

Testing the Universality of Nuclear Short-Range Correlations

Jackson Pybus

Laboratory for Nuclear Science

What do we know about SRCs?

Short-ranged, short-lived, highly correlated pairs of nucleons

Position-space

High relative and lower center-of-mass momentum

Momentum-space

What do we know about SRCs?

p

A-2

Universal high-momentum "tail" – about 10-20% of nucleons

Factorized approach to SRC modeling

Pair interaction

Center-of-mass motion

Pair abundance

Nature Physics (2021), PLB (2018), PRC (2015), PRC (2021), JPG (2020), PRL (2017), PLB (2019), PRC (1996)...

Factorized SRC spectral function:

 $S(p_i, E_i) \sim C_{NN} \cdot |\phi(k_{rel})|^2 \cdot n(p_{CM})$

SRCs can be studied with hard breakup reactions

High-Energy Probe

Struck Nucleon

Scattering data can inform ab-initio theory

Ground-state interpretation requires establishing plane-wave factorization!

Reaction

Ground-State

Two ways to examine reaction-dependence: Scale Probe

Q^2 , |t| change the resolution **scale**

Different **probes**: Electromagnetic (e^{-}), Hadronic (p, A), Photonuclear (γ)

Two ways to examine reaction-dependence: Scale Probe

Q^2 , |t| change the resolution **scale**

Different **probes**: Electromagnetic (e^{-}) , Hadronic (p, A), Photonuclear (γ)

BM@N/R3B

GlueX

GlueX

Hadron-scattering measurements of SRCs

New data forthcoming from GSI

BM@N/R3B

SRC Photoproduction in Hall D

- At Jefferson Lab, Fall 2021
- 10.8 GeV e⁻ on diamond radiator
- E_{γ} from electron tagging
- GlueX spectrometer
- ²H, ⁴He, ¹²C

SRC Photoproduction in Hall D

- Quasi-elastic photoproduction: hard photon-nucleon interaction
- Many meson+baryon final-states are possible

SRC Photoproduction in Hall D

- Quasi-elastic photoproduction: hard photon-nucleon interaction
- Many meson+baryon final-states are possible
- ρ^- photoproduction:
 - Initial-state neutron
 - Distinctive topology with $\rho^- \rightarrow \pi^- \pi^0$ decay
- Exclusive detection of $(\gamma, \rho^- pp)$

Analysis on the light-front

Parton in Hadron

Parton momentum fraction

 x_B

Nucleon in Nucleus

Nucleon momentum fraction

$$\alpha_N \equiv A \frac{E_N - p_I^2}{E_A - p_A^2}$$

 z_N z_A

Ĭ

Analysis on the light-front

Parton in Hadron

Parton momentum fraction

 X_B

Nucleon in Nucleus

Nucleon momentum fraction

$$\alpha_N \equiv A \frac{E_N - p_I^2}{E_A - p_A^2}$$

Light-front variables mitigate resolution effects

> Low-momentum nucleon $\alpha_N \sim 1$

Standing nucleon pair $\alpha_1 + \alpha_2 \equiv \alpha_{CM} \sim 2$

• Diffractive background cut

- Diffractive background cut
- High relative momentum cut

- Diffractive background cut
- High relative momentum cut
- Cut on rho meson mass

- Diffractive background cut
- High relative momentum cut
- Cut on rho meson mass
- $|t|, |u| > 1.5 \, \text{GeV}^2$

\mathcal{M} N_{rec} A A - 2 $\sigma = \sigma(\gamma n \to \rho^- p) \times S(p_i, p_{rec})$

SRC Event Selection • Diffractive background cut • High relative momentum cut • Cut on rho meson mass • $|t|, |u| > 1.5 \,\mathrm{GeV}^2$ Compare with PWIA+GCF calculations

