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What do we know about structures?

* Most well-known structure is through longitudinal structure of

hadrons, particularly protons
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Other structures?

* To give deeper insights into color confined
systems, we shouldn’t limit ourselves to
proton structures

* Pions are also important because of their
Goldstone-boson nature while also being
made up of quarks and gluons
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Available datasets for pion structures
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Available datasets for pion structures

e Much less available
data than in the
proton case

e Still valuable to

study
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Pion PDFs in JAM

Drell-Yan (DY)

PHYSICAL REVIEW LETTERS 121, 152001 (2018)

First Monte Carlo Global QCD Analysis of Pion Parton Distributions

P.C. Balrry,1 N. Sato,”> W. Melnitchouk,’ and Chueng-Ryong Ji!

B valence
B sca

B clue/10
model dep.

Threshold resummation in DY

‘ PHYSICAL REVIEW LETTERS 127, 232001 (2021)

| 3 Analysis of Pion Parton Distributions with Threshold Resummation
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3D structures of hadrons

* Even more challenging is the 3d structure through GPDs and TMDs
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Unpolarized TMD PDF

Fon(@br) = [ S P T[N, (B)y Wb, 0y (0) | A)]

4
b = (b_, O+, bT)
* by is the Fourier conjugate to the intrinsic transverse momentum of

quarks in the hadron, ky

* We can learn about the coordinate space correlations of quark fields
in hadrons

* Modification needed for UV and rapidity divergences; acquire
regulators: fq/N(x br) — fq/N(:z: br; i, C)



Factorization for low-g Drell-Yan

* Like collinear observable, a hard part with two functions that describe
structure of beam and target

* So called “W”-term, valid only at low-q

d3o 47r2a 27 ibpar
drdYdg? 9752 Zqu Q" m) / Some
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TMD PDF within the b, prescription

br
b.(br) = ]
b= e

Fanay (@, b, o, Q%) =((C ® f)y/ncay(@; bs)]

high-br: non-perturbative

Q Relates the TMD at
X exp{qu/N(A)(a:, bT) —0JK (bT) IH@J—[S(Z)*, Qo, Q, UQH}\ small-by to the collinear
PDF

|

9q/n(4): intrinsic non-perturbative structure of
the TMD

Jk: universal non-perturbative Collins-Soper
kernel
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A few details

* Nuclear TMD model linear combination of bound protons and
neutrons

* Include an additional A-dependent nuclear parameter

* We use the MAP collaboration’s parametrization for non-perturbative
TMDs

* Only tested parametrization flexible enough to capture features of Q bins

e Perform a simultaneous global analysis of pion TMD and collinear
PDFs, with proton (nuclear) TMDs



Note about E615 A Drell-Yan data

. do : d
* Provides both N (pr-integrated) and d

dxXg XF
* Large constraints on 1t collinear PDFs from pr-integrated

* Large constraints on T TMD PDFs from pr-dependent

o
o (pr-dependent)

* Projections of same events = correlated measurements

* They have the same luminosity uncertainty, so they have the same
overall normalization uncertainty

* To account for this, we equate the fitted normalizations of the two
otherwise independent measurements

* No other guidance from experiment how the uncertainties are correlated



Note on collinear DY theory

* When equating the normalizations, we found
 Agreement when using NLO theory on the collinear observables
* Tension when using NLO+NLL threshold resummed theory on the collinear
observables

* We note that in the OPE part of the TMD formalism, we use NLO
accuracy

* We do not use any threshold enhancements on the pr-dependent
observables



Data and theory agreement

* Fit both pA and A DY data and achieve good agreement to both

| Process | Experiment | /s (GeV)|x*/N Z-score|
TMD
gr-dep. pA DY | E288 [90] | 19.4 | 1.07 0.34
pA — ptp~ X | E288 [90] 23.8 | 0.99 0.05
E288 [90] 24.7 0.82 0.99
E605 [91] | 38.8 |1.22 1.03
E772 [92] 38.8 2.54 5.64
(Fe/Be) E866 [93] 38.8 1.10 0.36
(W/Be) E866 [93] 38.8 0.96 0.15
gqr-dep. mA DY | E615 [94] 21.8 1.45 1.85
W — ptp” X | E537 [95] 15.3 | 0.97 0.03
collinear
gr-integr. DY | E615 [94] 21.8 0.90 0.48
aW — utu” X | NA10 [96] 19.1 0.59 1.98
NA10 [96] | 23.2 |0.92 0.16
leading neutron| H1 [97] 318.7 0.36  4.59
ep — enX ZEUS [98] | 300.3 1.48 2.15
[Total [1.12  1.86 |

d20 /dxpdg? (x277) (cm?/GeV?)
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Extracted pion PDFs
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* The small-g+ data do not constrain much the PDFs
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Resulting TMD PDFs
of proton and pion

fq/N’(ZE, i

fq/N(bT|:c;Q,Q2)

* Broadening appearing
as X increases

* Up quark in pion is
narrower than up
caark im oroton

fd2beq/N(x, 0.0
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Resulting average bt

(br|T) g/ = /dsz br fu/n (br|2; Q, Q%)

e Average transverse spatial
correlation of the up quark
in proton is ~ 1.2 times
bigger than that of pion

* Pion’s (by|x)is 4 — 5.20
smaller than proton in this
range

* Decreases as x decreases
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Transverse EMC effect

1

 Compare the ‘
average b gi 0.98]
ge by given x _

for the up quark in 0.96!
the bound proton to :
that of the free 0.947
proton '

0.92}
* Less than 1 by :

~ 5 —12% over the 0.9¢
X range 0 58l
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Outlook

* Future studies needed for theoretical explanations of these
phenomena

e Look into threshold corrections in the OPE formalism

* Lattice QCD can in principle calculate any hadronic state — look to
kaons, rho mesons, etc.

