ALESSANDRO BACCHETTA, PAVIA U. AND INFN RECENT RESULTS ON TMD EXTRACTIONS FROM THE MAP COLLABORATION

BY THE MAP COLLA BORATON https://github.com/MapCollaboration

HARVARD

PARTICULAR THANKS TO

Matteo Cerutti

Lorenzo Rossi

INTRODUCTION

Longitudinal momentum

Longitudinal momentum

Transverse-Momentum Distributions $f(x, \vec{k}_T)$ 3 dimensional (+ 2 scales)

Longitudinal momentum

QUESTIONS

How "wide" is the distribution?

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

<u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u>

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd <u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u>

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

Very good knowledge of x dependence of f_1 and g_{1L}

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)

see also talk by P. Berry

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)

see also talk by P. Berry

Fair knowledge of Sivers and transversity (mainly x dependence)

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)

see also talk by P. Berry

Fair knowledge of Sivers and transversity (mainly x dependence)

see talk by I. Fernando

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)

see also talk by P. Berry

Fair knowledge of Sivers and transversity (mainly x dependence)

see talk by I. Fernando

Some hints about all others

The W term dominates at low transverse momentum ($q_T \ll Q$) and contains the TMDs

So far, the Y term has been neglected in TMD extractions

Collins, Soper, Sterman, NPB250 (85)

The analysis is usually done in Fourier-transformed space

Collins, Soper, Sterman, NPB250 (85)

The analysis is usually done in Fourier-transformed space TMDs formally depend on two scales, but we set them equal. Collins, Soper, Sterman, NPB250 (85)

TMDS IN SEMI-INCLUSIVE DIS (SIDIS)

TMD STRUCTURE

 $\hat{f}_1^a(x, |\boldsymbol{b}_T|; \mu, \zeta) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^a(x, \boldsymbol{k}_\perp^2; \mu, \zeta)$

see, e.g., Collins, "Foundations of Perturbative QCD" (11) <u>TMD collaboration, "TMD Handbook," arXiv:2304.03302</u>

TMD STRUCTURE

 $\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^a(x, \boldsymbol{k}_\perp^2; \boldsymbol{\mu})$

 $\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} (\gamma$

$$\mu,\zeta)$$

$$\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}} \right)^{K_{\text{resum}} + g_K}$$

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

TMD STRUCTURE

$$\hat{f}_1^a \left(x, |\boldsymbol{b}_T|; \mu, \zeta \right) = \int d^2 \boldsymbol{k}_\perp \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a \left(x, \boldsymbol{k}_\perp^2; \mu \right)$$

 $\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} (\gamma_f)$

$$\mu_b = \frac{2e^{-\gamma_E}}{b_T}$$

$$\mu,\zeta)$$

$$\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}} \right)^{K_{\text{resum}} + g_K}$$

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302
$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\frac{d\mu}{d\mu} \right)$$

collinear PDF

 $\mu_b = \frac{2e^{-\gamma_E}}{b_T}$

matching coefficients (perturbative)

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu}} \left(\zeta_{f} \right)$$

collinear PDF

matching coefficients (perturbative)

see, e.g., Collins, "Foundations of Perturbative OCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu}} \left(\zeta_{f} \right)$$

collinear PDF

matching coefficients (perturbative)

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

 $\hat{f}_1^a(x, |\boldsymbol{b}_T|; \mu, \zeta) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^a(x, \boldsymbol{k}_\perp^2; \mu, \zeta)$

collinear PDF

matching coefficients (norturhativa)

Some choices can be different in different extractions, but the overall results for the TMD should be compatible

LATEST PUBLISHED RESULTS (2022)

TMD GLOBAL FITS

	Accuracy	SIDIS HERMES	SIDIS COMPASS	DY fixed target	DY collider	N of points	χ²/N _{point}
Pavia 2017 <u>arXiv:1703.10157</u>	NLL					8059	1.55
SV 2019 <u>arXiv:1912.06532</u>	N ³ LL-					1039	1.06
MAP22 arXiv:2206.07598	N ³ LL-					2031	1.06

ints	

MAP22: the "Monte Barone" fit

- 6 B . el

201

Monte Barone, Piemonte, 2044 m

Summit of Monte Barone, June 2023

x-Q² COVERAGE

MAP Collaboration Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov, arXiv:1912.06532

x-Q² COVERAGE

MAP Collaboration Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov, arXiv:1912.06532

AVAILABLE TOOLS: NANGA PARBAT

Ξ README.md

> Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

For the last development branch you can clone the master code:

git clone git@github.com:MapCollaboration/NangaParbat.git

https://github.com/MapCollaboration/NangaParbat

AVAILABLE TOOLS: NANGA PARBAT

README.md Ξ

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

For the last development branch you can clone the master code:

git clone git@github.com:MapCollaboration/NangaParbat.git

https://github.com/MapCollaboration/NangaParbat

Also:

