
Kostas Orginos,  William & Mary / JLab

Nucleon Structure from Pseudo 
PDFs
SPIN 2023
Duke, September 25-29, 2023

HadStruc



2013 revolution
Go beyond moments

• Goal: Compute full x-dependence (generalized) parton distribution functions (GPDFs)


• Operator product: Mellin moments are local matrix elements that can be computed in Lattice 
QCD 


• Power divergent mixing limits us to few moments


• X. Ji suggested an approach for obtaining PDFs from Lattice QCD


• First calculations quickly became available


• Older approaches based on the hadronic tensor
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Quasi-PDF
X. Ji’s Basic idea

• Lattice QCD computes equal time matrix elements


• Displace quarks in space-like interval


• Boost states to infinite momentum


• On the frame of the proton displacement becomes light-
like


• Infinite momentum not possible on the lattice


• Perurbative matching from finite momentum 


• LaMET

X. Ji, Phys.Rev.Lett. 110, (2013)
X. Ji  (2014) Sci. China Phys. Mech. Atron. 57 arXiv:1404.6680
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FIG. 2. Schematic illustration of the relation between a finite momentum frame, with the Wilson line in a spatial direction
and the light-cone frame of a hadron at rest. Due to Lorentz contraction, going to the light-cone frame increases the length
by a boost factor �, � ! 1 in the IMF. Source: Ref. [74], reprinted with permission by the Author and Springer Nature.

However, the former can only be overcome by simulating at a large enough nucleon boost and by using a matching
procedure.

In the original paper that introduced the quasi-distribution approach [45], Ji pointed out an intuitive way to
understand the above result: “(...) consider the Lorentz transformation of a line segment connecting (0, 0, 0, z)
with the origin of the coordinates. As the boost velocity approaches the speed of light, the space-like line segment
is tilted to the light-cone direction. Of course, it cannot literally be on the light-cone because the invariant length
cannot change for any amount of boost. However, this slight o↵-light-cone-ness only introduces power corrections
which vanish asymptotically.” This intuition is schematically represented in Fig. 2.

We turn now to discussing how to match results obtained on the lattice, with a hadron momentum that is finite
and relatively small, to the IMF. The subtlety of this results from the fact that regularizing the UV divergences
does not commute with taking the infinite momentum limit. When defining PDFs, the latter has to be taken
first, i.e. before removing the UV cuto↵, whereas on the lattice one is bound to take all scales, including the
momentum boost of the nucleon, much smaller than the cuto↵, whose role is played by the inverse lattice spacing.
To overcome this di�culty, one needs to formulate an e↵ective field theory, termed Large Momentum E↵ective
Theory (LaMET) [74], which takes the form of matching conditions that take the quasi-distribution to the IMF,
or light-cone, distribution. LaMET is an e↵ective theory of QCD in the presence of a large momentum scale P 3,
in a similar sense as Heavy Quark E↵ective Theory (HQET) [97] is an e↵ective theory of QCD in the presence of
a heavy quark, that can have a mass larger than the lattice UV cuto↵.

The parallels of LaMET with HQET are more than superficial. We again follow Ji’s discussion [74]. In HQET,
a generic observable O depends on the heavy mass mb and a cuto↵ ⇤. The matching with an observable o defined
in the e↵ective theory, in which the heavy quark has infinite mass, can be written in the following way, due to
asymptotic freedom:

O(mb/⇤) = Z(mb/⇤, ⇤/µ)o(µ) + O(1/mb) , (23)

where o is renormalized at a scale µ in the e↵ective theory. Additionally, renormalization of the full theory translates
the cuto↵ scale ⇤ to a renormalization scale µ. The crucial aspect is that O and o have the same infrared physics.
Thus, the matching coe�cient, Z, is perturbatively computable as an expansion in the strong coupling constant.
Apart from the perturbative matching, there are power-suppressed corrections, which can also be calculated.

Using the same ideas, one can write the relation between an observable in the lattice theory, Q, dependent on
the analogue of a heavy mass, i.e. a large momentum P 3 (and on the cuto↵ scale), and an observable in a theory

Renormalization of UV divergences is required



Good Lattice Cross sections 
Current-Current Correlators
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x-dependent, and it is recognized that the small x physics is not accessible with today’s computational re-
sources and methodology. A study of the systematics of the PDF extraction given mock lattice data recently
appeared in [30] indicating that the region of x > 0.1 is well within reach of todays lattice QCD calcula-
tions. As argued above, this is precisely the region where theoretical input may have the largest impact on
phenomenology.

It has been shown that various measures of hadron structure can be extracted in terms of a class of matrix
elements, called “lattice cross sections” (LCSs)[6], computable directly in lattice QCD, that are factorizable
into PDFs with calculable coe�cients, in the same manner as the hadronic cross sections measured in
experiment. In particular, these hadron cross sections are expressed as single-particle matrix elements of
non-local operators On(z):

�n(⌫, z2) = hP | T {On(z)} | Pi (4)

where n labels the operator, P is the hadron momentum and, z is the largest separation of the fields in the
operator On. These LCS can then be related to the PDFs fa(x), where a labels the parton flavor, through

�n(⌫, z2) =
X

a

Z 1

�1

dx
x

fa(x, µ2) Ka
n (x⌫, z2µ2) + O(z2⇤2

QCD), (5)

where µ is the factorization scale. The kernels Ka
n are calculable in (continuum) perturbation theory.

A simple choice of LCSs is gauge-invariant currents, separated in space,

OS (z) = (z2)2Z2
S [ ̄q q](z)[ ̄q ](0)

OV0(z) = z2Z2
V0[ ̄q(z · �) q0](z)[ ̄q0z · � ](0), (6)

representing scalar and flavor-changing current combinations respectively. The factors ZS , ZV0 are the rele-
vant quark bi-linear renormalization constants that render the left hand side of Eq. 5 renormalization group
invariant and absorb the UV divergences of the quark bi-linear currents. Note that the quark flavor q0 in
Eq. 6 is not required to correspond to a physical quark in the hadron, but can be a heavy “auxiliary” quark
as we note below. The heavier quark improves the computational e�ciency of the method. This procedure
has been also suggested for improving the signal in lattice calculations of x moments of distributions in
ref. [10]. A large number of di↵erent two-current correlators can be studied and together with pseudo-PDFs
can resulting in additional constraints to PDFs. A ’global’ analysis of these results can then provide a better
handle on systematics of the final PDF reconstruction from lattice QCD. The first study demonstrating the
feasibility of this approach was published in [31].

It should be noted that the formalism we are following in all these projects has been introduced by two of
the co-PIs in this projects, Radyushkin and Qiu.

1.3 Status report
In 2019, we were awarded an ALCC allocation on Summit at OLCF (NPH134). The prime objective of this
project was the determination of momentum fraction x dependence of the pion and nucleon PDFs. The were
several publications that used results obtained by this award. We discuss these publications in the following.

Parton Distribution Functions from Io↵e time pseudo-distributions
B. Joo, J. Karpie, K. Orginos, A. V. Radyushkin, D. G. Richards, S. Zafeiropoulos
DOI: 10.1007/JHEP12(2019)081
In this paper, we present a detailed study of the unpolarized nucleon PDF employing the approach of parton
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4-quark bi-local matrix elements: Ex.

Short distance factorization:

PDFs can be obtained

Renormalization of UV divergences of local operators is required

Y.-Q. Ma J.-W. Qiu (2014) arXiv:1404.6860 
Y.-Q. Ma J.-W. Qiu (2017) arXiv:1709.3018

equal time matrix element

Imitate scattering experiments: factorization



Pseudo-PDFs
An alternative point of view

z 0

p p

A. Radyushkin Phys.Lett. B767 (2017)

Unpolarized PDFs proton:
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III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider spacelike separa-
tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
1

�1

dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
1

�1

dy Q(y, P ) eiy⌫ . (9)

Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows

Q(y, P ) =
1

2⇡

Z
1

�1

d⌫ e�iy⌫
M(⌫, ⌫2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

Ê(0, z;A) = P exp


�ig

Z z

0
dz0µ A

µ
↵(z

0)T↵

�

space-like separation of quarks
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Pseudo-PDFs
Connection to light cone PDFs
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this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

Collinear PDFs: Choose 
z = (0, z�, 0)

p = (p+, 0, 0)

�+

M+(z, p) = 2p+Mp(�p+z�, 0)

Mp(�p+z�, 0) =

Z 1

�1
dx f(x) e�ixp+z�Definition of PDF: 

A. Radyushkin Phys.Lett. B767 (2017)

Lorentz invariance allows for the computation of invariant form factors in any frame

Use equal time kinematics for LQCD 



Lattice QCD calculation:

Choose 
z = (0, 0, 0, z3)

�0

Choosing       was also suggested also by M. Constantinou at GHP2017 based 

on an operator mixing argument for the renormalized matrix element Alexandrou et al arXiv:1706.00265