* Future tagged experiments such as at EIC and JLab 22 GeV can
provide measurements for neutrons, pions, and kaons



Backup



Small b+ operator product expansion

* At small by, the TMDPDF can be described in terms of its OPE:

1
N de -
frm(z,br; 1, Cr) = Z/ gcf/j(x/fa br; Cry 1) /(&5 1) + O((Aqeopbr)®)

* where C are the Wilson coefficients, and fi/n is the collinear PDF

* Breaks down when b gets large



b, prescription

* A common approach to regulating large b behavior

b Must choose an appropriate value;

\/1 b a transition from perturbative to
+ J & max non-perturbative physics

b.(br

e At small bTI b*(bT) — bT
At large by, b.(br) = by ax

pbarry72@gmail.com 22



Introduction of non-perturbative functions

* Because b, # by, have to non-perturbatively describe large by
behavior

Completely general — - ~

independent of quark, gK(bT; bma,x) = —K(bT, /L) -+ K(b*, ,u)

hadron, PDF or FF

e_gj/H(a:)bT;bmax)

Non-perturbative function

dependent in principle on fJ/H (SB bT C 'U’) gK(bT;bmax)ln(\/Z/Qo)
flavor, hadron, etc. :
fg/H (33 b*7 Ca )
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TMD factorization in Drell-Yan

* In small-gt region, use the Collins-Soper-Sterman (CSS) formalism and
b, prescription

Can these data constrain the

do 4722 &2br . ) . ;
dQ%dydgZ ~ 9Q%s Z HJ%Y(Q?/'I’Q7G'S(MQ))/ (2ﬂ)2e qr-br pion collinear PDF*

994578

TA -
x e~ 9i/A(®a,bT;b max)/ _Affj &/4(54 LLp. )10535( b*nu'b e 7%(% )) Perturbative

§a’ pieces
Non-perturbative B . L d¢g Th
pieces X € e ki ——[is/B(&B; M. C’;}?}f(  bus 14, b, » Gs (1, ))

B é. §B
2 2 qu 2
% exp4 —Grbr: bras) In Q3+K<b*,ub >1n% / ) - [%(as(u))—ln (f,)m(as(u'»]}

Non-perturbative piece of the CS kernel pbarry72@gmail.com 24




MAP parametrization

* A recent work from the MAP collaboration (arXiv:2206.07598) used a
complicated form for the non-perturbative function

g1(x e_gl(w)bTT + )\2 g2 ) |1 — giB(x ﬁ e_ng(x)bTT + )\% gic(x e_glc(m)bTT
1B 4

[ ¢ ] gk (b%)/2

finp(z,b7;¢, Qo) = Q2

Y

91(x) + A2 gig(z) + A3 gic ()
(38)

r%{1,2,3} (1 — x)“%l,z,:a}

9{1,1B,1C} () = N{l,lB,lC’}

79{1,2,3} (1 _ @)a%1,2,3} ,

b7

2

e 11 free parameters for each hadron! (flavor dependence not
necessary) (12 if we include the nuclear TMD parameter)

Universal CS kernel

gk (b7) = —g3



Resulting y# for each parametrization

3.5 ? . MAP
Gaussian

* Tried multiple 3. Exponential
parametrizations S o
for non- 2 A
perturbative z
TMD structures ==~

* MAP 15 ¥ \
parametrization — K
is able to a v
describe better .l | |
all the datasets %@% “o5 " o5 " S
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Nuclear TMD PDFs — working hypothesis

* We must model the nuclear TMD PDF from proton

. Z . A—7 .
fq/A(x: bTuui () — qu/p/A(x; bT,,Ll, () +qu/n/A(x, bT,[,l, ()

* Each object on the right side independently obeys the CSS equation

e Assumption that the bound proton and bound neutron follow TMD
factorization

* Make use of isospin symmetry in that u/p/A & d/n/A, etc.



Building of the nuclear TMD PDF

* Then taking into account the intrinsic non-perturbative, we model the
flavor-dependent pieces of the TMD PDF as

Z
(C ® fua(x)e8uatbr) — Z(C ® f)u/p/a(x)e 8upiAlxbr)

A-2Z

A (C X f)d/p/A (_x)e—gd/p/A(xabT)

+

and

7
(C ® faja(x)e 8o — 7(C® fajp 14 (x)e8alpia(x:br)

(€ ® uypn(x)e rn=,

+
A
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Nuclear TMD parametrization

 Specifically, we include a parametrization similar to Alrashed, et al.,
Phys. Rev. Lett 129, 242001 (2022).

Jonja = 9o (1 — an (AP = 1))

* Where a,- is an additional parameter to be fit



Bayesian Inference

Normalization

* Minimize the y* for each replica carameter
di — > LT BE; — ti(a) [ C;;
92 . 1 kEVkFEkz
x“(a,data) = Ee (% [ o ] ( s ) —|—§ ’rk

* Perform N total ¥ minimizations and compute statistical quantities
Expectation value  E[O] = ZC’) ax),

Variance V[O] = v Z (ax) — ,
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Correlations

0.75

e Level at which the
distributions are
correlated with each
other

r0.25

* Different distributions
are largely correlated
only within themselves

r—0.25

—0.75
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Possible explanation

* At large x, we are in a valence region, where only the valence quarks
are populating the momentum dependence of the hadron




Possible explanation

* At small x, sea quarks and potential gg bound states allowing only for
a smaller bound system




