Nucleon Structure from Pseudo PDFs
 SPIN 2023
 Duke, September 25-29, 2023

Jefferson Lab
OThomas Jefferson National Accelerator Facility

Kostas Orginos, William \& Mary / JLab

2013 revolution

Go beyond moments

- Goal: Compute full x-dependence (generalized) parton distribution functions (GPDFs)
- Operator product: Mellin moments are local matrix elements that can be computed in Lattice QCD
- Power divergent mixing limits us to few moments
X. Ji, Phys.Rev.Lett. 110, (2013)
- X. Ji suggested an approach for obtaining PDFs from Lattice QCD
Y.-Q. Ma J.-W. Qiu (2014) 1404.6860
- First calculations quickly became available
- Older approaches based on the hadronic tensor
H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys.Rev. D91, 054510 (2015)
C. Alexandrou, et al, Phys. Rev. D92, 014502 (2015)

X. Ji's Basic idea

- Lattice QCD computes equal time matrix elements
- Displace quarks in space-like interval
- Boost states to infinite momentum
- On the frame of the proton displacement becomes lightlike
- Infinite momentum not possible on the lattice

- Perurbative matching from finite momentum
- LaMET

Renormalization of UV divergences is required

Good Lattice Cross sections

Current-Current Correlators

4-quark bi-local matrix elements:

$$
\sigma_{n}\left(v, z^{2}\right)=\langle P| T\left\{O_{n}(z)\right\}|P\rangle
$$

Ex.

$$
\begin{aligned}
O_{S}(z) & =\left(z^{2}\right)^{2} Z_{S}^{2}\left[\bar{\psi}_{q} \psi_{q}\right](z)\left[\bar{\psi}_{q} \psi\right](0) \\
O_{V^{\prime}}(z) & =z^{2} Z_{V^{\prime}}^{2}\left[\bar{\psi}_{q}(z \cdot \gamma) \psi_{q^{\prime}}\right](z)\left[\bar{\psi}_{q^{\prime}} z \cdot \gamma \psi\right](0),
\end{aligned}
$$

equal time matrix element
Short distance factorization:

$$
\sigma_{n}\left(v, z^{2}\right)=\sum_{a} \int_{-1}^{1} \frac{d x}{x} f_{a}\left(x, \mu^{2}\right) K_{n}^{a}\left(x v, z^{2} \mu^{2}\right)+O\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right),
$$

PDFs can be obtained

Imitate scattering experiments: factorization

Renormalization of UV divergences of local operators is required

Pseudo-PDFs

An alternative point of view

Unpolarized PDFs proton:

$$
\begin{aligned}
& \mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \\
& \hat{E}(0, z ; A)=\mathcal{P} \exp \left[-i g \int_{0}^{z} \mathrm{~d} z_{\mu}^{\prime} A_{\alpha}^{\mu}\left(z^{\prime}\right) T_{\alpha}\right]
\end{aligned}
$$

space-like separation of quarks

Lorentz decomposition:

$$
\mathcal{M}^{\alpha}(z, p)=2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right)+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
$$

Pseudo-PDFs

Connection to light cone PDFs

$$
\begin{gathered}
\qquad \mathcal{M}^{\alpha}(z, p)=2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right)+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right) \\
\quad z=\left(0, z_{-}, 0\right) \\
\text { Collinear PDFs: Choose } \quad p=\left(p_{+}, 0,0\right)
\end{gathered} \quad \mathcal{M}^{+}(z, p)=2 p^{+} \mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right)
$$

$$
\gamma^{+}
$$

Definition of PDF:

$$
\mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right)=\int_{-1}^{1} d x f(x) e^{-i x p_{+} z_{-}}
$$

Lorentz invariance allows for the computation of invariant form factors in any frame Use equal time kinematics for LQCD

Lattice QCD calculation:

$$
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle
$$

Choose

$$
\begin{aligned}
& p=\left(p_{0}, 0,0, p_{3}\right) \\
& z=\left(0,0,0, z_{3}\right) \quad \gamma^{0}
\end{aligned}
$$

On shell equal time matrix element computable in Euclidean space

Obtaining only the relevant

$$
\mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)=\frac{1}{2 p_{0}} \mathcal{M}^{0}\left(z_{3}, p_{3}\right)
$$

$$
\mathcal{P}\left(x,-z^{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu \mathcal{M}_{p}\left(\nu,-z^{2}\right) e^{-i x \nu}
$$

Choosing γ^{0} was also suggested also by M. Constantinou at GHP2017 based on an operator mixing argument for the renormalized matrix element