ARTEMIDE

https://teorica.fis.ucm.es/artemide/

TMDLIB

https://tmdlib.hepforge.org/

MAP22 FUNCTIONAL FORM

 $f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_T^2}{g_1}} + \lambda^2 k_T^2 e^{-\frac{k_T^2}{g_{1B}}} + \lambda_2^2 e^{-\frac{k_T^2}{g_{1C}}} \right)$

 $g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$

 $g_K(b_T^2) = -\frac{g_2^2}{2}b_T^2$

MAP22 FUNCTIONAL FORM

 $f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_T^2}{g_1}} + \lambda^2 k_T^2 e^{-\frac{k_T^2}{g_{1B}}} + \lambda_2^2 e^{-\frac{k_T^2}{g_{1C}}} \right)$

 $g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$

 $g_K(b_T^2) = -\frac{g_2^2}{2}b_T^2$

11 parameters for TMD PDF + 1 for NP evolution +9 for FF = 21 free parameters

CHALLENGE: SIDIS NORMALIZATION VS ACCURACY

COMPASS multiplicities (one of many bins)

CHALLENGE: SIDIS NORMALIZATION VS ACCURACY

COMPASS multiplicities (one of many bins)

at

ENHANCEMENT PREFACTOR

PREFACTOR

The prefactor is independent of the fitting parameters

PREFACTOR

Higher-order corrections decrease the role of the TMD region. We need to enhance it with a prefactor.

The prefactor is independent of the fitting parameters

ENHANCEMENT PREFACTOR

The prefactor is independent of the fitting parameters

Higher-order corrections decrease the role of the TMD region. We need to enhance it with a prefactor.

Possible justification in terms of powersuppressed corrections?

Vladimirov, arXiv:2307.13054

for TMD at NLP, see also talks by J. Terry and L. Gamberg

EXAMPLE OF AGREEMENT WITH DATA: DRELL-YAN

EXAMPLE OF AGREEMENT WITH DATA: DRELL-YAN

EXAMPLE OF AGREEMENT WITH DATA: SIDIS

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider transverse momentum

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider transverse momentum

Data set	$N_{\rm dat}$	$\chi_D^2/N_{\rm dat}$	$\chi_{\lambda}^2/N_{\rm dat}$	$\chi_0^2/N_{\rm dat}$
Tevatron total	71	0.87	0.06	0.93
LHCb total	21	1.15	0.3	1.45
ATLAS total	72	4.56	0.48	5.05
CMS total	78	0.53	0.02	0.55
PHENIX 200	2	2.21	0.88	3.08
STAR 510	7	1.05	0.10	1.15
DY collider total	251	1.86	0.2	2.06
DY fixed-target total	233	0.85	0.4	1.24
HERMES total	344	0.48	0.23	0.71
COMPASS total	1203	0.62	0.3	0.92
SIDIS total	1547	0.59	0.28	0.87
Total	2031	0.77	0.29	1.06

Data set	$N_{\rm dat}$	$\chi_D^2/N_{\rm dat}$	$\chi_{\lambda}^2/N_{\rm dat}$	$\chi_0^2/N_{\rm dat}$	
Tevatron total	71	0.87	0.06	0.93	
LHCb total	21	1.15	0.3	1.45	
ATLAS total	72	4.56	0.48	5.05	
CMS total	78	0.53	0.02	0.55	le thie datae
PHENIX 200	2	2.21	0.88	3.08	is unis ualas
STAR 510	7	1.05	0.10	1.15	compatible
DY collider total	251	1.86	0.2	2.06	
DY fixed-target total	233	0.85	0.4	1.24	
HERMES total	344	0.48	0.23	0.71	
COMPASS total	1203	0.62	0.3	0.92	
SIDIS total	1547	0.59	0.28	0.87	
Total	2031	0.77	0.29	1.06	

RESULTING TMDS

68% CL.

FIG. 13: The TMD PDF of the up quark in a proton at $\mu = \sqrt{\zeta} = Q = 2$ GeV (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $|\mathbf{k}_{\perp}|$ for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the

RESULTING TMDS

FIG. 13: The TMD PDF of the up quark in a proton at $\mu = \sqrt{\zeta} = Q = 2$ GeV (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $|\mathbf{k}_{\perp}|$ for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the 68% CL.

CONNECTIONS WITH LATTICE QCD: COLLINS-SOPER KERNEL

Bermudez Martinez, Vladimirov, arXiv:2206.01105

see also talks by Y. Zhao

CONNECTIONS WITH LATTICE QCD: COLLINS-SOPER KERNEL

Bermudez Martinez, Vladimirov, arXiv:2206.01105

TMD phenomenology

see also talks by Y. Zhao

CONNECTIONS WITH LATTICE QCD: COLLINS-SOPER KERNEL

Bermudez Martinez, Vladimirov, arXiv:2206.01105

TMD phenomenology

Lattice QCD

see also talks by Y. Zhao

CONNECTIONS WITH LATTICE QCD: COLLINS-SOPER KERNEL

Bermudez Martinez, Vladimirov, arXiv:2206.01105

TMD phenomenology

Lattice QCD

Avkhadiev, Shanahan, Wagman, Zhao, sarXiv:2307.12359

see also talks by Y. Zhao

RESULTING TMD FRAGMENTATION FUNCTIONS

PION TMDS

Experiments	$N_{\rm cut}$	$\chi_D^2/N_{\rm cut}$	$\chi_{\lambda}^2/N_{ m cut}$	χ^2_0
E537	64	1.00	0.57	
E615	74	0.31	1.22	
Total	138	0.63	0.92	

