Probing the Sivers Asymmetry from light-sea quarks with the SpinQuest (E1039) experiment

Ishara Fernando
For the SpinQuest Collaboration

September 24-29, 2023 Durham Convention Center Durham, NC, USA

汬Fermilab

Office of Science

Physics Motivation

Physics Motivation

Ji's decomposition

Jaffe-Manohar decomposition

QCD Corrected
Quark Parton Model
(Ellis-Jaffe Sum rule)

$$
\begin{array}{ll}
A=\frac{\mathrm{d} \sigma^{\uparrow \downarrow}-\mathrm{d} \sigma^{\uparrow \uparrow}}{\mathrm{d} \sigma^{\uparrow \downarrow}+\mathrm{d} \sigma^{\uparrow \uparrow}}> & \int_{0}^{1} g_{1}^{\mathrm{p}} \mathrm{~d} x=0.126 \pm 0.010 \pm 0.015 \\
& g_{1}(x)=\frac{1}{2} \sum e_{i}^{2}\left(q_{i}^{+}(x)-q_{i}^{-}(x)\right)_{\text {Nuclear Physics } \mathrm{B} 328 \text { (1989) 1-35 }}
\end{array}
$$

Asymmetry measurements from Deep inelastic scattering of longitudinally polarized muons on longitudinally polarized proton

Physics Motivation

$$
\int_{0}^{1} g_{1}^{\mathrm{p}} \mathrm{~d} x=0.126 \pm 0.010 \pm 0.015
$$

$$
\left\langle S_{z}\right\rangle_{\text {valence }}=+0.535 \pm 0.032 \pm 0.046
$$

$$
\left\langle S_{z}\right\rangle_{\text {sea }}=-0.475 \pm 0.080 \pm 0.115
$$

Intrinsic spin contribution (total) by valence \& sea quarks

Possible missing spin contributions

Lattice QCD

$p_{T}[\mathrm{GeV} / \mathrm{c}]$ See Zhongling Ji 's talk

TMD PDFs

Distribution functions:
$>$ Parton Distribution Functions (PDFs) $f(x)$: The number density of partons with longitudinal momentum fraction
$>$ Transverse Momentum Dependent Parton Distribution Functions (TMD PDFs) : $f\left(x, k_{T}\right)$
The joint distribution of partons in their longitudinal momentum fraction x, and their momentum transverse to the proton's momentum direction.

$$
\Phi\left(x, k_{T} ; S\right)=\left.\int \frac{d \xi^{-} d \xi_{T}}{(2 \pi)^{3}} e^{i k . \xi}\langle P, S| \bar{\psi}(0) \mathcal{U}_{[0, \xi]} \psi(\xi)|P, S\rangle\right|_{\xi^{+}=0}
$$

Quark correlator can be decomposed into 8 components (6 T -even and 2 T -odd terms) at leading-twist

		Quark Polarization		
		U	L	T
$\begin{aligned} & \tilde{0} \\ & \stackrel{\rightharpoonup}{\mathbb{N}} \\ & \hline \end{aligned}$	U	$f_{1}=\bigcirc$	N / A	$\begin{gathered} h_{1}^{\perp}=?-(b) \\ \text { Boer-Mulders } \end{gathered}$
$\overline{0}$	L	N / A	$g_{1 L}=\underset{\text { Helicity }}{-}$	$h_{1 L}^{\perp}=\bigcirc-$ -
$\frac{\tilde{0}}{\frac{0}{\breve{y}}}$	T	$\underset{\text { Sivers }}{f_{1 r}}=\ominus$	$g_{1 T}{ }^{\perp}=\bigcirc-\odot$	

$$
\begin{aligned}
\Phi\left(x, k_{T}, P, S\right) & =f_{1}\left(x, k_{T}^{2}\right) \frac{P}{2}+\frac{h_{1 T}\left(x, k_{T}^{2}\right)}{4} \gamma_{5}\left[\$_{T}, \not P\right]+\frac{S_{L}}{2} g_{1 L}\left(x, k_{T}^{2}\right) \gamma_{5} \not P+\frac{k_{T} \cdot S_{T}}{2 M} g_{1 T}\left(x, k_{T}^{2}\right) \gamma_{5} \not P \\
& +S_{L} h_{1 L}^{\perp}\left(x, k_{T}^{2}\right) \gamma_{5} \frac{[k / T, \not P]}{4 M}+\frac{k_{T} \cdot S_{T}}{2 M} h_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \gamma_{5} \frac{[k /, \not p]}{4 M}
\end{aligned}
$$

$$
+i h_{1}^{\perp}\left(x, k_{T}^{2}\right) \frac{\left[k_{T}, \not P\right]}{4 M}-\frac{\epsilon_{T}^{k_{T} S_{T}}}{4 M} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \not P
$$

