Measurement of the transverse single spin asymmetry for forward neutron production in a wide transverse momentum range

Minho Kim (RIKEN) on behalf of the RHICf collaboration

27 September SPIN2023

Transverse single spin asymmetry (A_N)

- In the polarized p+p collision, the A_N is defined by a left-right cross section asymmetry
 of a specific particle or event.
- The RHICf experiment measured the A_N of the forward neutron produced in $\eta > 6$ and $p_T < 1$ GeV/c.
- A_N of the forward particle is especially important to study the particle production mechanism in the regime where the pQCD is not applicable.

A_N for forward neutron production

- Non-zero A_N for forward neutron production was first observed by the IP12 experiment at RHIC. Y. Fukao et al., PLB 650 (2007) 325
- Afterwards, the PHENIX measured the neutron A_N as a function of p_T with three different collision energies.
- The measurement results showed a possible p_T dependence of the neutron A_N .

Theoretical model

- Neutron A_N was explained by an interference between the spin flip and spin non-flip exchange leading to non-zero phase shift.
- The π and a_1 exchange model showed that the neutron A_N increased in magnitude with increasing p_T with little \sqrt{s} dependence.

Unfolded neutron A_N at PHENIX

PHENIX, PRD 105 (2022) 032004

- Recently, p_T dependence of the PHENIX neutron A_N at $\sqrt{s} = 200$ GeV was obtained by unfolding the data.
- The unfolded data showed the same tendency with the model calculations.

Neutron A_N measurement at RHICf

- RHICf the experiment has extended the previous measurements up to 1 GeV/c to study the kinematic dependence of the neutron A_N in more detail.
- We used a detector with one order of better position resolution (1 cm \rightarrow 1 mm).
- We can also study the \sqrt{s} dependence of the neutron A_N by comparing the RHICf data with that of the PHENIX.

RHIC forward (RHICf) experiment

STAR detector

Minho Kim (RIKEN)

Neutron measurement

Minho Kim (RIKEN)

Neutron photon separation

Photon contamination

Charged hadron contamination

Side view

Charged hadron contamination

Side view

Charged hadron contamination

Side view

Neutron A_N as a function of p_T

• RHICf data is consistent with the PHENIX one.

- In $x_F > 0.46$, the A_N increases in magnitude with p_T as the model predicted.
- In $x_F < 0.46$, the AN reaches a plateau.

Neutron A_N as a function of x_F

- In $p_T < 0.25$ GeV/c, the A_N s are flat showing no x_F dependence which is consistent with the PHENIX data.
- In $p_T > 0.25$ GeV/c, the A_N s show a clear x_F dependence.
- The π and a₁ exchange model reproduces only part of the RHICf data.
 → More comprehensive (absorptive correction, other reggeon exchange) theoretical considerations are necessary to explain the present results.

Summary

- The RHICf experiment measured the A_N for forward neutron production in a wide p_T range of $0 < p_T < 1$ GeV/c in polarized p+p collisions at $\sqrt{s} = 510$ GeV.
- There is no \sqrt{s} dependence in the neutron A_N .
- In $x_F > 0.46$, the neutron A_N increases in magnitude with p_T as the model predicted.
- A clear x_F dependence was observed in $p_T > 0.25$ GeV/c.
- More comprehensive theoretical considerations are necessary to understand the present results.

Backup