Exploring fracture functions with semi-inclusive target- and double-spin asymmetries in the target fragmentation region with CLAS12

Timothy B. Hayward

September 26, 2023

Traditional SIDIS measurements

- Decades of study have led to detailed mappings of the momentum distribution of partons in the nucleon in terms of 1-D and 3-D (TMD) parton distribution functions (PDFs).
- SIDIS measurements rely on the assumption that measured hadrons are produced in the CFR.
- Cross section factorized as a convolution of PDFs and Fragmentation Functions (FFs)¹.

2

The Neglected Hemisphere – Target Fragmentation

- Final state hadrons also form from the left-over target remnant (TFR) whose partonic structure is defined by "fracture functions^{"1,2}: the probability for the target remnant to form a certain hadron given a particular ejected quark.
- In the TFR, factorization into x and z does not hold because it is not possible to separate quark emission from hadron production.

Analog to PDFs; Momentum Sum Rules

• A direct relationship exists to the eight leading twist PDFs after the fracture functions are integrated over the fractional longitudinal nucleon momentum, ζ .

Why fracture functions?

- Sometimes possible to kinematically separate CFR and TFR (some jets, high energy DY, etc) ... but not always clear (fixed target experiments).
- Without an understanding of the signals that we expect from target fragmentation we may misinterpret results that we expect are from the current.
- Interpretation of TFR structure functions is often simpler due to the lack of Collins mechanism reducing the number of available tensor structures (one fracture function per structure function!).
- Studying the TFR tests our complete understanding of the SIDIS production mechanism while also providing access to information not available in the CFR.
- Access to more familiar TMD/PDFs through momentum sum rules, but with different systematics.

CLAS12 and the Polarized Target

- CLAS12: very high luminosity and wide acceptance (ideal for multiparticle final states).
- Preliminary data (~5% of total experiment) available from the summer-2022 run period.
- 10.55 GeV electron beam, longitudinally polarized beam (~83%).
- Nuclear target (NH₃) dynamically polarized (~70%) using the CLAS12 solenoid. First polarized target experiment in Hall-B during the 12 GeV era. Preliminary data; preliminary analysis.
- Select semi-inclusive DIS proton final state.

Can We Separate Target and Current?

Feynman variable

$$x_F = \frac{p_h^z}{p_h^z(\max)}$$
 in CM frame $\mathbf{p} = -\mathbf{q}$, $-1 < x_F < 1$

Rapidity

$$y_h = \frac{1}{2} \log \frac{p_h^+}{p_h^-} = \frac{1}{2} \log \frac{E_h + p_h^z}{E_h - p_h^z}$$

- No clear *experimental* definition of what constitutes current production versus target production.
- Odd structure functions, with different production mechanisms in both regions, give a possible clue.
- Protons (as opposed to mesons) at CLAS12 kinematics give a unique opportunity because they have extensive coverage in both regions.

Current and Target Separation

- Odd-function (sine) modulations exhibit a sign flip around the transition from target to current fragmentation. Interestingly, we observe $F_{LU} \sim F_{UL}$.
- Even-function (cosine) behavior of double-spin asymmetry does not show a sign flip; possible signs decreasing F_{LL} as $x_F \rightarrow \pm 1$ (x_B decreasing but likely not the only cause).
- Consistent beam-spin asymmetries in unpolarized H₂ and polarized NH₃ indicates minimal nuclear medium modification.

Kotzinian-Mulders Asymmetry

No Collins mechanism in the TFR so F_{UL}^{sin2φ} (and F_{UU}^{cos2φ}) are pure twist-4. We would expect small magnitude at -x_F.

UCONN

$$F_{UL}^{\sin 2\phi_h} = \mathcal{C}\left[-\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T\right)\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T\right) - \boldsymbol{k}_T \cdot \boldsymbol{p}_T}{MM_h} h_1^{\perp} H_1^{\perp}\right]$$

- The F_{UL}^{sin2φ} asymmetry is purely generated by the Collins mechanism – whereby a transversely polarized quark flips orientation during hadronization and produces an asymmetric distribution in the transverse plane.
- Hadronization in the TFR is more isotropic there is no additional chiral-odd quantity like the Collins function to pair with the Kotzinian-Mulders TMD because factorization into separate soft and hard scale processes does not hold.