- $M_{p}\left(v,-z^{2}\right)$ is computable in LQCD with a lattice cutoff a
- Continuum limit $a \rightarrow 0: U V$ dirergences

- J.G.M.Gatheral,Phys.Lett.133B,90(1983)
- J.Frenkel, J.C.Taylor,Nucl.Phys.B246,231(1984),

Consider the ratio

$$
\mathfrak{M}\left(\nu, z_{3}^{2}\right) \equiv \frac{\mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)}{\mathcal{M}_{p}\left(0, z_{3}^{2}\right)}
$$

UV divergences will cancel in this ratio resulting a renormalization group invariant (RGI) function

The lattice regulator can now be removed

$$
\mathfrak{M}^{\text {cont }}\left(\nu, z_{3}^{2}\right) \quad \text { Universal independent of the lattice }
$$

Its Fourier transformation with respect to v is a particular definition of a PDF
It contains non-perturbative information about the structure of the proton

$$
\mathcal{M}_{p}(0,0)=1 \quad \text { Isovector matrix element }
$$

Properties of $m\left(v,-z^{2}\right)$

- Fourier Transform:

$$
P\left(x,-z^{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d v m\left(v,-z^{2}\right) e^{-i v x}
$$ the Pseudo PDF $\quad x \in[-1,1]$

- At $-z^{2} \rightarrow 0$: Collinear divergences
- The small $-z^{2}$ limit defines the twist- 2 PDF
- At small $-z^{2}$ it can be matched to the $\overline{M S}$ PDF

$$
m\left(v, z^{2}\right)=\underbrace{\int_{0}^{1} d \alpha C\left(\alpha, z^{2} \mu^{2}\right) Q\left(v, \mu^{2}\right)}_{+ \text {wist- } 2 \text { v. Braun, et al phys, Rev, D51, } 6366(1995)}+\underbrace{O\left(z^{2}\right)}_{\text {higher twist }}
$$

- DGLAP evolution $z^{2} \frac{d}{d z^{2}} m\left(v,-z^{2}\right)=\int_{0}^{1} d \alpha B\left(\alpha, z^{2}\right) M\left(\alpha v,-z^{2}\right)+O\left(z^{2}\right)$ $M\left(v,-z^{2}\right)$ Computable for any z^{2} DGLAP kernel $m\left(v,-z^{2}\right)$ Computable for any $z^{2}, v \quad v$ is called life time

Continuum limit matching to $\overline{M S}$ computed at 1-loop

Radyushkin Phys.Rev. D98 (2018) no.1, 014019
Zhang et al. Phys.Rev. D97 (2018) no.7, 074508

$$
\begin{aligned}
\mathfrak{M}\left(\nu, z^{2}\right) & =\int_{0}^{1} d x q_{v}(x, \mu) \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k} . \\
\mathcal{K}\left(x \nu, z^{2} \mu^{2}\right) & =\cos (x \nu)-\frac{\alpha_{s}}{2 \pi} C_{F}\left[\ln \left(e^{2 \gamma_{E}+1} z^{2} \mu^{2} / 4\right) \tilde{B}(x \nu)+\tilde{D}(x \nu)\right]
\end{aligned}
$$

$$
\begin{aligned}
\tilde{B}(x) & =\frac{1-\cos (x)}{x^{2}}+2 \sin (x) \frac{x \operatorname{Si}(x)-1}{x}+\frac{3-4 \gamma_{E}}{2} \cos (x)+2 \cos (x)[\operatorname{Ci}(x)-\ln (x)] \\
\tilde{D}(x) & =x \operatorname{Im}\left[e^{i x}{ }_{3} F_{3}(111 ; 222 ;-i x)\right]-\frac{2-\left(2+x^{2}\right) \cos (x)}{x^{2}}
\end{aligned}
$$

Polynomial corrections to the loffe time PDF may be suppressed

$$
\begin{aligned}
& \text { B. U. Musch, et al Phys. Rev. D 83, } 094507 \text { (2011) } \\
& \text { M. Anselmino et al. 10.1007/JHEP04(2014)005 } \\
& \text { A. Radyushkin Phys.Lett. B767 (2017) }
\end{aligned}
$$

Small lattice spacing for both continuum limit and small $-z^{2}$

- Large momentum to extend the range of v

$$
\text { large } v \longleftrightarrow \text { small } x
$$

Scaling $/ a^{7}$ (?)
Large momentum \rightarrow bad signal to noise ratio
Give me a big computer....