A. Schmidt et al, Nature (2020) J. R. Pybus et al, PLB (2020) I. Korover et al, PLB (2021)

First observation of SRCs in photoproduction

PRL 2007 Back-to-back correlation in (e, e'pp) @ Hall A

First observation of SRCs in photoproduction

Data can constrain ab-initio theory at high momentum

Center-of-mass behavior of pairs

A-dependent properties of SRCs also established

Center-of-mass behavior of pairs

 Cross-section scaling → universal high-momentum tail

A-dependent properties of SRCs also established

- Center-of-mass behavior of pairs
- Cross-section scaling → universal high-momentum tail
- SRC abundances match electron-scattering

Outlook for Hall D Nuclear Measurement

- wave predictions
 - effects, impact of |t| and |u| cuts
- Complementary ($\rho^0 pp$) channel allows access to pp pairs, enabling confirmation of isospin structure of SRCs
- modification

• Further study of systematics necessary to complete comparison to plane-

Sensitivity to photoproduction cross section, understanding of FSI

• Other ongoing projects: color transparency, neutron structure, medium

Nuclear Glue: J/ψ photoproduction from nuclei

Access to high-*x* gluon content of nucleus and bound nucleon

Proposal PR12-23-009 given C2 approval by JLab PAC

Nuclear Glue: J/ψ photoproduction from nuclei

Proposal **PR12-23-009**

Nuclear Glue: J/ψ photoproduction from nuclei

Sub-threshold production: Highly sensitive to exotic effects!

S.J. Brodsky et al, PLB (2001)

Proposed gluonic probe of correlated nucleons

~700 events

Hall D Proposal PR12-23-009

Conclusions

- Measurement of $(\gamma, \rho^- pp)$ shows first photonuclear probe of SRCs
- Initial results show consistency with abinitio and electron-scattering expectations
- New measurement of threshold J/ψ from nuclei gives first insights to high-x nuclear gluons

Backup Slides

Interpreting SRC results requires two things:

1. Clean measurements of SRC breakup using two-nucleon knockout

Interpreting SRC results requires two things:

- 1. Clean measurements of SRC breakup using two-nucleon knockout
- 2. Model of the SRC component of the nuclear ground-state

Cruz-Torres et al., Nature Physics (2021)

Weiss et al., Phys. Lett. B 780 (2018) Weiss, Bazak, Barnea, Phys. Rev. C 92 (2015) Tropiano et al., Phys. Rev. C 104, 034311 (2021) Lynn et al., JPG 47, 045109 (2020) Chen, Detmold, Lynn, Schwenk, PRL 119 (2017) Ryckebusch et al., Phys. Lett. B 792, 21 (2019) Ciofi and Simula, Phys. Rev. C 53, 1689 (1996)

Ground-state model can be combined with "Plane-Wave Impulse Approximation"

e'

N'

Ground-state model can be combined with "Plane-Wave Impulse Approximation"

e'

Ground-state model can be combined with "Plane-Wave Impulse Approximation"

PWIA relies on factorization between reaction and ground-state

e'

$\sigma = \sigma_{e,N}(q) \times S(p_i, p_{rec})$ $f(q) \times S($

probe- dependent

Internal scale separation of SRCs on good footing:

Nature Physics 17, 667 (2021)

Nature Physics 17, 306 (2021)

GlueX Spectrometer

- Large-acceptance detector
- Solenoidal magnet:
 - Good p_T resolution
 - Poor p_{z} resolution
- Time-of-flight allows particle identification for forward-going charged particles
- Calorimeters allows good acceptance and reconstruction of final-state photons

Cross section extraction for $\gamma n \rightarrow \rho^- p$

Hadron-scattering measurements of SRCs

- Inverse-kinematics measurement at Joint Institute for Nuclear Research in Dubna
- ¹²C ions incident on hydrogen target
- Spectrometer measured final-state protons, nuclear fragments
- Allows reconstruction of nuclear final-state in SRC breakup scattering

Experimental evidence for SRC scale-separation

M. Patsyuk et al, Nature Physics (2021)

Next generation of ion-beam SRC studies underway

JINR, Dubna

GSI, Frankfurt