A. Radyushkin Phys.Lett. B767 (2017)

p = (p0, 0, 0, p3)

Mp(⌫, z
2
3) =

1

2p0
M0(z3, p3)Obtaining only the relevant 

�0

On shell  equal time matrix element 

computable in Euclidean space Briceno et al arXiv:1703.06072
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III. QUASI-DISTRIBUTIONS
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Consider the ratio

UV divergences will cancel in this ratio resulting a renormalization 
group invariant (RGI) function

Mp(0, 0) = 1 Isovector matrix element

The lattice regulator can now be removed

Mcont(⌫, z23) Universal independent of the lattice

M(⌫, z23) ⌘
Mp(⌫, z23)

Mp(0, z23)

Its Fourier transformation with respect to ν is a particular definition of a PDF

It contains non-perturbative information about the structure of the proton
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which using our conventions becomes
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CF
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µ
2
/4)B̃(x⌫) + D̃(x⌫)

i
, (10)

where
B̃(x) =

Z 1

0

d↵B(↵) [cos(x↵)� cos(x))] (11)

and
D̃(x) =

Z 1

0

d↵D(↵) [cos(x↵)� cos(x)] . (12)

Note the the new kernel depends on the product ⌫x and not on x and ⌫ separately. With
this new kernel we can now write a direct relation between the pseudo-Ioffe time PDF and
the the momentum space PDF as following:

M(⌫, z2) =

Z 1

0

dx qv(x, µ)K(x⌫, z2µ2) +
1X

k=1

Bk(⌫)(z
2)k . (13)

One can evaluate analytically the B̃(x) and D̃(x) integrals resulting in

B̃(x) =
1� cos(x)

x2
+ 2 sin(x)

xSi(x)� 1

x
+

3� 4�E
2

cos(x) + 2 cos(x) [Ci(x)� ln(x)] , (14)

where Si(x) and Ci(x) are the sine and cosine integrals respectively and,

D̃(x) = xIm
⇥
e
ix

3F3(111; 222;�ix)
⇤
�

2� (2 + x
2) cos(x)

x2
, (15)

where 3F3(111; 222; x) is the generalized Hypergeometric function.

A. Numerical Evaluation of the Convolution Integrals

In order to implement numerically the convolution required for the matching, we need
to worry about both the precision of the integration as well as the computational efficiency.
Although the although some of the integrals can be done analytically as indicated above, the
resulting special functions are difficult to evaluate accurately and in fact the Hypergeometric
function requires multi-precision arithmetic resulting in expensive computations. Further-
more, as the Ioffe time ⌫ becomes large, simple integration rules such as the trapezoid rule
break down even with O(103) integration points. Furthermore, potential divergence of the
PDF at x = 0 further complicates numerical evaluation of the final convolution integral over
x. These numerical instabilities arise from the fact that the integrand is oscillatory with a
frequency of oscillations that is ⌫/2⇡. One way to address the problem is to use an improved
trapezoid rule just like the rule we used in the "moments" paper. Unfortunately, this still
results in special functions but at least in may give us better precision.
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• Obtain the PDF from a limited set of   
matrix elements obtained from 
lattice QCD


• z2 is a physical length scale 
sampled on discrete values


• z2 needs to be sufficiently small so 
that higher twist effects are under 
control


• ν is dimensionless also sampled in 
discrete values


• the range of v is dictated by the 
range of z and the range of 
momenta available and is typically 
limited


• Parametrization of unknown 
functions

Leading twist extraction

3.1 Separating continuum PDFs from systematic errors

The CP symmetry implies that the reduced pseudo-ITD has the property

M(p, z, a) = M⇤(�p, z, a) = M⇤(p, �z, a) = M(�p, �z, a) , (3.1)

which we used when constructing the summed three-point correlation functions to in-
crease the statistical precision by averaging, after appropriate complex conjugations, the
correlation functions with positive and negative momenta and separations. The relation
M(p, z, a) = M(�p, �z, a) restricts lattice spacing errors with odd powers of a to be func-
tions of a|p| and a/|z|. A Taylor expansion in lattice spacing gives the continuum reduced
pseudo-ITD Mcont and lattice spacing corrections

M(p, z, a) = Mcont(⌫, z
2) +

X

n=1

✓
a

|z|

◆n

Pn(⌫) + (a⇤QCD)nRn(⌫) . (3.2)

With an O(a) improved lattice action, the lattice spacing errors related to the momentum
p, must come in from the momentum transfer. This feature is known in the improvement of
the local vector current [122], the case of z = 0, where the local vector current mixes with
the divergence of the tensor current. The operators discussed in [51] also demonstrate these
features when considering the hadronic matrix elements in question. These momentum
transfer effects are necessary for the studies of Generalized Parton Distributions, but not for
the PDF. There is also potential z

2 dependence on the lattice spacing coefficient functions,
Pn and Rn. Those effects which can come from logarithmic perturbative corrections, higher
twist contributions, or target mass corrections are additionally suppressed either by ↵s,
⇤2
QCDz

2, or m
2
z
2 respectively on top of the suppression by a/|z| and a⇤QCD. These z

2

dependencies are neglected here.
The relationship between the reduced pseudo-ITD and the ITD is through a convolution

with Wilson coefficient function. Ultimately, the ITD is not the goal of this study, but
instead its Fourier transform, the PDF. We adopt an approach analogous to [73, 90, 100]
where the intermediate ITD is not required, but a parameterization of the PDF is directly
related to the reduced pseudo-ITD. Unlike [73, 90, 100], the PDF is related to the leading
twist reduced pseudo-ITD through its moments. The higher twist power corrections are
added as nuisance terms similar to the lattice spacing terms. The functional form is given
by

Mcont(⌫, z
2) = Mlt(⌫, z

2) +
X

n=1

(z2⇤2
QCD)nBn(⌫) . (3.3)

in terms of the leading twist continuum limit reduced pseudo-ITD, Mlt, and the higher
twist distributions Bn. In principle, the higher twist distributions could have non-trivial z

2

dependence. Similarly to the lattice spacing terms, these effects which come from pertur-
bative corrections and target mass effects are additionally suppressed by powers of ↵s or
m

2
z
2 respectively and are neglected in the remainder of this study.
In principle, there exist higher twist power corrections and lattice spacing errors of

all orders. With these errors sufficiently under control, only the leading contributions are
significant. We therefore make the approximation that Pn = Rn = Bn = 0 for n > 1.
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PDFs can be individually extracted from the real and imaginary components separately.
The components are factorized as

Re M(⌫, z
2) =

Z 1

0
dx KR(x⌫, µ

2
z
2)q�(x, µ

2) + O(z2)

Im M(⌫, z
2) =

Z 1

0
dx KI(x⌫, µ

2
z
2)q+(x, µ

2) + O(z2) , (2.14)

where

KR(x⌫, µ
2
z
2) =

Z 1

0
du C(u, µ

2
z
2) cos(u⌫x)

KI(x⌫, µ
2
z
2) =

Z 1

0
du C(u, µ

2
z
2) sin(u⌫x) . (2.15)

Use of these matching kernels which factorize directly to the PDF removes the need for the
intermediate determination of the MS ITD. Unfortunately, they prove to be complicated
functions whose direct numerical evaluation is inefficient when incorporated into the analysis
of the matrix elements computed from lattice QCD. In Sec. 3.2, we adopt a power series
approximation to the convolution integrals that the above kernel functions participate in
which allows for efficient computations within the available range of the Ioffe time. With
sufficient number of terms, this power series approximates the convolution integrals to
numerical precision.

3 Determination of the continuum limit PDF and nuisance parameters

The continuum limit is a critical step in any precision lattice calculation. In this study, we
take advantage of the symmetries of the reduced pseudo-ITD to parameterize the lattice
spacing correction to the continuum limit, as well as the higher twist effects. The continuum
PDF is also parameterized and a simultaneous analysis of all three ensembles obtains the
continuum limit PDF with higher twist contamination removed. This method of adding
“nuisance parameters” to parameterize the systematic errors of experimental cross sections is
also used in the phenomenological extractions of PDFs. Such a combined analysis approach
can also be used with results obtained with different pion masses, lattice spacings, matrix
elements, and even lattice actions given appropriate parameterizations of those effects.
Ultimately, one can imagine taking all published lattice matrix elements and analyzing them
within this approach, given sufficiently novel nuisance parameterizations, just as a global
phenomenological fit is performed using experimental data with vastly different systematic
errors. In order to minimize the dependence of the effect of nuisance parameters, in this
study only higher twist and lattice spacing errors are considered for data with the same
physical quark mass and lattice action. Future work will study the extension of this method
to include other effects.