MAP collaboration, arXiv:2210.01733

PION TMDS

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_T^2}{g_{1\pi}}} + \lambda_{\pi}^2 k_T^2 e^{-\frac{k_T^2}{g_{1B\pi}}} \right)$$

MAP collaboration, arXiv:2210.01733

$$+\lambda_{2\pi}^2 e^{-rac{k_T^2}{g_{1C\pi}}}$$

see also talk Patrick Barry

WORK IN PROGRESS

COMPATIBILITY STUDIES

		χ_0^2/N_{dat}	
Data set	$N_{\rm dat}$	Weighted fit	Unweight
Fixed-target DY	233	0.58	0.57
Collider DY	179	1.04	1.03
ATLAS	72	4.25	4.27
Total	484	2.48	1.29

PhD thesis of M. Cerutti, in preparation

COMPATIBILITY STUDIES

Fit where the contribution of the ATLAS data is enhanced by a factor (412/72 in this case)

		χ_0^2/N_{dat}		
Data set	$N_{ m dat}$	Weighted fit	Unweighted fit	
Fixed-target DY	233	0.58	0.57	
Collider DY	179	1.04	1.03	
ATLAS	72	4.25	4.27	
Total	484	2.48	1.29	

PhD thesis of M. Cerutti, in preparation

COMPATIBILITY STUDIES

Fit where the contribution of the ATLAS data is enhanced by a factor (412/72 in this case)

		χ_0^2/N_{dat}	
Data set	N_{dat}	Weighted fit	Unweight
Fixed-target DY	233	0.58	0.57
Collider DY	179	1.04	1.03
ATLAS	72	4.25	4.27
Total	484	2.48	1.29

PhD thesis of M. Cerutti, in preparation

MMHT2014

Hessian set

PDFS

Monte Carlo set

MMHT2014

PDFS

Hessian set

MAP22 fit

NNPDF3.1

Monte Carlo set

MMHT2014

Hessian set

MAP22 fit

Fit with NNPDF set

PDFS

NNPDF3.1

Monte Carlo set

idea of the full TMD uncertainties, without dramatically changing the TMD functional form

FULL N³LL WITH NEW MAPFF

FFS

DEHSS NLO

NLO Hessian set

MAPFF

N²LO Monte Carlo set

MAP collaboration, arXiv:2204.10331

Nonpert. TMD components of FF equal for pions and kaons

Data set	N_{dat}	$\chi_0^2/N_{\rm dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Flavor blind

Nonpert. TMD components of FF equal for pions and kaons

Data set	$N_{\rm dat}$	$\chi_0^2/N_{\rm dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Flavor blind

Nonpert. TMD components of FF equal for pions and kaons

Data set	$N_{\rm dat}$	$\chi_0^2/N_{\rm dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Flavor blind

Distinction between pions and kaons

Data set	$N_{\rm dat}$	$\chi_0^2/N_{\rm dat}$
DY collider total	251	2.19
Dy fixed target total	233	0.72
HERMES total	344	1.61
COMPASS total	1203	0.82
SIDIS total	1547	1.00
Total	2031	1.11

Hadron dependent

Nonpert. TMD components of FF equal for pions and kaons

Data set	$N_{\rm dat}$	$\chi_0^2/N_{\rm dat}$
DY collider total	251	2.14
Dy fixed target total	233	0.68
HERMES total	344	2.72
COMPASS total	1203	0.99
SIDIS total	1547	1.38
Total	2031	1.39

Flavor blind

Distinction between pions and kaons

Data set	N_{dat}	$\chi_0^2/N_{\rm dat}$
DY collider total	251	2.19
Dy fixed target total	233	0.72
HERMES total	344	1.61
COMPASS total	1203	0.82
SIDIS total	1547	1.00
Total	2031	1.11

Hadron dependent

PRELIMINARY RESULTS FOR TMD PDFS

PRELIMINARY RESULTS FOR TMD FFS

comparison between different fits

PRELIMINARY RESULTS FOR TMD FFS

comparison between different fits

comparison between pions and kaons

CONCLUSIONS

The MAP22 TMD fit is currently the most advanced global TMD fit and tentatively addresses the problem of the SIDIS normalization

- The MAP22 TMD fit is currently the most advanced global TMD fit and tentatively addresses the problem of the SIDIS normalization
- We are working toward an updated global fit at full N³LL with Monte Carlo PDF and FF replicas

- The MAP22 TMD fit is currently the most advanced global TMD fit and tentatively addresses the problem of the SIDIS normalization
- We are working toward an updated global fit at full N³LL with Monte Carlo PDF and FF replicas
- To achieve a good description of data with this updated conditions, it is necessary to introduce different TMD FF for pions and kaons