Early signs give a *possible* hint but need more statistics!

A_{LL} – The Best of Both Worlds

$$\frac{d\sigma}{dxdyd\zeta dP_T^2} = 2\pi\hat{\sigma}_U \sum_q e_q^2 \left[F_{UU,T} + \lambda S_L \sqrt{1 - \varepsilon^2} F_{LL} \right]_{\text{Modeling definition}}$$
At leading twist for the case of a longitudinally polarized target and a single hadron produced in the TFR, only two terms appear:

$$F_{UU,T} \propto \tilde{u}_1(x,\zeta,P_T^2) = \int d^2k_T \hat{u}_1 \frac{|u|}{|u|} \frac{|$$

L

Double-spin results

- ABDY model: analysis at large x_B in pQCD considering orbital angular momentum from valence Fock states that provide large logarithmic enhancement to ratio of polarized to unpolarized quark distributions; model terms constrained by fits to SLAC, HERMES, Hall-A and CLAS DIS data.
- GRSV model: Model incorporating totally flavor-asymmetric light sea densities $(\overline{d} > \overline{u})$ with a Pauli–blocking ansatz at the low radiative/dynamical input scales.
- Good agreement between the inclusive proton and the DIS helicity distribution models. The P_T dependence will allow for highstatistics constraints on the helicity TMD.

11

UCONN

ABDY Model: H. Avakian et al., Phys.Rev.Lett. 99 (2007) 082001, [hep-ph] 0705.1553
 GRSV Model: M. Glück et al., Phys. Rev. D. 63 (2000) 094005, [hep-ph] 0011215v1

GRSV Model: M. Gluck et al., Phys. Rev. D. 63 (2000) 094005, [hep-ph] 0011215v1
 Fragmentation function from DSS: Phys.Rev.D 75 (2007) 114010 [hep-ph] 0703242

Conclusions

- Protons produced in SIDIS at CLAS12 provide a unique opportunity to study both targetand current-fragmentation as well as the transition between them.
- The RGC polarized target provides the first opportunity to study leading-twist TFR measurements that have a direct PDF-analog as well as investigate the (assumed) lack of Collins mechanism in the TFR.
- Double-spin asymmetry is linked to the helicity distribution and can be used in global collinear fits or for studying the TMD.

Back Up Slides

UCONN

Larger phase space

Better statistics

 \mathbf{x}_{F}

† 1

0

|- -1

Full picture!

"Mouth of Flower", Octavio Ocampo

CLAS12 (Hall B) Physics Program

- International collaboration with more than 40 member institutions and 200 full members.
- CLAS(12) is the world's only large acceptance and high luminosity spectrometer for fixed target lepton scattering experiments.

- 1. Study of the nucleon resonance structure at photon virtualities from 2.0 to 12 GeV²
- 2. Study of Generalized Parton Distributions (GPDs), (2 +1) D imaging of the proton and the study of its gravitational and mechanical structure.
- 3. Study of the Transverse Momentum Dependence (TMDs) and the of 3D structure in momentum space.
- 4. Study of J/ψ Photoproduction, LHCb Pentaquarks and Timelike Compton Scattering.
- 5. Study of meson spectroscopy in search of hybrid mesons
- 6. Much more!

Particle ID

• Electron

- Electromagnetic calorimeter.
- Cherenkov detector.
- Vertex and fiducial cuts.

Hadron

- β vs p comparison between vertex timing and event start time.
- Vertex and fiducial cuts..