T-odd

TMD PDFs

Polarized Semi Inclusive DIS

* For these two processes TMD factorization is proven

$$
+S_{T}\left[\left(1+\cos ^{2} \theta\right) \sin \phi_{s} A_{T}^{\sin \phi_{s}}+\sin ^{2} \theta\left(\sin \left(2 \phi_{C S}+\phi_{s}\right) A_{T}^{\sin \left(2 \phi_{C S}+\phi_{s}\right)}\right.\right.
$$

$$
\left.\left.+\sin \left(2 \phi_{C S}-\phi_{s}\right) A_{T}^{\sin \left(2 \phi_{C S}-\phi_{s}\right)}\right)\right]
$$

$$
A_{T}^{\cos 2 \phi_{C S}} \propto h_{1}^{\perp q} \otimes h_{1}^{\perp q} \quad \mathrm{BM} \otimes \mathrm{BM}
$$

$$
A_{T}^{\sin \phi_{s}} \propto f_{1}^{q} \otimes f_{1 T}^{\perp q} \quad \mathrm{PDF} \otimes \text { Sivers }
$$

$$
A_{T}^{\sin \left(2 \phi_{C S}-\phi_{s}\right)} \propto h_{1}^{\perp q} \otimes h_{1}^{q} \quad \mathrm{BM} \otimes \text { Transv }
$$

$$
\begin{aligned}
& \frac{d \sigma_{S I D I S}^{L O}}{d x d y d z d p_{T}^{2} d \phi_{h} d \psi}=\left[\frac{\alpha}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{y^{2}}{2 x}\right)\right] \\
& \times\left(F_{U U, T}+\epsilon F_{U U, L}\right)\left\{1+\cos 2 \phi_{h}\left(\epsilon A_{U U}^{\cos 2 \phi_{h}}\right)\right. \\
& +S_{T}\left[\sin \left(\phi_{h}-\phi_{s}\right)\left(A_{U T}^{\sin \left(\phi_{h}-\phi_{s}\right)}\right)+\sin \left(\phi_{h}+\phi_{s}\right)\left(\epsilon A_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}\right)\right. \\
& \left.+\sin \left(3 \phi_{h}-\phi_{s}\right)\left(\epsilon A_{U T}^{\sin \left(3 \phi_{h}-\phi_{s}\right)}\right)\right] \\
& A_{U U}^{\cos 2 \phi_{h}} \propto h_{1}^{\perp q} \otimes H_{1 q}^{\perp h} \mathrm{BM} \otimes \mathrm{CF} \\
& A_{U T}^{\sin \left(\phi_{h}-\phi_{s}\right)} \propto f_{1 T}^{\perp q} \otimes D_{1 q}^{h} \quad \text { Sivers } \otimes \mathrm{FF} \\
& A_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)} \propto h_{1}^{q} \otimes H_{1 q}^{\perp h} \quad \text { Transv } \otimes \mathrm{CF} \\
& A_{U T}^{\sin \left(3 \phi_{h}-\phi_{s}\right)} \propto h_{1 T}^{\perp q} \otimes H_{1 q}^{\perp h} \quad \text { Pretz } \otimes \mathrm{CF} \quad \begin{array}{l}
\left.h_{1}^{\perp q}\right|_{S D D I S}=-\left.h_{1}^{\perp q}\right|_{D Y} \\
\left.f_{I T}^{\perp q}\right|_{S I D I S}=-\left.f_{I T}^{\perp q}\right|_{D Y}
\end{array}
\end{aligned}
$$

Sivers Function

$$
f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\mathbf{T}}\right)=f_{q / p}\left(x, \mathbf{k}_{\mathbf{T}}\right)+f_{1 T}^{\perp}\left(x, \mathbf{k}_{\mathbf{T}}\right) \mathbf{S} .\left(\hat{\mathbf{P}} \times \hat{\mathbf{k}_{\mathbf{T}}}\right)
$$

The Sivers function describes the correlation between the momentum direction of the struck quark and the spin of its parent nucleon.

