Spin Transfer to Λ Hyperons at CLAS12

Matthew McEneaney, Duke University

matthew.mceneaney@duke.edu

JINST 18 P06002 2023

Research supported by:

25th International SPIN Symposium, September 26, 2023

Λ Hyperons

• Λ polarization is easily accessible from the $\Lambda \rightarrow p\pi^-$ channel:

 $\frac{dN}{d\Omega_p} \propto 1 + \alpha P_b D(y) \frac{D_{LL'}^{\Lambda} \cos\theta_{pL'}}{D_{LL'}^{\Lambda} \cos\theta_{pL'}}$

- $D_{LL'}^{\Lambda}$ describes probability for a quark to transfer its polarization to the Λ
- Related to helicity FF G_1^{Λ}

V. Burkert, et al. NIM A 2020.

26 September 2023

M. McEneaney, Duke University

1

Choice of Λ Polarization Axis

- $\cos \theta_{pL}$ is the angle between the proton momentum and the Λ polarization axis L'
- Two choices used for L'
 - Along P_{Λ}
 - Along P_{γ^*}

Signal Decomposition in MC $p\pi^{-}$ Invariant Mass

Event selection: $p\pi^{-}$ and scattered e^{-} **Kinematic Cuts:** $Q^{2} > 1 \& W > 2 \& y < 0.8$ **A Cuts:** $x_{F} > 0 \& z_{p\pi^{-}} < 1$

26 September 2023

Signal Fit in MC

 $p\pi^{-}$ Invariant Mass

Event selection: $p\pi^-$ and scattered e^- **Kinematic Cuts:** $Q^2 > 1 \& W > 2 \& y < 0.8$ **Λ** Cuts: $x_F > 0 \& z_{p\pi^-} < 1$ $f(E;\alpha,n,\sigma,\mu) = N \begin{cases} exp(-\frac{(x-\mu)^2}{2\sigma^2}), & \frac{x-\mu}{\sigma} \leq \alpha \\ A(B-\frac{x-\mu}{\sigma})^{-n}, & \frac{x-\mu}{\sigma} > \alpha \end{cases}$ Fit Function: Gaussian Peak with

26 September 2023

Signal Fit in Data

 $p\pi^{-}$ Invariant Mass

$$D_{LL'}^{\Lambda}$$
 Extraction

- Linear fit to cross-section requires acceptance correction
- Maximum Likelihood (ML) method requires **equal** amounts of positive and negative helicity events

$$D_{LL'}^{\Lambda} = \frac{1}{\alpha \overline{P_b^2}} \cdot \frac{\sum_{i=1}^{N_{\Lambda}} P_{b,i} D(y_i) \cos \theta_{pL'}^i}{\sum_{i=1}^{N_{\Lambda}} D^2(y_i) \cos^2 \theta_{pL'}^i}$$

• No acceptance correction needed for ML

p

 $\theta_{pL'}$

 $\vec{p_p}$

Λ

 $\vec{p}_{\pi^{-}}$

 π^{-}

Maximum Likelihood Results

Note: Errors are solely statistical

HERMES Results from: A. Airapetian, et al. Physical Review D, 74(7), Oct 2006.

26 September 2023

Graph Neural Networks (GNNs)

- Idea: use GNN to reduce background in invariant mass spectrum on event-by-event basis
- Pass each event as fully-connected, bidirectional graph
- Each particle is a node with its own data: p_T , θ , ϕ , etc.

Graph Neural Networks (GNNs)

• At basic level, function as generalized form of CNNs

CNN

GNN

GNN Evaluation on MC

83.7% Test accuracy and background is significantly reduced!

GNN Evaluation on Data

• $FOM = N_{sig}/\sqrt{N_{tot}}$ is 65.74 compared to 34.11 without the GIN

Domain-Adaptation

• **Problem:** Target domain does not match source domain

Domain-Adaptation

- Minimizes distinction between real and training data
- Two objectives: classification task and domain discrimination

Domain-Adaptation

• Reverse gradient from discriminator loss during backpropagation

DAGNN Evaluation on MC

26 September 2023

M. McEneaney, Duke University

15

DAGNN Evaluation on Data

• $FOM = N_{sig} / \sqrt{N_{tot}}$ is 42.09 compared to 34.11 without the GIN

NN Output on Data and MC

• Kolmogorov-Smirnov statistic is 0.035 for GIN and 0.261 for DAGIN

Summary and Next Steps

- Preliminary extraction of $\langle D_{LL'}^{\Lambda} \rangle = 0.0618 \pm 0.0963(stat)$ is consistent with previous measurements
- Machine learning methods need further validation
- Other approaches: normalizing flows, transformers
- Next steps:
 - Secondary vertex reconstruction method recently implemented
 - Measurement of Λ spontaneous transverse polarization
 - ΛK spin orbit correlations

Thank you!

Longitudinal Spin Transfer

- Polarized electron selects a quark with the opposite spin
- Polarization of quark is transferred to hadrons after fragmentation

Interpretation of $D_{LL'}^{\Lambda}$

- In the naïve quark model, the strange quark carries the Λ spin
- By measuring the light quark spin contribution, we can better understand the spin structure of the Λ

Sideband Background Correction

- Assume background polarization is independent of $M_{p\pi}$ -
- Subtract polarization computed in sideband regions

 $p\pi^{-}$ Invariant Mass

$$D_{LL'}^{\Lambda} = \frac{D_{LL' sig} - \epsilon D_{LL' bg}}{1 - \epsilon}$$

Graph Isomorphism Network (GIN)

- Based on Weisfeiler-Lehman (WL) Test, essentially ensures aggregation is injective
- Compare with basic GNN convolution:

 $h_v^{(k)} = \mathrm{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right)$

Graph Isomorphism Network (GIN)

• Aggregation in final layer is across all previous layers/iterations

Optimization of NN Cut

• Scan FOM and purity as a function of cut on NN output