Leading twist extraction

$$
\mathfrak{M}(p, z, a)=\mathfrak{M}_{\mathrm{cont}}\left(\nu, z^{2}\right)+\sum_{n=1}\left(\frac{a}{|z|}\right)^{n} P_{n}(\nu)+\left(a \Lambda_{\mathrm{QCD}}\right)^{n} R_{n}(\nu) .
$$

- Obtain the PDF from a limited set of matrix elements obtained from lattice QCD
- z^{2} is a physical length scale sampled on discrete values
- z^{2} needs to be sufficiently small so that higher twist effects are under control
- v is dimensionless also sampled in discrete values
- the range of v is dictated by the range of z and the range of momenta available and is typically limited
- Parametrization of unknown functions

$$
\begin{aligned}
& \mathfrak{M}(p, z, a)=\mathfrak{M}_{\text {cont }}\left(\nu, z^{2}\right)+\sum_{n=1}\left(\frac{a}{|z|}\right)^{n} P_{n}(\nu)+\left(a \Lambda_{\mathrm{QCD}}\right)^{n} R_{n}(\nu) \\
& \mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d x q_{v}(x, \mu) \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k} . \\
& \text { loffe time }-z \cdot p=\nu
\end{aligned}
$$

- All coefficient functions respect continuum symmetries
- Lattice spacing corrections to higher twist effects are ignored
- On dimensional ground a / z terms must exist
- Additional O(a) effects (last term)

Bayesian Inference: Obtain $q(x, \mu)$ from the lattice matrix elements

Jacobi Polynomials

Parametrization of Unknown functioins

PDF parametrization

$$
q_{+}(x)=q(x)+\bar{q}(x)
$$

$$
q_{ \pm}(x)=x^{\alpha}(1-x)^{\beta} \sum_{n=0}^{\infty} \pm d_{n}^{(\alpha, \beta)} J_{n}^{(\alpha, \beta)}(x)
$$

$J_{n}^{(\alpha, \beta)}(x)$ Jacobi Polynomials: Orthogonal and complete in the interval $[0,1]$

$$
\int_{0}^{1} d x x^{\alpha}(1-x)^{\beta} J_{n}^{(\alpha, \beta)}(x) J_{m}^{(\alpha, \beta)}(x)=N_{n}^{(\alpha, \beta)} \delta_{n, m}
$$

Complete basis of functions in the interval $[0,1]$ for any α and β

Bayesian Inference

Optimize model parameters

- Fix the expansion order in the Jacobi polynomial expansion
- Optimize α, β and the expansion of coefficients by maximizing the posterior probability
- Note that one could fix α, β at a reasonable value and vary the order of truncation in the Jacobi polynomial expansion
- Average over models using AICc

Posterior distribution $\quad P\left[\theta \mid \mathfrak{M}^{L}, I\right]=\frac{P\left[\mathfrak{M}^{L} \mid \theta\right] P[\theta \mid I]}{P\left[\mathfrak{M}^{L} \mid I\right]}$.
AICc model averaging $\quad F_{A I C C}=\sum_{i} F_{i} \frac{e^{-A_{i} / 2}}{\sum_{k} e^{-A_{k} / 2}} \quad$ with $\quad A_{i}=-2 \log P_{i}^{\text {post }}+2 p_{i}+\frac{2 p_{i}\left(p_{i}+1\right)}{n_{i}-p_{i}-1}$

Unpolarized Isovector PDF

2+1 flavors single lattice spacing 350 MeV pion

arXiv:2107.05199 [hep-lat] C. Egerer et.al.

Helicity Isovector PDF

Matrix element: $\quad M^{\mu 5}(p, z)=\langle N(p, \lambda)| \bar{\psi}(z) \gamma^{\mu} \gamma^{5} W^{(f)}(z, 0) \psi(0)|N(p, \lambda)\rangle$
Lorentz decomposition:

$$
\begin{array}{r}
M^{\mu 5}(p, z)=-2 m_{N} S^{\mu} \mathcal{M}\left(\nu, z^{2}\right)-2 i m_{N} p^{\mu}(z \cdot S) \mathcal{N}\left(\nu, z^{2}\right)+2 m_{N}^{3} z^{\mu}(z \cdot S) \mathcal{R}\left(\nu, z^{2}\right) \\
S^{\mu} \equiv \frac{1}{2 m_{N}} \bar{u}(p, \lambda) \gamma^{\mu} \gamma^{5} u(p, \lambda)
\end{array}
$$