Global analyses: Sivers functions

HERMES (2020), COMPASS (2009),COMPASS (2015) JLab (2011), STAR (2016),COMPASS DY (2017)

M. Bury, A. Prokudin , A. Vladimirov,, JHEP_05_151 (2021)

Sign of Sivers Functions

SpinQuest in the Global Context

Drell-Yan measurements above the J / ψ peak fall in a unique region with Q^{2} in the range of $16<\mathrm{M}^{2}<81 \mathrm{GeV}^{2}$ and $\mathrm{Q}_{\mathrm{t}}<$ few GeV

In terms of $Q^{2}, P_{t}, x_{\text {target }}$ and the process (DY) E1039 has a unique kinematics setting for the sea quarks
 kinematics to extract sea quark Sivers function in DY
> < Plot: Uncertainties in the predicted Sivers asymmetry in polarized Drell-Yan process from SpinQuest.

Sea-quarks Sivers functions

> Initial attempts to measure the Sivers asymmetry for sea quark Sivers have been reported by the STAR collaboration at RHIC using W/Z boson production. Their data is statistically limited and favor a sign-change only if TMD evolutions effects are significantly smaller than expected.
Lack of experimental data for smaller x to extract the sea quarks' Sivers functions.

* Various types of assumptions/treatment (flavor-independent and flavordependent)
* Uncertainties through global fitting became large relative to the 'valence' quarks.
$>$ As DY data facilitate a clean probe compared to the SIDIS process
because there is no fragmentation associated with the process; the SpinQuest will contribute to the Sivers asymmetry data in Drell-Yan proton-proton scattering from the sea quarks.

SpinQuest / E1039 Goals

$>$ SpinQuest will perform the first measurement of the Sivers asymmetry in Drell-Yan proton-proton scattering from the sea quarks ($\bar{u} \& \bar{d}$) with sign.

$$
\left.f_{1 T}^{\perp}\right|_{\text {SIDIS }}=-\left.f_{1 T}^{\perp}\right|_{\mathrm{DY}}
$$

A direct QCD prediction is a Sivers effect in the Drell-Yan process that has the opposite sign compared to the one in semi-inclusive DIS.
$>$ Measurement of Sivers function for gluons (J/psi TSSA)
$>$ Explore a unique range of virtualities and transverse momenta not accessible through $Z^{0} / W^{ \pm}$measurements
$>$ Extensions: transversity, tensor charge, tensor polarized observables, dark sector, polarized proton beam,...

Polarized fixed target Drell-Yan :

Sensitivity to sea-quarks

beam: valence quarks at high x
target: sea quarks at low/intermediate x

$e_{a}^{2}\left[\bar{q}_{t}\left(x_{t}\right) q_{b}\left(x_{b}\right)+\bar{q}_{t}\left(x_{t}\right) \bar{q}_{b}\left(x_{b}\right)\right]$
acceptance limited
(Fixed Target, Hadron Beam)

Valence-quarks dominance

Polarized fixed target DY \& J/ ψ

@ SpinQuest / E1039 experiment

$A=\frac{\sigma\left(p_{b}^{u n} p_{t}^{\uparrow}\right)-\sigma\left(p_{b}^{u n} p_{t}^{\downarrow}\right)}{\sigma\left(p_{b}^{u n} p_{t}^{\uparrow}\right)+\sigma\left(p_{b}^{u n} p_{t}^{\downarrow}\right)}$
Measurement:
The amplitude of the azimuthal angular modulation of the outgoing particles' (di-muons) scattering cross section with respect to the transverse spin direction of the polarized proton.

$$
\begin{aligned}
& \text { Drell-Yan } \quad \sigma\left(p+p^{\uparrow(\downarrow)} \rightarrow \gamma+X\right) \\
& f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\mathbf{T}}, \mathbf{S}_{\mathbf{T}} ; Q\right)=f_{q / p}\left(x, \mathbf{k}_{\mathbf{T}} ; Q\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\mathbf{T}}, \mathbf{S}_{\mathbf{T}} ; Q\right)
\end{aligned}
$$