It is important to note that the coefficients of the lattice spacing errors can be functions
of the Ioffe time. Previous parameterizations of lattice spacing errors for parton observables
have only used simple dependences on the Ioffe time, which all diverge as ⌫ ! 1. In [80,
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• All coefficient functions respect 
continuum symmetries 


• Lattice spacing corrections to 
higher twist effects are ignored  


• On dimensional ground a/z terms 
must exist


• Additional  O(a) effects (last term)

3.1 Separating continuum PDFs from systematic errors

The CP symmetry implies that the reduced pseudo-ITD has the property

M(p, z, a) = M⇤(�p, z, a) = M⇤(p, �z, a) = M(�p, �z, a) , (3.1)

which we used when constructing the summed three-point correlation functions to in-
crease the statistical precision by averaging, after appropriate complex conjugations, the
correlation functions with positive and negative momenta and separations. The relation
M(p, z, a) = M(�p, �z, a) restricts lattice spacing errors with odd powers of a to be func-
tions of a|p| and a/|z|. A Taylor expansion in lattice spacing gives the continuum reduced
pseudo-ITD Mcont and lattice spacing corrections

M(p, z, a) = Mcont(⌫, z
2) +

X

n=1

✓
a

|z|

◆n

Pn(⌫) + (a⇤QCD)nRn(⌫) . (3.2)

With an O(a) improved lattice action, the lattice spacing errors related to the momentum
p, must come in from the momentum transfer. This feature is known in the improvement of
the local vector current [122], the case of z = 0, where the local vector current mixes with
the divergence of the tensor current. The operators discussed in [51] also demonstrate these
features when considering the hadronic matrix elements in question. These momentum
transfer effects are necessary for the studies of Generalized Parton Distributions, but not for
the PDF. There is also potential z

2 dependence on the lattice spacing coefficient functions,
Pn and Rn. Those effects which can come from logarithmic perturbative corrections, higher
twist contributions, or target mass corrections are additionally suppressed either by ↵s,
⇤2
QCDz

2, or m
2
z
2 respectively on top of the suppression by a/|z| and a⇤QCD. These z

2

dependencies are neglected here.
The relationship between the reduced pseudo-ITD and the ITD is through a convolution

with Wilson coefficient function. Ultimately, the ITD is not the goal of this study, but
instead its Fourier transform, the PDF. We adopt an approach analogous to [73, 90, 100]
where the intermediate ITD is not required, but a parameterization of the PDF is directly
related to the reduced pseudo-ITD. Unlike [73, 90, 100], the PDF is related to the leading
twist reduced pseudo-ITD through its moments. The higher twist power corrections are
added as nuisance terms similar to the lattice spacing terms. The functional form is given
by

Mcont(⌫, z
2) = Mlt(⌫, z

2) +
X

n=1

(z2⇤2
QCD)nBn(⌫) . (3.3)

in terms of the leading twist continuum limit reduced pseudo-ITD, Mlt, and the higher
twist distributions Bn. In principle, the higher twist distributions could have non-trivial z

2

dependence. Similarly to the lattice spacing terms, these effects which come from pertur-
bative corrections and target mass effects are additionally suppressed by powers of ↵s or
m

2
z
2 respectively and are neglected in the remainder of this study.
In principle, there exist higher twist power corrections and lattice spacing errors of

all orders. With these errors sufficiently under control, only the leading contributions are
significant. We therefore make the approximation that Pn = Rn = Bn = 0 for n > 1.
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However on the Lattice after expanding in lattice spacing we have 

which using our conventions becomes

K(x⌫, z2µ2) = cos(x⌫)�
↵s

2⇡
CF

h
ln(e2�E+1

z
2
µ
2
/4)B̃(x⌫) + D̃(x⌫)

i
, (10)

where
B̃(x) =

Z 1

0

d↵B(↵) [cos(x↵)� cos(x))] (11)

and
D̃(x) =

Z 1

0

d↵D(↵) [cos(x↵)� cos(x)] . (12)

Note the the new kernel depends on the product ⌫x and not on x and ⌫ separately. With
this new kernel we can now write a direct relation between the pseudo-Ioffe time PDF and
the the momentum space PDF as following:

M(⌫, z2) =

Z 1

0

dx qv(x, µ)K(x⌫, z2µ2) +
1X

k=1

Bk(⌫)(z
2)k . (13)

One can evaluate analytically the B̃(x) and D̃(x) integrals resulting in

B̃(x) =
1� cos(x)

x2
+ 2 sin(x)

xSi(x)� 1

x
+

3� 4�E
2

cos(x) + 2 cos(x) [Ci(x)� ln(x)] , (14)

where Si(x) and Ci(x) are the sine and cosine integrals respectively and,

D̃(x) = xIm
⇥
e
ix

3F3(111; 222;�ix)
⇤
�

2� (2 + x
2) cos(x)

x2
, (15)

where 3F3(111; 222; x) is the generalized Hypergeometric function.

A. Numerical Evaluation of the Convolution Integrals

In order to implement numerically the convolution required for the matching, we need
to worry about both the precision of the integration as well as the computational efficiency.
Although the although some of the integrals can be done analytically as indicated above, the
resulting special functions are difficult to evaluate accurately and in fact the Hypergeometric
function requires multi-precision arithmetic resulting in expensive computations. Further-
more, as the Ioffe time ⌫ becomes large, simple integration rules such as the trapezoid rule
break down even with O(103) integration points. Furthermore, potential divergence of the
PDF at x = 0 further complicates numerical evaluation of the final convolution integral over
x. These numerical instabilities arise from the fact that the integrand is oscillatory with a
frequency of oscillations that is ⌫/2⇡. One way to address the problem is to use an improved
trapezoid rule just like the rule we used in the "moments" paper. Unfortunately, this still
results in special functions but at least in may give us better precision.

2

�z · p = ⌫
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Jacobi Polynomials
Parametrization of Unknown functioins

where B(a, b) is the beta function. Since the Jacobi polynomials form a complete basis of
functions in the interval of [0,1], the PDFs can be written as

q±(x) = x
↵(1 � x)�

1X

n=0

±d
(↵,�)
n J

(↵,�)
n (x) (3.11)

for any ↵ and �. The choice of those parameters does affect the convergence of the coef-
ficients ±d

(↵,�)
n . In practice, one needs to truncate the series introducing in this way some

model dependence which can be easily controlled. The control of the truncation can be
improved if one fits for the optimal values of ↵ and � for that given order of truncation. In
other words, the rate of convergence of the series can be optimized by tuning the values of ↵

and �. One way to understand why tuning of ↵ and � can result in improved convergence of
the series is to realize that phenomenological considerations tell us that the Jacobi weight is
a good approximation to the shape of the PDF, therefore if ↵, � are tuned to roughly match
the shape of the PDF, the Jacobi polynomials need only to approximate a smooth, slowly
varying function with small coefficients. Using Eq. 3.9, we can easily convert an expansion
of the PDF in terms of (↵, �) Jacobi polynomials to one with (↵0

, �
0) Jacobi polynomials.

The transformation of the expansion coefficients is linear and if a truncation of the series
up to order N is used the linear transformation involves only coefficients up to that order.
Finally, there also exists a linear transformation which connects these coefficients and the
Mellin moments of the PDF given by

±d
(↵,�)
n =

1

N
(↵,�)
n

nX

j=0

!
(↵,�)
n,j a

±
j (3.12)

where a
±
n =

R 1
0 dx x

n
q±(x), so this parameterization can be thought as another way to

parameterize the PDF by a set of its moments.
To determine the relationship between the reduced pseudo-ITD and the parameters of

the PDF, the matching kernels KR,I are expanded in terms of Jacobi polynomials. It can
be shown that the kernels can be written as

KR(x⌫, µ
2
z
2) =

1X

n=0

�
(↵,�)
n (⌫, µ

2
z
2)

N
(↵,�)
n

J
(↵,�)
n (x)

KI(x⌫, µ
2
z
2) =

1X

n=0

⌘
(↵,�)
n (⌫, µ

2
z
2)

N
(↵,�)
n

J
(↵,�)
n (x) , (3.13)

with

�
(↵,�)
n (⌫, z

2
µ
2) =

nX

j=0

1X

k=0

(�1)k

(2k)!
c2k(z

2
µ
2)!(↵,�)

n,j B(↵ + 2k + j + 1, � + 1) ⌫
2k

⌘
(↵,�)
n (⌫, z

2
µ
2) =

nX

j=0

1X

k=0

(�1)k

(2k + 1)!
c2k+1(z

2
µ
2)!(↵,�)

n,j B(↵ + 2k + j + 2, � + 1)⌫2k+1
.(3.14)

Numerically, the sum over k can be performed to a sufficiently high order (k ⇠ 30) to
achieve convergence to double precision accuracy in the relevant range of Ioffe time. Given
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±
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±
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q±(x), so this parameterization can be thought as another way to

parameterize the PDF by a set of its moments.
To determine the relationship between the reduced pseudo-ITD and the parameters of

the PDF, the matching kernels KR,I are expanded in terms of Jacobi polynomials. It can
be shown that the kernels can be written as
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2
z
2) =