On the light-cone:

$$
\begin{aligned}
& M^{+5}\left(p, z^{-}\right)_{\operatorname{Reg}_{\mu^{2}}}=-2 m_{N} S^{+}\left[\mathcal{M}\left(p^{+} z^{-}, 0\right)+i p^{+} z^{-} \mathcal{N}\left(p^{+} z^{-}, 0\right)\right]_{\operatorname{Reg}_{\mu^{2}}} \\
&=-2 m_{N} S^{+}[\mathcal{M}(\nu, 0)-i \nu \mathcal{N}(\nu, 0)]_{\operatorname{Reg}_{\mu^{2}}} \equiv-2 m_{N} S^{+} \mathcal{I}\left(\nu, \mu^{2}\right) \\
& g_{q / N}\left(x, \mu^{2}\right)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \nu}{2 \pi} e^{-i x \nu} \mathcal{I}\left(\nu, \mu^{2}\right) .
\end{aligned}
$$

Helicity Isovector PDF

Space-like z:

$$
\begin{gathered}
M^{35}\left(p, z_{3}\right)=-2 m_{N} S^{3}\left[p_{z} \hat{z}\right]\left\{\mathcal{M}\left(\nu, z_{3}^{2}\right)-i p_{z} z_{3} \mathcal{N}\left(\nu, z_{3}^{2}\right)\right\}-2 m_{N}^{3} z_{3}^{2} S^{3}\left[p_{z} \hat{z}\right] \mathcal{R}\left(\nu, z_{3}^{2}\right) \\
M^{35}\left(p, z_{3}\right)=-2 m_{N} S^{3}\left[p_{z} \hat{z}\right]\left\{\mathcal{Y}\left(\nu, z_{3}^{2}\right)+m_{N}^{2} z_{3}^{2} \mathcal{R}\left(\nu, z_{3}^{2}\right)\right\} \\
\tilde{\mathcal{Y}}\left(\nu, z_{3}^{2}\right)=\mathcal{Y}\left(\nu, z_{3}^{2}\right)+m_{N}^{2} z_{3}^{2} \mathcal{R}\left(\nu, z_{3}^{2}\right) \\
\mathfrak{Y}\left(\nu, z_{3}^{2}\right)=\left(\frac{\tilde{\mathcal{Y}}\left(\nu, z_{3}^{2}\right)}{\left.\tilde{\mathcal{Y}}\left(0, z_{3}^{2}\right)\right|_{p_{z}=0}}\right) /\left(\frac{\left.\tilde{\mathcal{Y}}(\nu, 0)\right|_{z_{3}=0}}{\left.\tilde{\mathcal{Y}}(0,0)\right|_{p_{z}=0, z_{3}=0}}\right)
\end{gathered}
$$

Helicity distributions normalized by g_{A} :

$$
\begin{aligned}
& \operatorname{Re} \mathfrak{Y}\left(\nu, z^{2}\right)=g_{A}\left(\mu^{2}\right)^{-1} \int_{0}^{1} \mathrm{~d} x \mathcal{K}_{-}\left(x \nu, z^{2} \mu^{2}, \alpha_{s}\left(\mu^{2}\right)\right) g_{q_{-} / N}\left(x, \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right) \\
& \operatorname{Im} \mathfrak{Y}\left(\nu, z^{2}\right)=g_{A}\left(\mu^{2}\right)^{-1} \int_{0}^{1} \mathrm{~d} x \mathcal{K}_{+}\left(x \nu, z^{2} \mu^{2}, \alpha_{s}\left(\mu^{2}\right)\right) g_{q_{+} / N}\left(x, \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right) .
\end{aligned}
$$

Helicity Isovector PDF

2+1 flavors single lattice spacing 350 MeV pion

Transversity Isovector PDF

On the light-cone:

$$
\begin{aligned}
& h(x, \mu)=\int_{-\infty}^{\infty} \frac{d \nu}{2 \pi} e^{-i x \nu} \mathcal{I}(\nu, \mu) \quad \text { with } \quad, \\
& 2 P^{+} S^{\rho_{\perp}} \mathcal{I}\left(P^{+} z^{-}, \mu\right)=\left\langle P, S^{\rho_{\perp}}\right| \bar{\psi}\left(z^{-}\right) \gamma^{+} \gamma^{\rho_{\perp}} \gamma_{5} W_{+}\left(z^{-}, 0\right) \psi(0)\left|P, S^{\rho_{\perp}}\right\rangle
\end{aligned}
$$