SpinQuest will be able to explore a new region of kinematics for J / ψ compare to the PHENIX measurements $>J / \psi$ production:
$>$ PHENIX $\rightarrow g g$ fusion at $\sqrt{s}=200 \mathrm{GeV}$
\rightarrow SpinQuest $\rightarrow q \bar{q}$ annihilation at $\sqrt{s}=15.5 \mathrm{GeV}$

INSTITUTIONS 22

1) Abilene Christian University
2) Argonne National Laboratory 3) Aligarh Muslim University
3) Boston University
4) Fermi National Accelerator Laboratory 6) KEK
5) Los Alamos National Laboratory
6) Mississippi State University
7) New Mexico State University
8) RIKEN
9) Shandong University
10) Tokyo Institute of Technology 13) University of Colombo
11) University of Illinois, Urbana-Champaign
12) University of Michigan
13) University of New Hampshire 17) Tsinghua University
14) University of Virginia
15) Yamagata University
16) Yerevan Physics Institute 21) National Center for Physics 22) MIT

FULL MEMBERS 42 Postdocs 7 Grad. Students 14
Donald Isenhower (PI), Michael Daugherity, Shon Watson
Paul Reimer (PI), Donald Geesaman
Huma Haider (PI), Mohit Singh
David Sperka (PI), Zijie Wan
Richard Tesarek (PI)
Shin'ya Sawada (PI)

Kun Liu (SP) , Mikhail Yurov, Kei Nagai

Lamiaa El Fassi (PI), Eric Fuchey, Catherine Ayuso
Stephen Pate (PI), Vassili Papavassiliou,
Forhad Hossain, Dinupa Nawarathne, Harhsa Sirilal
Yuji Goto (PI)
Qinghua Xu (PI)
Toshi-Aki Shibata (PI)
Hansika Atapattu (PI), Vibodha Bandara
Jen-Chieh Peng (PI), Ching Him Leung
Wolfgang Lorenzon (PI), Levgen Lavrukhin
Karl Slifer (PI), Anchit Arora
Zhihong Ye (PI)
Dustin Keller (SP), Kenichi Nakano, Ishara Fernando,
Zulkaida Akbar, Ernesto Diaz, Liliet Diaz, Arthur Conover, Jay Roberts
Devin Seay, Amal Pattividana
Yoshiyuki Miyachi (PI), Norihito Doshita
Hrachya Marukyan (PI)
Waqar Ahmed (PI), Muhammad Farooq
Phil Harris (PI), Noah Paladino

AFFILIATE MEMBERS https://spinquest.fnal.gov Roy Salinas, Rusty Towell, Shannon McNease, Yves Ngenzi, Thomas Fitch
Kevin Bailey, Thomas O'Connor

Carol Johnstone, Charles Brown, Nhan Tran Shigeru Ishimoto

Jan Boissevain, Patrick McGaughey, Andi Klein

Darshana Perera

Naomi Makins, Daniel Jumper, Jason Dove, Mingyan Tian, Bryan Dannowitz, Randall McClellan, Shivangi Prasad
Daniel Morton, Richard Raymond, Marshall Scott
Maurik Holtrop

Donal Day, Donald Crabb, Oscar Rondon

Takahiro Iwata, Norihiro Doshita

Shahryar Khan, Maham Ibrar
18
William(Patrick) McCormack, Duc Hoang

Fermilab proton beam main injector

$>120 \mathrm{GeV} / \mathrm{c}$ proton beam
$>\sqrt{s}=15.5 \mathrm{GeV}$
$>$ Projected beam

* 5×10^{12} protons/spill Where spill $\approx 4.4 \mathrm{~s} / \mathrm{min}$
* Bunches of 1 ns with 19 ns intervals $\sim 53 \mathrm{MHz}$
* 7×10^{17} protons $/$ year on target!