1X

n=0

�
(↵,�)
n (⌫, µ

2
z
2)

N
(↵,�)
n

J
(↵,�)
n (x)

KI(x⌫, µ
2
z
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1X
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2
z
2)

N
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2
µ
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(2k)!
c2k(z

2
µ
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n,j B(↵ + 2k + j + 1, � + 1) ⌫
2k

⌘
(↵,�)
n (⌫, z

2
µ
2) =

nX

j=0

1X

k=0

(�1)k

(2k + 1)!
c2k+1(z

2
µ
2)!(↵,�)
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Numerically, the sum over k can be performed to a sufficiently high order (k ⇠ 30) to
achieve convergence to double precision accuracy in the relevant range of Ioffe time. Given
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Jacobi Polynomials: Orthogonal and complete in the interval [0,1]

3.2 Parameterization of unknown functions

Extracting PDFs from matrix elements using a functional form to parametrize them may
induce unwanted model dependence. Therefore, a careful study of such parametrization-
dependent systematic error is required. For that purpose, the functional forms used should
be varied in order to understand how certain choices affect the final result. In previous
lattice PDF studies [34, 65, 74, 75, 80, 86, 87, 110], the chosen functional forms are similar
to those used in phenomenological analyses of PDFs [123–126]. Progress has also been made
on the application of neural networks to parameterize the PDF [67, 99, 127]. In this work,
all of the unknown functions, q�(x), q+(x), P1(⌫), R1(⌫), and B1(⌫), are parameterized
using Jacobi polynomials.

The Jacobi polynomials, j
(↵,�)
n (z), are defined in the interval [�1, 1] and they satisfy

the orthogonality relation
Z 1

�1
dz(1 � z)↵(1 + z)�j

(↵,�)
n (z)j(↵,�)m (z) = Ñ

(↵,�)
n �n,m , (3.4)

for ↵, � > �1. For the purposes of this study, it is useful to change variables to x = 1�z
2

or z = 1 � 2x. This transformation maps the interval [�1, 1] to the interval [0, 1] and the
orthogonality weight becomes (1 � z)↵(1 + z)� = 2↵+�

x
↵(1 � x)� . We therefore introduce

the transformed Jacobi polynomials J
(↵,�)
n (x), which are referred to as Jacobi polynomials

from now on, as

J
(↵,�)
n (x) =

nX

j=0

!
(↵,�)
n,j x

j
, (3.5)

with

!
(↵,�)
n,j =

✓
n

j

◆
(�1)j

n!

�(↵ + n + 1)�(↵ + � + n + j + 1)

�(↵ + � + n + 1)�(↵ + j + 1)
. (3.6)

The orthogonality relation becomes
Z 1

0
dx x

↵(1 � x)�J
(↵,�)
n (x)J (↵,�)

m (x) = N
(↵,�)
n �n,m , (3.7)

where

N
(↵,�)
n =

1

2n + ↵ + � + 1

�(↵ + n + 1)�(� + n + 1)

n! �(↵ + � + n + 1)
. (3.8)

One thing to note is that there exists a formula that relates Jacobi polynomials for different
values of the weight parameters, ↵ and �. This formula reads as following

J
(↵,�)
n (x) =

nX

m=0

ĉ
n
m(↵, ↵

0; �, �
0)J (↵0,�0)

m (x) , (3.9)

where the coefficients ĉ
n
m(↵, ↵

0; �, �
0) are analytically known. Finally, it can be shown that

the coefficients of the Jacobi polynomials satisfy the orthogonality relationship
1X

i,j=0

!
(↵,�)
n,i B(↵ + i + j + 1, � + 1)!(↵,�)

m,j = N
(↵,�)
n �n,m , (3.10)
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Complete basis of functions in the interval [0,1] for any α and β

q+(x) = q(x) + q̄(x)
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q�(x) = q(x)� q̄(x)
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Bayesian Inference
Optimize model parameters

• Fix the expansion order in the  Jacobi polynomial expansion


• Optimize α,β and the expansion of coefficients by maximizing the posterior probability


• Note that one could fix α,β at a reasonable value and vary the order of truncation in 
the Jacobi polynomial expansion


• Average over models using AICc

4.2 Fitting matrix elements

The sGEVP is applied to each scenario of smearing parameters individually. It is likely that
modifying the operators by only changing smearing parameters will not drastically change
its overlap with the ground and excited states. This means combining them within the
sGEVP will have little effect. This feature can be seen in Fig. 3, where the effective matrix
elements with different ⇣ are largely consistent within errors. With the same overlap they
cannot significantly improve the cancellation of higher state effects. Instead, combinations
of these six smearing scenarios are simultaneously fit to obtain a common matrix element
and an excited state mass. When the signal-to-noise ratio for some of smearing scenarios
is poor, they are excluded from the fit, for example large ⇣ at small p or vice versa.

There exists a systematic error from the particular choices of the maximum and min-
imum values of T used within the fits for the matrix elements. The maximum value was
chosen based upon the statistical noise of the correlation functions at those times. When
the noise was sufficiently large that the fit result was not significantly affected, the maxi-
mum value was set. The minimum value was chosen to minimize the �

2
/d.o.f. of the fit.

The change of the central values when fitting with a minimum time decreased by a single
time slice is used, in order to estimate the systematic error from the choice of minimum
time. The square of this systematic error is added to the diagonal of the covariance matrix
for the remainder of the analysis. The majority of the data points do not see a dramatic
increase in error, but some do highlighting the importance of this analysis.

5 Fits with Bayesian Priors

In order to determine the PDF from our lattice matrix elements, we create a model to
describe our data in terms of the PDF and various systematic errors as described in Sec. 3.
Let ML(⌫, z

2) be the lattice matrix elements while M(⌫, z
2
, ✓) be the matrix element from

our model which depends on a set of parameters ✓. These parameters are the exponents ↵,
�, and the linear coefficients of the Jacobi series for the PDF and the nuisance terms.

We attempt to determine the most likely values of the unknown parameters ✓ given
our lattice matrix elements, ML and some prior information, I by using Bayes’ theorem,
which states

P
⇥
✓|ML

, I
⇤

=
P
⇥
ML

|✓
⇤
P [✓|I]

P [ML|I]
. (5.1)

Here P
⇥
✓|ML

, I
⇤

is the posterior distribution, which describes the probability distribu-
tion that a given set of parameters are the true parameters given a set of data and prior
information. P

⇥
ML

|✓
⇤

is the probability distribution of the data given a set of model pa-
rameters. P [✓|I] is the prior distribution which describes the probability distribution of a
set of parameters given some previously held information about it. Finally, P

⇥
ML

|I
⇤

is the
marginal likelihood or evidence which describes the probability that the data are correct
given the previously held information. Ultimately, since the evidence does not depend on
the model parameters it will be an unnecessary normalization for finding the most likely
parameters.
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FAICc = ∑
i

Fi
e−Ai/2

∑k e−Ak/2 Ai = − 2 log Ppost
i + 2pi +

2pi(pi + 1)
ni − pi − 1

Posterior distribution

AICc model averaging with



Unpolarized Isovector PDF
2+1 flavors single lattice spacing 350 MeV pion
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(a) (b)

FIG. 17: Parameter covariances of the optimal Jacobi polynomial fit to the real (17a) and the imaginary (17b)
component of the unpolarized reduced pseudo-ITD for z/a  12 with truncation orders

{nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v and {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+. Entries are normalized according to
Covij/

p
CoviiCovjj .
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FIG. 18: The leading-twist real ITD (purple) (18a) at 2 GeV derived from the Jacobi polynomial expansion of the
reduced pseudo-ITD for z/a  12 with {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v. The result is compared with the

uncorrelated 2-parameter phenomenological form of Eq. 24 shown in red. The valence quark leading-twist PDF
(purple) (18b) obtained from the {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v Jacobi polynomial expansion of the reduced

pseudo-ITD. The a/z (orange), twist-4 (brown), and twist-6 (navy) x-space distributions are also shown and seen to
be sub-leading. The distributions are compared with the uncorrelated 2-parameter phenomenological fit of Eq. 24
(red), as well as the NLO global analyses CJ15 [82] and JAM20 [88], and the NNLO analyses of MSTW [89] and

NNPDF [87] at the same scale.
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A suitable frame amenable to lattice QCD is pµ = (0?, pz, E (pz)) and zµ = (0?, z3, 0), with each expressed in the
Euclidean Cartesian notation. We elect to compute the µ = 3 component of Mµ5 (p, z), for which the bare operator
does not mix with other operators under renormalization [66]. With this kinematic setup our bare space-like matrix
elements decompose in Minkowski space into a linear combination of Io↵e-time pseudo-distributions (pseudo-ITDs)
according to:
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where the functional dependence of the nucleon polarization vector on the external momentum has been indicated.
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and observe that the M35 matrix element is proportional to the combination
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However, in this case
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One can see that the amplitudes M and N appear here in a combination quite distinct from the defining combination
of Y

�
⌫, z2

3

�
. Furthermore, such a calculation of M45 (p, z3) would require an a priori determination of the finite

mixing that exists between the �4�5 operator and other Dirac matrices due to the lattice regularization [66] – an
added complication we seek to avoid.

