiu, David Richards, Eloy Romero, Frank Winter
Jefferson Lab
Carl Carlson, Tanjib Khan*, Christopher Monahan,
Kostas Orginos, Raza Sufian
William and Mary
Wayne Morris*, Anatoly Radyushkin
Old Dominion University Savvas Zafeiropoulos
Aix Marseille Univ, Marseille, France
Yan-Qing Ma
Peking University, Beijing, China
Balint Joo
ORNL
Graduate students, and now post-docs.

- Introduction
- PDFs on the Lattice - "need to know! - see Monahan and Orginos
- Unpolarized and helicity gluon PDFs
- Lattice QCD and Global Analysis
- Conclusions

Introduction

"Understanding the Glue That Binds Us All: The Next QCD Frontier in Nuclear Physics"

The 2015

LONG RANGE PLAN for NUCLEAR SCIENCE

Ji's sum rule

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma(\mu)+L_{q}(\mu)+J_{g}(\mu)
$$

Lattice: Moments of Generalized Form Factors

$$
\Delta G(\mu)=\int_{0}^{1} d x \Delta g(x, \mu)
$$

Gluon Helicity Distribution

- Crucial questions in global analysis - do we need to apply positivity constraint:

$$
|\Delta g(x)| \leq g(x) \forall x
$$

Relaxing constraint leads to new "replicas" in global analysis:

PDFs from Euclidean Lattice

Large-Momentum Effective Theory (LaMET)

"Equal time" correlator

$$
\begin{gathered}
\left.q\left(x, \mu^{2}, P^{z}\right)=\int \frac{d z}{4 \pi} e^{i z k^{z}}\langle P| \bar{\psi}(z) \gamma^{z} e^{-i g \int_{0}^{z} d z^{\prime} A^{z}\left(z^{\prime}\right)} \psi(0) \right\rvert\, P> \\
\left.+\mathcal{O}\left(\left(\Lambda^{2} /\left(P^{z}\right)^{2}\right), M^{2} /\left(P^{z}\right)^{2}\right)\right) \\
q\left(x, \mu^{2}, P^{z}\right)=\int_{x}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^{z}}\right) q\left(y, \mu^{2}\right)+\mathcal{O}\left(\Lambda^{2} /\left(P^{z}\right)^{2}, M^{2} /\left(P^{z}\right)^{2}\right) \\
\text { "quasi-PDF Approach" }
\end{gathered}
$$

PDFs, GPDs and TMDs

Ma and Qiu, Phys. Rev. Lett. 120022003
A.Radyushkin, Phys. Rev. D 96, 034025 (2017)

Pseudo-PDFs

To deal with UV divergences, introduce reduced distribution

$$
\begin{aligned}
& \mathfrak{M}=\frac{\mu\left(v, z^{2}\right)}{\mu\left(0, z^{2}\right)} \equiv\left(\frac{M\left(\nu, z^{2}\right)}{\mu(L, 0)}\right),\left(\frac{M\left(0, z^{2}\right)}{\mu(0,0)}\right) \\
& \mathfrak{M l}\left(\nu, z^{2}\right)=\int_{0}^{1} d u K\left(u, z^{2} \mu^{2}, \alpha_{s}\right) Q\left(u \nu, \mu^{2}\right)
\end{aligned} \begin{aligned}
& \nu=p \cdot z \text { loffe time } \\
& z^{2} \text { - short-distance scale }
\end{aligned}
$$

Computed on lattice

$$
Q(\nu, \mu)=\mathfrak{M}\left(\nu, z^{2}\right)-\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} d u\left[\ln \left(z^{2} \mu^{2} \frac{e^{2 \gamma_{E}+1}}{4}\right) B(u)+L(u)\right] \mathfrak{M}\left(u \nu, z^{2}\right) .
$$

K. Orginos et al.,

PRD96 (2017),
094503
Inverse problem
ITD \leftrightarrow PDF
Match data at different z

$$
\begin{aligned}
Q(\nu) & =\int_{-1}^{1} d x q(x) e^{i \nu x} \\
q(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu e^{-i \nu x} Q(\nu)
\end{aligned}
$$

Need data for all v, or additional physics input

Ioffe-Time Distribution to PDF

J.Karpie, K.Orginos, A.Radyushkin, S.Zafeiropoulos, Phys.Rev.D 96 (2017)
B.Joo et al., HEP 12 (2019) 081, J.Karpie et al., Phys.Rev.Lett. 125 (2020) 23, 232003

To extract PDF requires additional information - use a phenomenologically motivated parametrization $f(x)=x^{a}(1-x)^{b} P(x)$ MSTW, CJ