Fermilab proton beam main injector

SpinQuest / E1039 Experiment Setup

pumping power $17 \mathrm{~K} \mathrm{~m}^{3}$ per hour

Predicted Uncertainties

Beam (~2.5\%)

- Relative luminosity
- Drifts
- Scraping

Analysis sources (<3.5\%)

- Tracking efficiency
- Trigger \& geometrical acceptance
- Mixed background
- Shape of DY

Target (< 6 \%)

- TE calibration
- Polarization inhomogeneity
- Density of target $\left(\mathrm{NH}_{3(\mathrm{~s})}\right)$

$$
A=\frac{2}{f\left|S_{T}\right|} \frac{\int d \phi_{S} d \phi \frac{d N\left(x_{b}, x_{t}, \phi_{S}, \phi\right)}{d \phi_{S} d \phi} \sin \left(\phi_{S}\right)}{N\left(x_{b}, x_{t}\right)}
$$

- Uneven radiation damage
- Beam-Target misalignment
- Packing fraction

Material	Density	Dilution factor	Packing fraction	Polarization	Interaction length
NH_{3}	$0.867 \mathrm{~g} / \mathrm{cm}^{3}$	0.176	0.60	80%	5.3%
ND_{3}	$1.007 \mathrm{~g} / \mathrm{cm}^{3}$	0.300	0.60	32%	5.7%

- Dilution factor

Goodness of event-reconstruction from E906

Monte-Carlo describe data well
Better resolution than expected

- $\delta \sigma_{M}(J / \psi) \sim 220 \mathrm{MeV}$
- $\delta \sigma_{M}(D Y) \sim$ truth-reconstructed from event-by-event MC
- J / ψ and ψ^{\prime} separation

Future: Transversity distributions

Distribution of transversely polarized quarks (or gluons) in a transversely polarized nucleon.

https://arxiv.org/abs/2205.01249
https://doi.org/10.1016/j.nima.2020.164504

The deuteron is the simplest spin-1 system and offers a vast array of observables to explore as we begin to build the composite spin picture of nuclei.
$>$ We proposed the first ever Spin-1 TMD measurements using a polarized deuteron target, including a direct measurement of gluon transversity, while also for the first time measuring the sea-quark transversity distribution of the deuteron/neutron.
> In combination with our Dark Sector program, we are awaiting Fermilab PAC's Stage-1 approval.

SpinQuest Status / E1039 Timeline

> 2018, March: DOE approval
> 2018, May: Fermilab stage-2 approval
> 2018, June: E906 decommissioned
2019, May: Transferred the polarized target from UVA to Fermilab
>2023 All components of the detector and the target system are fully commissioned without the polarized target material...

* Polarized target material (NH3/ND3) is presently under FNAL ES\&H as well as Rad Safety Review.
> SpinQuest will be the first 1 K and high intensity polarized target experiment at Fermilab.
> FNAL ES\&H is in contact with JLab regarding the rad safety aspects of NH3/ND3 in the material handling procedures.

SpinQuest / E1039 Timeline

> Polarized target commissioning with NH3/ND3 target material will be expected to complete by the beginning of November 2023
> E1039 first beam commissioning starts in mid-November 2023 [Run for 2+ years, 2023-2025+]
> 2026: Data taking with Transversely polarized Spin 1 targets.