For purely space-like separations, Mµ5 (p, z) acquires additional ultraviolet (UV) divergences [180–183] that must be
regularized and removed before taking the continuum limit. As these additional divergences are known to renormalize
multiplicatively [71, 73, 183, 184], we elect to remove them by forming an appropriate renormalization group (RG)
invariant ratio. Such a prescription not only ensures a finite continuum limit, but also avoids the introduction of
additional sources of systematic error stemming from gauge-fixed calculations, such as the RI/MOM scheme used in
Refs. [66, 67].

The standard procedure [50] within the pseudo-PDF approach is to divide the original matrix element M(p, z)
by its pz = 0 counterpart M(pz = 0, z). Since the UV renormalization factor Z(z/a) is the same for M(p, z) and
M(pz = 0, z), the ratio M(p, z)/M(pz = 0, z) does not contain link-related UV divergences and is an RG invariant,
referred to as the reduced Io↵e-time pseudo-distribution [50, 69], or reduced pseudo-ITD. To enforce the normalization
of unity at z3 = 0, a double ratio is employed – the RG invariant M(p, z3)/M(pz = 0, z3) is divided by its z3 = 0
magnitude. In analogy with the ratio utilized for the unpolarized [148] and transversity [149] quark PDFs of the
nucleon, we may consider
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By construction, Y
�
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�
does not contain link-related UV divergences and is RG invariant. However, as we discussed,
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�
, which was observed to be

quite small in Ref. [53]. We will attempt to parameterize, and subsequently remove, this additional z2 contamination,
which we note is no worse than the corrections to our factorization relationship, through a parametric description of
the reduced pseudo-ITD detailed in Sec. IV.

B. Matching kernel

The next step is to relate space-like matrix elements, such as M35(p, z3), obtained from lattice QCD to ITDs
I(⌫, µ2) corresponding to PDFs taken in the MS scheme at a scale µ2. To this end, we need to derive appropriate

1 The nucleon mass mN appears here as consequence of the definition (2); one can replace it by any scale ⇤, and appropriately re-scale
the magnitude of R.
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�
Y
�
⌫, z2

3

�
+ m2

Nz2
3R
�
⌫, z2

3

� 
, (9)

and observe that the M35 matrix element is proportional to the combination

eY
�
⌫, z2

3

�
= Y

�
⌫, z2

3

�
+ m2

Nz2
3R
�
⌫, z2

3

�
, (10)

which, in addition to Y
�
⌫, z2

3

�
, contains a contaminating term m2

Nz2
3R
�
⌫, z2

3

�
1. One may try to separate the Y and

R terms by considering the µ = 4 component of Mµ5 (p, z), which receives no contribution from the R term if z = z3.
However, in this case

M45 (p, z3) = �2mN

�
S4

M
�
⌫, z2

3

�
� iS3E(pz)z3N

�
⌫, z2

3

� 
. (11)

One can see that the amplitudes M and N appear here in a combination quite distinct from the defining combination
of Y

�
⌫, z2

3

�
. Furthermore, such a calculation of M45 (p, z3) would require an a priori determination of the finite

mixing that exists between the �4�5 operator and other Dirac matrices due to the lattice regularization [66] – an
added complication we seek to avoid.

For purely space-like separations, Mµ5 (p, z) acquires additional ultraviolet (UV) divergences [180–183] that must be
regularized and removed before taking the continuum limit. As these additional divergences are known to renormalize
multiplicatively [71, 73, 183, 184], we elect to remove them by forming an appropriate renormalization group (RG)
invariant ratio. Such a prescription not only ensures a finite continuum limit, but also avoids the introduction of
additional sources of systematic error stemming from gauge-fixed calculations, such as the RI/MOM scheme used in
Refs. [66, 67].

The standard procedure [50] within the pseudo-PDF approach is to divide the original matrix element M(p, z)
by its pz = 0 counterpart M(pz = 0, z). Since the UV renormalization factor Z(z/a) is the same for M(p, z) and
M(pz = 0, z), the ratio M(p, z)/M(pz = 0, z) does not contain link-related UV divergences and is an RG invariant,
referred to as the reduced Io↵e-time pseudo-distribution [50, 69], or reduced pseudo-ITD. To enforce the normalization
of unity at z3 = 0, a double ratio is employed – the RG invariant M(p, z3)/M(pz = 0, z3) is divided by its z3 = 0
magnitude. In analogy with the ratio utilized for the unpolarized [148] and transversity [149] quark PDFs of the
nucleon, we may consider

Y
�
⌫, z2

3

�
=

 
eY
�
⌫, z2

3

�

eY (0, z2
3) |pz=0

!, 
eY (⌫, 0) |z3=0

eY (0, 0) |pz=0,z3=0

!
. (12)

By construction, Y
�
⌫, z2

3

�
does not contain link-related UV divergences and is RG invariant. However, as we discussed,

eY
�
⌫, z2

�
di↵ers from Y

�
⌫, z2

�
(which is our goal) by a contamination term m2

Nz2
3R
�
⌫, z2

3

�
, which was observed to be

quite small in Ref. [53]. We will attempt to parameterize, and subsequently remove, this additional z2 contamination,
which we note is no worse than the corrections to our factorization relationship, through a parametric description of
the reduced pseudo-ITD detailed in Sec. IV.

B. Matching kernel

The next step is to relate space-like matrix elements, such as M35(p, z3), obtained from lattice QCD to ITDs
I(⌫, µ2) corresponding to PDFs taken in the MS scheme at a scale µ2. To this end, we need to derive appropriate

1 The nucleon mass mN appears here as consequence of the definition (2); one can replace it by any scale ⇤, and appropriately re-scale
the magnitude of R.

4

A suitable frame amenable to lattice QCD is pµ = (0?, pz, E (pz)) and zµ = (0?, z3, 0), with each expressed in the
Euclidean Cartesian notation. We elect to compute the µ = 3 component of Mµ5 (p, z), for which the bare operator
does not mix with other operators under renormalization [66]. With this kinematic setup our bare space-like matrix
elements decompose in Minkowski space into a linear combination of Io↵e-time pseudo-distributions (pseudo-ITDs)
according to:

M35 (p, z3) = �2mNS3 [pz ẑ]
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IV. ON THE EXTRACTION OF THE HELICITY PDF

With the helicity reduced pseudo-ITD Y
�
⌫, z2

�
in hand, one is presented with an inverse problem that precludes

an unambiguous determination of the helicity PDFs from the one-loop matching relationship (16), which originates
from the limited range of ⌫. Indeed matching the reduced pseudo-ITD to a common scale in MS alleviates some
of these numerical challenges, as the resulting MS helicity Io↵e-time distribution I

�
⌫, µ2

�
, in principle, involves no

residual z2-dependence and directly determines the x-dependence of the underlying PDFs via an inverse Fourier
transform. Such an evolution/matching step, however, does not quell the ill-posed inverse problem and is furthermore
a potential source of additional systematic errors stemming from the interpolation or smooth description of the
pseudo-distribution data needed for the evolution/matching procedure. Regardless of whether the matching step is
applied explicitly to the reduced pseudo-ITD, it is common for a functional form to be assumed for the PDF and
for its convolution with the matching kernel to be fit to the data [99, 106, 107, 111, 116, 197]. This paradigm is not
unlike what one encounters in global analyses of experimental data, where a physically-motivated functional form
is often assumed for the PDF [204–207] and fit to discrete cross-section measurements over a limited range of xB .
Several non-parametric reconstruction techniques have also been explored in the lattice QCD literature including the
Backus-Gilbert method [208], Bayesian reconstruction [100], and an admixture giving rise to a Bayes-Gauss-Fourier
transform [130].