ID	$a(\mathrm{fm})$	$M_{\pi}(\mathrm{MeV})$	β	c_{SW}	$a m_{l}$	$a m_{s}$	$L^{3} \times T$	N_{cfg}
$a 094 m 360$	$0.094(1)$	$358(3)$	6.3	1.20536588	-0.2350	-0.2050	$32^{3} \times 64$	417
$a 094 m 280$	$0.094(1)$	$278(3)$	6.3	1.20536588	-0.2390	-0.2050	$32^{3} \times 64$	500
$a 091 m 170$	$0.091(1)$	$172(6)$	6.3	1.20536588	-0.2416	-0.2050	$64^{3} \times 128$	175

$P(x)=\frac{1+c \sqrt{x}+d x}{B(a+a, b+1)+c B(a+1.5, b+1)+d B(a+2, b+1)}$

B.Joo et al.,PRL 125 (2020) 23, 232003

Unpolarized Gluon PDF

Gluon Contribution to unpolarized PDF

Two-point functions as in isovector case

$$
\text { Reduced matrix element: } \quad \mathfrak{M}\left(\nu, z^{2}\right)=\left(\frac{\mathcal{M}\left(\nu, z^{2}\right)}{\left.\mathcal{M}(\nu, 0)\right|_{z=0}}\right) /\left(\frac{\left.\mathcal{M}\left(0, z^{2}\right)\right|_{p=0}}{\left.\mathcal{M}(0,0)\right|_{p=0, z=0}}\right)
$$

Flavor-singlet quantities are subject to severe signal-to-noise problems compared with isovector measures:

- Use distillation and many more measurements per configuration - sampling of lattice
- Use of summed Generalized Eigenvalue Problem (sGEVP) - better control over excited state contributions
- Use of Gradient Flow - smoothing of short-distance fluctuations

Distillation and Hadron Structure

To control systematic uncertainties, need precise computations over a wide range of momentum.

- Use a low-mode projector to capture states of interest "distillation" M.Peardon et al (Hadspec), Phys.Rev.D 80 (2009) 054506
- Enables momentum projection at each temporal point.

Momentum projection

+ momentum smearing
G.Bali et al, Phys.Rev.D 93 (2016) 9, 094515

Variational basis
C. Egerer et al (Hadstruc), Phys. Rev.

D 103, 034502 (2021)

loffe-time distributions

Use Gradient flow - to further reduce UV fluctuations
Insert flowed link variable $\dot{V}_{\mu}(\tau, x)--g_{0}^{2}\left\{\partial_{x, \mu} S\left(V_{\mu}(\tau, x)\right) V_{\mu}(\tau, x)\right\} V_{\mu}(\tau, x)$

ITD to PDF

Matching: I.Balitsky,W.Morris,A.Radyushkin,Phys.Lett.B 808 (2020) 135621

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\frac{\mathcal{I}_{g}\left(\nu, \mu^{2}\right)}{\mathcal{I}_{g}\left(0, \mu^{2}\right)}-\frac{\alpha_{s} N_{c}}{2 \pi} \int_{0}^{1} d u \frac{\mathcal{I}_{g}\left(u \nu, \mu^{2}\right)}{\mathcal{I}_{g}\left(0, \mu^{2}\right)}\left\{\ln \left(\frac{z^{2} \mu^{2} e^{2 \gamma_{E}}}{4}\right) B_{g g}(u)+4\left[\frac{u+\ln (\bar{u})}{\bar{u}}\right]_{+}+\frac{2}{3}\left[1-u^{3}\right]_{+}\right\}
$$

$N . B$ neglecting quark-gluon mixing
Implementation for obtaining the PDFs follows that of the isovector distribution

- Expand in Jacobi Polynomials

$$
x^{\alpha}(1-x)^{\beta}
$$

Require normalization of $x g(x) \quad\langle x\rangle_{g}^{\overline{M S}}(\mu=2 \mathrm{GeV})=0.427(92)$
C.Alexandrou et al., Phys. Rev. Lett. 119, 142002 (2017)

Helicity Gluon PDF

Matrix elements of spatially separated gluon fields

$$
\tilde{m}_{\mu \alpha ; \lambda \beta}=\langle p, s| G_{\mu \alpha}(x) W[z, 0] \tilde{G}_{\alpha \beta}(0)|p, s\rangle
$$

Combination corresponding to polarized gluon distribution

$$
\tilde{M}_{\mu \alpha ; \lambda \beta}(z, p, s)=\tilde{m}_{\mu \alpha ; \lambda \beta}(z, p, s)-\tilde{m}_{\mu \alpha ; \lambda \beta}(-z, p, s)
$$

loffe-time distribution is related to gluon distribution through inverse problem

$$
\tilde{\mathscr{J}}(\nu)=\frac{i}{2} \int_{-1}^{1} e^{-i x \nu} x \Delta g(x)
$$