A summarized form of DY Experiments

Experiment	Particles	Energy (GeV)	x_{b} or x_{t}	Luminosity $\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$	$A_{T}^{\sin \emptyset_{s}}$	P_{b} or $P_{t}(f)$	rFOM ${ }^{\text {\# }}$	Timeline
$\begin{aligned} & \text { COMPASS } \\ & \text { (CERN) } \\ & \hline \end{aligned}$	$\pi^{-}+\boldsymbol{p}^{\uparrow}$	$\begin{gathered} 190 \\ \sqrt{s}=17.4 \end{gathered}$	$x_{t}=0.1-0.3$	2×10^{33}	0.14	$\begin{gathered} P_{t}=90 \% \\ f=0.22 \end{gathered}$	1.1×10^{-3}	$\begin{gathered} \hline \text { 2015-2016, } \\ 2018 \\ \hline \end{gathered}$
PANDA (GSI)	$\overline{\boldsymbol{p}}+\boldsymbol{p}^{\uparrow}$	$\begin{gathered} 15 \\ \sqrt{s}=5.5 \end{gathered}$	$x_{t}=0.2-0.4$	2×10^{32}	0.07	$\begin{aligned} P_{t} & =90 \% \\ f & =0.22 \end{aligned}$	1.1×10^{-4}	>2020
PAX (GSI)	$\boldsymbol{p}^{\uparrow}+\overline{\boldsymbol{p}}$	Collider $\sqrt{s}=14$	$x_{b}=0.1-0.9$	2×10^{30}	0.06	$\boldsymbol{P}_{\boldsymbol{b}}=\mathbf{9 0} \%$	2.3×10^{-5}	>2022
NICA (JINR)	$\boldsymbol{p}^{\uparrow}+\boldsymbol{p}$	Collider $\sqrt{s}=20$	$x_{b}=0.1-0.8$	1×10^{31}	0.04	$\boldsymbol{P}_{\text {b }}=\mathbf{7 0 \%}$	6.8×10^{-5}	>2020
$\begin{aligned} & \text { PHENIX/STAR } \\ & \text { (RHIC) } \\ & \hline \end{aligned}$	$\boldsymbol{p}^{\uparrow}+\boldsymbol{p}^{\uparrow}$	Collider $\sqrt{s}=\mathbf{5 1 0}$	$x_{b}=0.05-0.1$	2×10^{32}	0.08	$P_{\text {b }}=\mathbf{6 0 \%}$	1.0×10^{-3}	>2018
sphtedlx (RHIC)	$\boldsymbol{p}^{\uparrow}+\boldsymbol{p}^{\uparrow}$	$\begin{aligned} & \sqrt{s}=\mathbf{2 0 0} \\ & \sqrt{s}=510 \end{aligned}$	$\begin{gathered} x_{b}=0.1-0.5 \\ x_{b}=0.05-0.6 \end{gathered}$	$\begin{aligned} & \hline \mathbf{8 \times 1 0 ^ { 3 1 }} \\ & 6 \times 10^{32} \end{aligned}$	0.08	$\begin{aligned} & \boldsymbol{P}_{\boldsymbol{b}}=\mathbf{6 0} \% \\ & \boldsymbol{P}_{\boldsymbol{b}}=\mathbf{5 0} \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.0 \times 10^{-4} \\ & 2.1 \times 10^{-3} \\ & \hline \end{aligned}$	>2021
Seaduest (FNAL: E-906)	$\boldsymbol{p}+\boldsymbol{p}$	$\begin{gathered} 120 \\ \sqrt{s}=15 \end{gathered}$	$\begin{gathered} x_{t}=0.1-0.45 \\ x_{b}=0.35-0.85 \\ \hline \end{gathered}$	3.4×10^{35}"	2012-2017
Spinduest \ddagger (FNAL: E-1039)	$\boldsymbol{p}+\boldsymbol{p}^{\top}$	$\begin{gathered} 120 \\ \sqrt{s}=15 \\ \hline \end{gathered}$	$x_{t}=0.1-0.5$	4.4×10^{35}	0-0.2*	$\begin{gathered} \hline P_{t}=85 \% \\ f=0.176 \\ \hline \end{gathered}$	0.15 or 0.09	2024-2025
Spinouest \#(Transversity)	$p^{\uparrow}+p$	$\begin{gathered} 120 \\ \sqrt{s}=15 \end{gathered}$	$x_{b}=0.1-0.5$	4.4×10^{35}	0-0.2*	$\begin{gathered} \hline P_{b}=85 \% \\ \mathrm{f}=0.176 \end{gathered}$	0.15 or 0.09	2026-2029

$\ddagger 8 \mathrm{~cm} \mathrm{NH} \mathrm{N}_{3}$ target $/ L=1 \times 10^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, \#(Tensor Polarized Spin-1 target) / $L=1 \times \mathbf{1 0}^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
*Not constrained by SIDIS data / \#rFOM = relative lumi * P^{2} * f^{2} w.r.t E-1027 ($\mathrm{f}=1$ for pol. P beams, $\mathrm{f}=\mathbf{0 . 0 2}$ for $\boldsymbol{\pi}^{-}$beam on NH_{3})

Welcome!

Please Join The Effort Dustin Keller [UVA] (dustin@virginia.edu)[Spokesperson] Kun Liu [LANL] (liuk.pku@gmail.com) ([Spokesperson])

 https://spinquest.fnal.gov/击Fermilab

This work is supported by DOE contract DE-FG02-96ER40950