To avoid sullying a high-fidelity determination of the helicity PDFs, we elect to parameterize the CP -even and
CP -odd quark helicity PDFs via model ansätze and fit their convolution with the one-loop matching kernel relating
the {⌫, z2

} dependencies of the reduced pseudo-ITD with the {x, µ2
} dependencies of the PDF:
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�
. (41)

Here the quark helicity PDFs gq�/N

�
x, µ2

�
and gq+/N

�
x, µ2

�
are isolated from the Y

�
⌫, z2

�
signal via cosine and

sine transforms of the NLO kernel, defined in Eq. (18), respectively:
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�
µ2

��
sin (u⌫x) . (43)

There is considerable flexibility in adopting a functional form to describe the unknown helicity PDFs. Absent a
continuum of data over the infinite range ⌫ 2 [0, 1), any functional choice necessarily introduces model bias into the
extraction procedure - we will return to this point in Sec. V A. Following the paradigm established in Refs. [148, 149,

201], we parameterize the unknown quark helicity PDFs using a basis of Jacobi polynomials3 {⌦(↵,�)
n (x)}, the set of

which form a complete orthogonal set on the interval x 2 [0, 1]. The orthogonality of the Jacobi polynomials
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is assured provided4 ↵, � > �1. The helicity PDFs gq�/N

�
x, µ2

�
and gq+/N

�
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�
at some scale can therefore be

unambiguously expressed as
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1X
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⌧,n ⌦(↵,�)

n (x) (45)

for arbitrarily chosen ↵, � > �1, and ⌧ 2 {�, +} indicating either the CP -even or CP -odd quark helicity PDF. The
relationship between the fitted parameters of the PDF and the reduced pseudo-ITD is obtained by considering the
expansion of the matching kernels K�

�
x⌫, z2µ2, ↵s

�
µ2

��
and K+

�
x⌫, z2µ2, ↵s

�
µ2

��
in terms of Jacobi polynomials.

3 The Jacobi polynomials exploited in this work are referred to as such, however the set of conventional Jacobi polynomials, obtained
from our Jacobi polynomials via a change of variables, are orthogonal on the interval [�1, 1].

4 This limitation also ensures a properly normalized helicity PDF: gu�d
A

�
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�
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�
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�
, where gu�d

A

�
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�
is the isovector

axial charge of the nucleon.
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FIG. 11. Results of the AICc prescription applied to Re Y
�
⌫, z2

�
cut on platt 2 [1, 6] and z/a 2 [2, 8], where our matrix

element fitting systematic (31) is considered. (Left) The AICc averaged leading-twist valence helicity quark PDF (purple)
and model-averaged x-space distributions corresponding to an O (a/ |z|) discretization (orange) and O

�
z2n⇤2n

QCD

�
higher-twist

(brown) e↵ects. Comparisons continue to be made with select global analyses. (Right) Histogram of AICc weights associated
with all models considered in the data cut.

Among the many prescriptions that can be utilized to create an average model description, one we explore is the
Akaike Information Criterion (AIC) [211]. For any given model function Fi, the AIC prescription assigns a factor
ai = 2L2

i + 2pi, where L2
i is the negative logarithm of the posterior distribution of the model Fi with pi 2 Z

+

parameters. The factor ai, or AIC (Fi), is then used to assign a weight, or probability, to Fi among the space of all
models. In scenarios for which the number of data points ni fit by a model Fi becomes small or pi approaches ni, the
AIC prescription is known to be biased in its estimate. To account for these scenarios, the corrected AIC [212], or

AICc for short, is implemented where ai 7! Ai = ai + 2pi(pi+1)
ni�pi�1 . Using the AICc prescription, which we implement in

this work, a model-averaged FAIC is obtained through a weighted sum of each model in consideration:

FAIC =
X

i

wiFi, with wi =
e�Ai/2

⇣PN
i=1 e�Ai/2

⌘. (62)

To account for the variation in model choices as well as the variance of a chosen model, the variance of the AICc
average is expressed as the weighted sum of the variance of a particular model, var (Fi), plus its squared di↵erence
from the AICc model average FAIC:

var (FAIC) =
X

i

wi

h
var (Fi) +

�
Fi � FAIC

�2
i
. (63)

Since the AICc weights wi depend on the exponential of the AICc value Ai, it follows models with the smallest
L2 values, that do not over-fit the data, are favored. Although we will consider applying the AICc prescription
only to PDFs modeled with Jacobi polynomials, a more robust implementation would consider additional functional
forms on the interval x 2 [0, 1], including those common from global analyses [204–207] or even neural network
parameterizations [213, 214]. This possibility is reserved for a future work.

Within the platt = [1, 6] and z/a 2 [2, 8] data cuts, to construct an AICc model average estimate for both gq�/N (x)
and gq+/N (x) we consider the following variations in the orders of truncation for the Jacobi polynomials: Nlt 2 [1, 5],
Naz 2 [0, 2], Nt4 2 [0, 2], and Nt6 2 [0, 1]. The resulting AICc model averaged leading-twist gq�/N (x) and gq+/N (x)
PDFs are shown in the left-hand panels of Fig. 11 and Fig. 12, respectively, while the right-hand panels depict the
histogram of weights determined from the AICc procedure. We observe that only a handful of models contribute
appreciably to the AICc averages, while most have negligible impact. In fact, for both gAIC

q�/N (x) and gAIC
q+/N (x) the

(Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1) model was found to dominate the AICc average - hence why this model was presented
in Fig. 5 and Fig. 8. When comparing the AICc model average gAIC

q�/N (x) in Fig. 11 with the selected gq�/N (x) fit
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FIG. 5. Fit to the real component of the reduced pseudo-ITD Y
�
⌫, z2

�
obtained from summed ratio fits over the time series

T/a 2 [6, 14] (dark error bars), and where the T/a 2 [4, 14] summed ratio fits provide a systematic error estimate (lightened
error bars). The leading-twist, discretization, twist-4, and twist-6 corrections have been expanded in Jacobi polynomials up to
orders (Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1). The data has been cut on platt 2 [1, 6] and z/a 2 [2, 8], with data excluded from the fit
presented in gray.

be a strong anti-correlation between the Caz
�,n parameters. This feature may imply a cancellation occurring between

the two terms leading to the cumulative small e↵ect seen in Fig. 7.

Using the fitted values of ↵, � and each expansion coe�cient C⇤ (↵,�)
�,n , we utilize Eq. 45 to map the leading-twist

valence quark helicity PDF gq�/N (x) and the parameterized x-space systematic contaminations in the right panel of
Fig. 6. The parameterized gq�/N (x) exhibits broad statistical consistency with the three global analysis results we
consider: NNPDFpol1.1 [10], JAM17 [17], and JAM22 [21], while for x ! 1 the soft approach of the PDF appears to
favor the NNPDFpol1.1 and JAM22 results. This result, however, represents only one possible solution for gq�/N (x)
within the space of viable solutions, and thus exhibits an uncertainty that belies the true uncertainty of the PDF. We
address this quantitatively in Sec. V A in the context of a model averaging prescription.

Indeed the x-space systematic contaminations illustrated in the right panel of Fig. 6 appear quite small. However,
it is more instructive to view the parameterized discretization and higher-twist e↵ects as a function of the two Lorentz
invariants of the setup - ⌫ and z2. In the upper left and upper right panels of Fig. 7, respectively, we visualize

↵ � Clt
0 Clt

1 Clt
2 Caz

0 Caz
1 Caz

2 Ct4
0 Ct4

1 Ct4
2 Ct6

0 Ct6
1

q� �0.500(11) 1.892(70) 0.918(24) �0.547(51) �0.902(78) � 0.037(20) �0.015(5) � �0.055(22) �0.030(11) � 0.027(14)

q+ �0.547(11) 1.501(63) 0.747(32) �0.305(47) �0.762(96) 0.188(5) �0.094(6) � 0.014(13) 0.024(11) � 0.019(9) �

TABLE III. Fit parameters associated with the representative fits to Re Y
�
⌫, z2

�
and Im Y

�
⌫, z2

�
shown in Fig. 5 and Fig. 8,

respectively. The figures of merit for the fit to Re Y
�
⌫, z2

�
are L2/d.o.f. = 0.265(131) and �2/d.o.f = 0.280(126), while

L2/d.o.f. = 0.756(241) and �2/d.o.f = 0.659(233) for Im Y
�
⌫, z2

�
.
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A. Definition of non-singlet transversity distributions

The transversity PDF of the nucleon with spin S⌫? polarized in a transverse direction ⇢? and an on-shell momentum
P can be defined within QCD in terms of the quark-fields  and  ̄ that are displaced along the light-cone as,

h(x, µ) =

Z 1

�1

d⌫

2⇡
e�ix⌫

I(⌫, µ) with ,

2P+S⇢?I(P+z�, µ) =
⌦
P, S⇢? | ̄(z�)�+�⇢?�5W+(z

�, 0) (0)|P, S⇢?
↵
,

(1)
with the straight Wilson-line W+(z�, 0) making the definition gauge-invariant. The non-singlet transversity PDF
that we compute can be succinctly written as

hu�d(x) = hu(x)� hd(x), x 2 [�1, 1]. (2)

It is more useful to write the above quantity in terms of quark (q) and antiquark (q̄) distributions that have support
from [0, 1] by identifying hq(�|x|) = �hq̄(|x|). Following the conventions laid down in the community white paper [77],
the non-singlet transversity distributions in this paper are

h�(x) ⌘ hu��d�(x) = hu(x)� hū(x)� hd(x) + hd̄(x),
h+(x) ⌘ hu+�d+(x) = hu(x) + hū(x)� hd(x)� hd̄(x),

(3)
for x 2 [0, 1], and their Mellin moments given as

hxn
i± ⌘ hxn

iu±�d± =

Z 1

0
dxxnh±(x). (4)

The factorization scale µ is implicit in the above equations, and the evolution of h(x, µ) and their moments with the
scale is given in [78]. By defining h�(x) as the valence quark distribution, hv(x), and hū�d̄(x) = hū � hd̄ as the
isotriplet antiquark distribution that characterizes the intrinsic sea, we see that,

hv(x) ⌘ h�(x),
hv(x) + 2hū�d̄(x) ⌘ h+(x).