Lorentz decomposition:

$$
\begin{aligned}
& \left\langle P, S^{\perp}\right| O_{\gamma_{5} \gamma_{\lambda} \gamma_{\rho}}(z)\left|P, S^{\perp}\right\rangle= \\
& \quad 2\left(P_{\lambda} S_{\rho}^{\perp}-P_{\rho} S_{\lambda}^{\perp}\right) \mathcal{M}\left(z \cdot P, z^{2}\right)+2 i m_{N}^{2}\left(z_{\lambda} S_{\rho}^{\perp}-z_{\rho} S_{\lambda}^{\perp}\right) \mathcal{N}\left(z \cdot P, z^{2}\right)+2 m_{N}^{2}\left(z_{\lambda} P_{\rho}-z_{\rho} P_{\lambda}\right)\left(z \cdot S^{\perp}\right) \mathcal{R}\left(z \cdot P, z^{2}\right) .
\end{aligned}
$$

Space-like z:

$$
\mathcal{M}\left(z_{3}, P_{3}\right)=\frac{1}{4 E\left(P_{3}\right)} \sum_{\rho=1}^{2}\left\langle P, S^{\perp}\right| O_{\gamma_{5} \gamma_{0} \gamma_{\rho}}(z)\left|P, S^{\perp}\right\rangle
$$

$$
\mathfrak{M}\left(\nu, z_{3}^{2}\right) \equiv \frac{\mathcal{M}\left(z_{3}, P_{3}\right)}{\mathcal{M}\left(z_{3}, 0\right)} \frac{\mathcal{M}(0,0)}{\mathcal{M}\left(0, P_{3}\right)}
$$

\longrightarrow Transversity normalized by

Transversity Isovector PDF

2+1 flavors single lattice spacing $\mathbf{3 5 0} \mathbf{~ M e V}$ pion

arXiv:2111.01808 [hep-lat] C. Egerer et.al.

Conclusions
 Outlook

- The understanding hadronic structure is a major goal in nuclear physics
- Large experimental effort: JLab 12 GeV and future EIC
- Lattice QCD calculations can in principle compute (Generalized) Parton distribution functions from first principles
- Controlling all systematics of the calculation is important and that complicates the solution of the inverse problem at hand
- Both lattice spacing and higher twist effects need to be controlled
- New ideas are needed for pushing to higher momentum and improved sampling of the loffe time
- The range of loffe time is essential for obtaining the x-dependence of distribution functions
- The synergy between lattice and experiment may be proven essential in providing precision estimates of (Generalized) Parton distribution functions

Back up - DGLAP

$$
\mu^{2} \frac{d}{d \mu^{2}} \mathcal{Q}\left(\nu, \mu^{2}\right)=-\frac{2}{3} \frac{\alpha_{s}}{2 \pi} \int_{0}^{1} d u B(u) \mathcal{Q}\left(u \nu, \mu^{2}\right)
$$

$$
B(u)=\left[\frac{1+u^{2}}{1-u}\right]_{+} \quad \text { DGLAP kernel in position space }
$$

V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

At 1-loop

$$
\mathcal{Q}\left(\nu, \mu^{\prime 2}\right)=\mathcal{Q}\left(\nu, \mu^{2}\right)-\frac{2}{3} \frac{\alpha_{s}}{2 \pi} \ln \left(\mu^{\prime 2} / \mu^{2}\right) \int_{0}^{1} d u B(u) \mathcal{Q}\left(u \nu, \mu^{2}\right)
$$

Which implies (ignoring higher twist)

$$
\mathfrak{M}\left(\nu, z^{\prime 2}\right)=\mathfrak{M}\left(\nu, z^{2}\right)-\frac{2}{3} \frac{\alpha_{s}\left(z^{2}\right)}{\pi} \ln \left(z^{\prime 2} / z^{2}\right) \int_{0}^{1} d u B(u)\left[\mathfrak{M}\left(u \nu, z^{2}\right)\right.
$$

Quenched QCD

Data corresponding to $z / a=1,2,3,4$

Quenched QCD

Evolved to 1 GeV

Quenched QCD

Data corresponding to $z / a=1,2,3,4$

Quenched QCD

Evolved to 1 GeV

$$
\left.Q\left(y, p_{3}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu \mathcal{M}_{p}\left(\nu, \nu^{2} / p_{3}^{2}\right) e^{-i y \nu} \quad \text { di's quasi-PDF } \quad \boldsymbol{y} \in \mathbb{E}-\infty, \infty\right)
$$

Large values of $z_{3}=\nu / p_{3}$ are problematic
Alternative approach to the light-cone:

PDF can be recovered $-z^{2} \rightarrow 0$
Note that $\quad x \in[-1,1]$