Simultaneous fit to all p

Rather than fitting to $\tilde{\mathscr{M}}$ directly define subtracted matrix element

$$
\widetilde{\mathcal{M}}_{\text {sub }}\left(z, p_{z}\right)=\widetilde{\mathcal{M}}_{s p}^{(+)}\left(\nu, z^{2}\right)-\nu \widetilde{\mathcal{M}}_{p p}\left(\nu, z^{2}\right)-\nu \frac{m_{p}^{2}}{p_{z}^{2}}\left[\widetilde{\mathcal{M}}_{p p}\left(\nu, z^{2}\right)-\widetilde{\mathcal{M}}_{p p}\left(\nu=0, z^{2}\right)\right]
$$

Still contains nuisance term - but smaller

Lattice QCD + Experiment: Greater than their parts

Pion PDF

Pion PDF has high level of uncertainty - no free-pion targets

"Good Lattice Cross Sections"

Ma and Qiu, Phys. Rev. Lett. 120022003

$$
\begin{aligned}
\mathcal{O}_{S}(\xi) & =\xi^{4} Z_{S}^{2}\left[\bar{\psi}_{q} \psi_{q}\right](\xi)\left[\bar{\psi}_{q} \psi\right](0) \\
\mathcal{O}_{V^{\prime}}(\xi) & \left.=\xi^{2} Z_{V^{\prime}}^{2}\left[\bar{\psi}_{q} \xi \cdot \gamma \psi_{q^{\prime}}\right](\xi)\left[\bar{\psi}_{q^{\prime}} \xi \cdot \gamma \psi\right]\right](0)
\end{aligned}
$$

$$
q_{\mathrm{v}}^{\pi}(x)=\frac{x^{\alpha}(1-x)^{\beta}(1+\gamma x)}{B(\alpha+1, \beta+1)+\gamma B(\alpha+2, \beta+1)}
$$

T.Izubuchi et al., Phys. Rev. D 100, 034516

J-H Zhang et al., Phys. Rev. D 100, 034505

Sufian et al., Phys. Rev. D102, 05408 (2020)

Back to expt.

PHYSICAL REVIEW D 105, 114051 (2022)

Complementarity of experimental and lattice QCD data on pion parton distributions
P. C. Barry $\odot{ }^{1}$ C. Egerer, ${ }^{1}$ J. Karpie $\odot,{ }^{2}$ W. Melnitchouk $\odot{ }^{1}{ }^{1}$ C. Monahan $\odot,{ }^{1,3}$ K. Orginos, ${ }^{1,3}$ Jian-Wei Qiu, ${ }^{1,3}$ D. Richards, ${ }^{1}$ N. Sato, ${ }^{1}$ R. S. Sufian@, ${ }^{1,3}$ and S. Zafeiropoulos ${ }^{4}$
(Jefferson Lab Angular Momentum (JAM) and HadStruc Collaborations)
Can we use LQCD + expt in global analysis: what is the impact?

$$
\frac{d \sigma}{d x_{F} d \sqrt{\tau}}=\frac{4 \pi \alpha^{2}}{9 Q^{2} S} \sum_{i j} \int_{x_{\pi}^{0}}^{1} d x_{\pi} \int_{x_{A}^{0}}^{1} d x_{A} f_{i}^{\pi}\left(x_{\pi}, \mu\right) f_{j}^{A}\left(x_{A}, \mu\right) \mathcal{C}_{i j}^{\mathrm{DY}}\left(x_{\pi}, x_{\pi}^{0}, x_{A}, x_{A}^{0}, Q, \mu\right),
$$

Measured Cross Section

$$
f\left(x, \mu_{0}^{2}\right)=\frac{N_{f} x^{\alpha_{f}}(1-x)^{\beta_{f}}\left(1+\gamma_{f} x^{2}\right)}{B\left(\alpha_{f}+2, \beta_{f}+1\right)+\gamma_{f} B\left(\alpha_{f}+4, \beta_{f}+1\right)}
$$

From pseudo-PDF data

From Good Lattice Cross Section data

Significance of Δg-Sensitive Ioffe-Time Distributions in QCD Global Analysis

R. M. Whitehill, ${ }^{1}$ J. Karpie, ${ }^{2}$ W. Melnitchouk, ${ }^{2}$ C. Monahan, ${ }^{2,3}$

K. Orginos, ${ }^{2,3}$ J.-W. Qiu, ${ }^{2,3}$ D. R. Richards, ${ }^{2}$ N. Sato, ${ }^{2}$ and S. Zafeiropoulos ${ }^{4}$
${ }^{1}$ Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
${ }^{2}$ Jefferson Lab, Newport News, Virginia 23606, USA
${ }^{3}$ Department of Physics, William \& Mary, Williamsburg, Virginia 23185, USA
${ }^{4}$ Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
JAM and HadStruc Collaborations

Summary

- The gluon PDF is both a theoretical and computational challenge.
- Distillation + boosting enables both far increased reach in momentum, and improved sampling of lattice
- Essential in calculations of gluon contributions
- Inclusion of sea-quark/disconnected contributions - work in progress.
- Lattice QCD + Expt - global analysis; what calculations would have greatest impact?