(5)
In contrast to the unpolarized quark distribution, which corresponds to the distribution of the conserved charge
amongst the partons, the underlying tensor charge,

gT (µ) = hx0
i�, (6)

is not conserved, and hence, it depends on the renormalization scheme and it runs with the renormalization scale µ.
We express the tensor charge and the transversity distribution in the MS scheme. A global fit to the lattice QCD
results for the tensor charge gives gT (µ) = 1.00(5) at µ2 = 2 GeV2 [72]. In this work, we focus on the shape of the
x-dependent transversity distribution, and defer a dedicated computation of gT (µ) to the future. Therefore, the aim
of this work is to compute hv(x, µ)/gT (µ) and hū�d̄(x, µ)/gT (µ) as a function of x from the appropriately defined
pseudo-PDF matrix element.

B. NLO matching from the pseudo-ITD to MS transversity PDF

Let us consider an on-shell proton with a momentum four-vector P = (E(P),P) and spin vector S? satisfying�
S?�2 = �1, S?

· P = 0, and such that it points in a spatial direction that is transverse to spatial momentum P;
the relativistically normalized quantum state is denoted as |P, S?

i. Within both the short-distance factorization
and the LaMET approaches, the expectation value of an appropriately chosen bilocal quark operator is evaluated
in the boosted hadron state. Such a flavor non-singlet Wilson-line connected bilocal quark bilinear operator that is
appropriate for obtaining the transversity PDF is

O�5���⇢(z) ⌘  ̄�5���⇢W (0, z)⌧3 , (7)

where  = (u, d), and W (0, z) is the straight Wilson-line connecting the quark and antiquark separated by z. The
Lorentz decomposition [79] of its forward nucleon matrix element is

Transversity Isovector PDF

4

FIG. 1. The z3 dependence of the Wilson coe�cients, Cn(µ
2z23), in the leading-twist OPE for transversity for n = 1, 2, 3 and

4. The value of µ =
p
2 GeV.

hP, S?
|O�5���⇢(z)|P, S

?
i =

2(P�S
?
⇢ � P⇢S

?
� )M(z · P, z2) + 2im2

N (z�S
?
⇢ � z⇢S

?
� )N (z · P, z2) + 2m2

N (z�P⇢ � z⇢P�)(z · S
?)R(z · P, z2).

(8)
As is conventional, in this work, we choose z = (0, 0, 0, z3) and P = (E(P3), 0, 0, P3), thereby making ⌫ = �z ·P = z3P3

and �z2 = z23 . The quantity ⌫ = �z ·P is referred to as the Io↵e-time [80, 81]. Of the three independent form-factors
M,N and R, only M gives the leading-twist contribution. Hence, by a good choice of directions ⇢ and �, we can
project onto M; such a choice is � = 0 (that is, along the temporal direction) and ⇢ = 1, 2 (that is, either of the
two spatial directions transverse to the nucleon momentum). Coincidentally, it is precisely this choice that is purely
multiplicatively renormalizable without any mixing [82]. For these choices of directions � = 0 and ⇢ = 1, 2, the spin
vectors are S? = (0, 1, 0, 0) and (0, 0, 1, 0) respectively. Using these choices in Eq. (8), and by using the rotational
invariance, we find

M(z3, P3) =
1

4E(P3)

2X

⇢=1

hP, S?
|O�5�0�⇢(z)|P, S

?
i. (9)

For convenience in what follows, we have written the arguments of M as (z3, P3) without making use of the Lorentz
structure. The above matrix element is not renormalized due to the self-energy divergence of the Wilson-line, the
logarithmic end-point divergences, and standard field renormalizations for  [83–85]. Due to the multiplicative
renormalizability for the choices of directions as made above, we can define the reduced pseudo-ITD (rpITD) [24, 25]
for the transversity PDF as

M(⌫, z23) ⌘
M(z3, P3)

M(z3, 0)

M(0, 0)

M(0, P3)
. (10)

The first factor on the right-hand side above removes the self-energy divergence of the Wilson-line, and the second
factor above ensures that in the local operator limit, z3 ! 0, the rpITD becomes M ! 1 independent of renormal-
ization scale. Thus, it is clear that by using the above definition of rpITD, we have forsaken the information on the
tensor charge, gT (µ), that would have been otherwise obtained in the limit z3 ! 0 at fixed P3. Hence, we expect that
M matches onto the transversity PDF that is normalized to unity, that is h(x, µ)/gT (µ); this expectation indeed gets
borne out of an actual perturbative calculation to compute the rpITD-to-MS PDF matching kernel using on-shell
quark external states. The renormalization choice of setting the z3 = 0 matrix element to 1 has further advantage
of reducing the statistical errors for the matrix elements at other smaller z3 due to correlations in the data. From
our experience with the rpITD for the unpolarized PDF, we expect it might help in the cancellation of higher-twist
e↵ects and finite volume e↵ects (through the complete removal of all corrections at O(⌫0)) for the transversity rpITD
as well— however, this expectation needs to be checked through further studies.

The matching relation involving the perturbative kernel C has the general form of the lightcone OPE [86]

Mtwist�2(⌫, z23) =

Z 1

0
du C

�
u, µ2z23

�
I(u⌫, µ), (11)

4
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For convenience in what follows, we have written the arguments of M as (z3, P3) without making use of the Lorentz
structure. The above matrix element is not renormalized due to the self-energy divergence of the Wilson-line, the
logarithmic end-point divergences, and standard field renormalizations for  [83–85]. Due to the multiplicative
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structure. The above matrix element is not renormalized due to the self-energy divergence of the Wilson-line, the
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The first factor on the right-hand side above removes the self-energy divergence of the Wilson-line, and the second
factor above ensures that in the local operator limit, z3 ! 0, the rpITD becomes M ! 1 independent of renormal-
ization scale. Thus, it is clear that by using the above definition of rpITD, we have forsaken the information on the
tensor charge, gT (µ), that would have been otherwise obtained in the limit z3 ! 0 at fixed P3. Hence, we expect that
M matches onto the transversity PDF that is normalized to unity, that is h(x, µ)/gT (µ); this expectation indeed gets
borne out of an actual perturbative calculation to compute the rpITD-to-MS PDF matching kernel using on-shell
quark external states. The renormalization choice of setting the z3 = 0 matrix element to 1 has further advantage
of reducing the statistical errors for the matrix elements at other smaller z3 due to correlations in the data. From
our experience with the rpITD for the unpolarized PDF, we expect it might help in the cancellation of higher-twist
e↵ects and finite volume e↵ects (through the complete removal of all corrections at O(⌫0)) for the transversity rpITD
as well— however, this expectation needs to be checked through further studies.

The matching relation involving the perturbative kernel C has the general form of the lightcone OPE [86]
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FIG. 8. Reconstruction of transversity PDF based on the PDF ansatz in Eq. (30). The top-left and top-right panels show the
real and imaginary parts of M as a function of ⌫. The two panels show the best fit bands resulting from an analysis assuming
the PDF ansatz. The fits shown in the figure incorporated the data points at all momenta with z3 2 [2a, 8a]. The color of the
bands and the data points distinguish the fixed value of momenta P3 = 0.41n3 GeV used. The bottom-left and bottom-right
panels show the resultant transversity PDFs, h�(x) and h+(x) respectively.

section, whereas for z3 ⇠ O(1) fm, we naively expect higher-twist e↵ects and higher-order perturbative terms could
become important. For this, we skipped z3 = 0, a from our analysis and used only ranges with zmin

3 = 2a, 3a. To see
the variations due to the choice of zmax

3 , we used zmax
3 = 8a, 10a = 0.75, 0.94 fm. We used the fixed order expressions

for the Wilson coe�cients in Eq. (16) at a factorization scale of µ =
p
2 GeV in our PDF analysis, that is comparable

to 1/z3 that enters our computation.
In the first step of the PDF reconstruction, we assumed a functional form that is known to work well in the global

fits to the PDFs from experimental cross-sections data, namely,

h±(x)

gT
= N±x

↵±(1� x)�±
�
1 + �±

p
x+ �±x

�
, (30)

with (↵±,�±, �±, �±) as independent fit parameters. The parameterN± is the normalizing constant. We will simply re-

fer this method as PDF ansatz fits. For the valence case,
R 1
0 dxh�(x)

gT
= 1, which thereby fixesN� = N�(↵�,��, ��, ��)

as a function of the other independent parameters. On the other hand, for N+ there is no such condition and therefore,
we keep it as an additional fit parameter in h+/gT . We used the above functional form in Eq. (27) and Eq. (28) to
fit our transversity pseudo-ITD data. We evaluated the convolution integral for the leading-twist matching using the
Taylor series in ⌫ (see Eq. (27) and Eq. (28)) using an expansion up to order Nmax = 40. This truncation achieves a
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FIG. 13. Our lattice determination of the valence transversity distribution hv(x, µ)/gT (µ) using the pseudo-distribution
approach is shown on the top panel, and the non-singlet antiquark transversity distribution hū�d̄(x, µ)/gT (µ) is shown on

the bottom panel. The factorization scale used is µ =
p
2 GeV for both the cases. In the two panels, the inner red band

includes only the statistical error and the outer red band includes statistical and systematical errors in the PDF reconstruction.
For the valence distribution, comparison is made with the previous phenomenological determinations using SIDIS and lattice
gT (JAM18) [72], shown using a patterned band, and with the recently updated global fit analysis (JAM20) [21] of the
single transverse spin asymmetry data (but, without including lattice gT ), shown as a green band. The non-singlet antiquark
distribution is consistent with an isospin symmetric intrinsic sea at all x.

develops slight wiggles when ↵s is randomly varied, and such variations are masked at the level of precision we are
working at. This leads us to think that the perturbative uncertainty of our determination could be mild, and ignore
such uncertainties in our final estimate.

In Fig. 13, we present our final estimates of the MS transversity PDFs at µ =
p
2 GeV including the statistical and

systematic uncertainties. Our transversity PDF determination is normalized with respect to gT (µ) at µ =
p
2 GeV,

as in the rest of the paper. In the top panel, we show the valence transversity PDF, hv(x) = h�(x) normalized by
gT (µ). In the bottom panel, we show the non-singlet antiquark distribution given by, hū�d̄(x) = [h+(x)� h�(x)] /2

https://arxiv.org/abs/2111.01808


Conclusions
Outlook

• The understanding hadronic structure  is a major goal in nuclear physics


• Large experimental effort: JLab 12 GeV  and future EIC


• Lattice QCD calculations can in principle compute  (Generalized) Parton distribution functions from first 
principles


• Controlling all systematics of the calculation is important and that complicates the solution of the inverse 
problem at hand


• Both lattice spacing and higher twist effects need to be controlled  


• New ideas are needed for pushing to higher momentum and improved sampling of the Ioffe time


• The range of Ioffe time is essential for obtaining the x-dependence of distribution functions


• The synergy between lattice and experiment may be proven essential in providing precision estimates of 
(Generalized) Parton distribution functions 



Back up — DGLAP
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FIG. 1. Evolution of quasi-PDF Q(y, P ) in the factorized
Gaussian model for P/⇤ = 1, 10, 50.

one gets the following model for the quasi-PDF

QG(y, P ) =
P

⇤
p

⇡

Z 1

�1
dx f(x) e�(x�y)2P 2/⇤2

. (18)

Choosing for f(x) a simple PDF resembling the nucleon
valence densities f(x) = 4(1 � x)3✓(0  x  1), one gets
the curves shown in Fig. 1. For large P , it clearly tends
to the f(y) PDF form. In particular, using a momentum
P ⇠ 10⇤ one gets a quasi-PDF that is rather close to
the P ! 1 limiting shape. Still, since ⇤ ⇠ hk?i, assum-
ing the folklore value hk?i ⇠ 300 MeV one translates the
P ⇠ 10⇤ estimate into P ⇠ 3 GeV, which is uncomfort-
ably large. Thus, a natural question is how to improve
the convergence.

D. Pseudo-PDFs

The involved structure of a quasi-PDF Q(y, P ) can
be attributed to the fact that it is given by the Fourier
transform of the function M(⌫, ⌫2/P 2) with respect to ⌫,
where ⌫ appears both in the first and second argument of
the Ioffe-time distribution. Due to this complication, to
get close to the PDF limit, one should take P -values that
are sufficiently large to neglect the ⌫-dependence coming
from the second argument.

Another way [11] is to try to eliminate the
z2
3-dependence induced by M(⌫, z2

3). The main idea is
based on the observation that if one takes the ⌫-Fourier
transform of the modified function M(⌫, z2

3)/D(z2
3), the

z3 ! 0 limit will give the same PDF as the original Ioffe-
time distribution, provided that D(z2

3) is a function of
z2
3 only (but not of ⌫) equal to 1 for z2

3 = 0. Thus, one
should find a function D(z2

3) whose z2
3-dependence would

compensate, as much as possible, the z2
3-dependence of

M(⌫, z2
3). Then one may build a modified quasi-PDF by

taking the Fourier transform of M(⌫, ⌫2/P 2)/D(⌫2/P 2).
The resulting function will approach the same PDF limit,
but at much smaller P than the quasi-PDF built from
M(⌫, ⌫2/P 2).

The most lucky situation is when M(⌫, z2
3) factorizes,

i.e., M(⌫, z2
3) = M(⌫, 0)M(0, z2

3). Then taking D(z2
3) =

M(0, z2
3), i.e. considering the reduced function

M(⌫, z2
3) ⌘

M(⌫, z2
3)

M(0, z2
3)

(19)

one concludes that it is equal to M(⌫, 0), and the goal of
obtaining the z3 ! 0 limit becomes trivial.

As we mentioned already, the soft part of M(⌫, z2
3) fac-

torizes if the TMD F(x, k2
?

) factorizes. That this hap-
pens for the soft part of the TMD, is a standard (and
apparently well-verified) assumption of the TMD prac-
titioners. So, there are good chances that this part of
the z2

3-dependence of M(⌫, z2
3) will be canceled by the

rest-frame function M(0, z2
3) (at least, to a large extent).

On the lattice, there is another (and troublesome, see,
e.g., Ref. [15]) source of z3-dependence: the Z(z2

3) fac-
tor generated by the renormalization of the gauge link
Ê(0, z3; A). Fortunately, this problematic factor Z(z2

3)
does not depend on ⌫ and is the same for the numerator
and denominator of the ratio M(⌫, z2

3).
Thus, if one observes that the ratio M(⌫, z2

3) does not
have z3-dependence, one may conclude that M(⌫, z2

3) fac-
torizes. In fact, such a factorization has been already
observed several years ago in the pioneering study [16] of
the transverse momentum distributions in lattice QCD.

Still, there is an unavoidable source of factorization
breaking. When z3 is small, M(⌫, z2

3) has logarithmic
ln z2

3 singularities generating the perturbative evolution
of PDFs. As we discussed, z3 is analogous then to
the renormalization parameter µ of the scale-dependent
PDFs f(x, µ2) within the standard OPE approach. More
specifically, for small values of z3, the pseudo-PDF
P(x, z2

3) satisfies a leading-order evolution equation with
respect to 1/z3 that is identical with the evolution equa-
tion for f(x, µ2) with respect to µ. An evolution equation
[13] for the Ioffe-time distribution M(⌫, z2

3) can also be
written namely,

d

d ln z2
3

M(⌫, z2
3) = �

↵s

2⇡
CF

Z 1

0
du B(u)M(u⌫, z2

3),

(20)

where CF = 4/3, and the leading-order evolution kernel
B(u) for the non-singlet quark case is given [13] by

B(u) =


1 + u2

1 � u

�

+

, (21)

where [. . .]+ denotes the conventional “plus” prescription,
i.e.

Z 1

0
du


1 + u2

1 � u

�

+

M(u⌫)

=

Z 1

0
du

1 + u2

1 � u
[M(u⌫) � M(⌫)]. (22)

DGLAP kernel in position space
V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

At 1-loop  

µ2 d

dµ2
Q(⌫, µ2)=� 2

3

↵s

2⇡

Z 1

0
duB(u)Q(u⌫, µ2)

Q(⌫, µ02)=Q(⌫, µ2) � 2

3

↵s

2⇡
ln(µ02/µ2)

Z 1

0
duB(u)Q(u⌫, µ2)

M(⌫, z02)=M(⌫, z2) � 2

3

↵s(z2)

⇡
ln(z02/z2)

Z 1

0
duB(u) [M(u⌫, z2)

<latexit sha1_base64="1h7pTJmMaqLqhWqo0tEWN0red3o="></latexit>

Which implies (ignoring higher twist)
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Q(y, p3) =
1

2⇡

Z 1

�1
d⌫Mp(⌫, ⌫

2/p23)e
�iy⌫

P(x,�z2) =
1

2⇡

Z 1

�1
d⌫Mp(⌫,�z2)e�ix⌫

 

z23

p3 ! 1

�z2{

Alternative approach to the light-cone:

�z2 ! 0PDFs can be recovered

z3 = ⌫/p3Large values of are problematic

Ji’s quasi-PDF
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