Extracting structure functions

- Select $ep \rightarrow e'pX$. (X could be any additional particles)
- Cuts on the missing mass to avoid exclusive events and resonances (ρ⁰, φ, f₂-meson etc).
- Unbinned maximum likelihood method:

$$\begin{split} \Sigma^{bt} &= \sum_{i}^{N^{bt}} \left[1 + \frac{V(\epsilon, y)}{A(\epsilon, y)} \frac{F_{UU}^{\cos\phi}}{F_{UU}} \cos\phi + \frac{B(\epsilon, y)}{A(\epsilon, y)} \frac{F_{UU}^{\cos(2\phi)}}{F_{UU}} \cos(2\phi) + P_b h_b \frac{W(\epsilon, y)}{A(\epsilon, y)} \frac{F_{LU}^{\sin\phi}}{F_{UU}} \sin\phi + P_t h_t D_f \frac{B(\epsilon, y)}{A(\epsilon, y)} \frac{F_{UL}^{\sin(2\phi)}}{F_{UU}} \sin(2\phi) + P_b h_b P_t h_t D_f \frac{B(\epsilon, y)}{A(\epsilon, y)} \frac{F_{UL}^{\sin(2\phi)}}{F_{UU}} \sin(2\phi) + P_b h_b P_t h_t D_f \frac{B(\epsilon, y)}{A(\epsilon, y)} \frac{F_{LL}^{\sin(2\phi)}}{F_{UU}} \frac{F_{LU}^{\cos\phi}}{F_{UU}} \right]. \end{split}$$

- Use MINUIT to minimize the -log likelihood.
- Include relevant beam polarization (~83% at JLab), target polarizations (~70%) and depolarization factors on an event-by-event basis.

Potential Ambiguities

$$\frac{d\sigma^{\text{TFR}}}{dx_B dy d\zeta d^2 P_{h\perp} d\phi_S} = \frac{2\alpha_{\text{em}}^2}{Q^2 y} \left\{ \left(1 - y + \frac{y^2}{2} \right) \\ \times \sum_a e_a^2 \left[\hat{u}_1(x_B, \zeta, P_{h\perp}^2) - |S_{\perp}| \frac{|P_{h\perp}|}{m_h} \hat{u}_{1T}^{\perp}(x_B, \zeta, P_{h\perp}^2) \\ + \lambda_l y \left(1 - \frac{y}{2} \right) \sum_a e_a^2 \left[S_{\parallel} \ \hat{l}_{1L} (x_B, \zeta, P_{h\perp}^2) \\ + |S_{\perp}| \frac{|P_{h\perp}|}{m_h} \ \hat{l}_{1T}^{\perp} (x_B, \zeta, P_{h\perp}^2) \\ + |S_{\perp}| \frac{|P_{h\perp}|}{m_h} \ \hat{l}_{1T}^{\perp} (x_B, \zeta, P_{h\perp}^2) \\ \text{M-Assemine et al., Phys. Lett. B. 699 (2011), 108-116, [perpen] 11024214} \\ \text{The same azimuthal asymmetries can appear in both the CFR and TFR, complicating their interpretation...} \\ F_{LT}^{\text{cose}(\phi_h - \phi_S)} \right]_{\text{CFR}} = C \left[\frac{\hat{h} \cdot k_{\perp}}{m_h} \ \hat{l}_{1T}^{\perp} (x_B, \zeta, P_{h\perp}^2) \\ \dots \text{ six more azimuthal asymmetries appear in the CFR at leading twist which are absent in the TFR.} \\ \text{CONN}$$

Cross Section and Key Observables

$$\frac{d\sigma}{dxdyd\zeta dP_T^2 d\phi_h} = \hat{\sigma}_U \bigg[F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} F_{UU}^{\cos\phi_h} \cos\phi_h + \varepsilon F_{UU}^{\cos2\phi_h} \cos(2\phi_h) + \lambda_\ell \sqrt{2\varepsilon(1-\varepsilon)} F_{LU}^{\sin\phi_h} \sin\phi_h + S_L \sqrt{2\varepsilon(1+\varepsilon)} F_{UL}^{\sin\phi_h} \sin\phi_h + \lambda_\ell S_L \sqrt{1-\varepsilon^2} F_{LL} + \lambda_\ell S_L \sqrt{2\varepsilon(1-\varepsilon)} F_{LL}^{\cos\phi_h} \cos\phi_h + S_L \varepsilon F_{UL}^{\sin2\phi_h} \sin(2\phi_h) \bigg]$$

1. $F_{LU}^{\sin \phi}$ - qualitative cross check with H₂, most precise observable detailing CFR/TFR split

- 2. $F_{UL}^{\sin \phi}$ complimentary information to twist-3 beam-spin asymmetry
- 3. $F_{UL}^{\sin(2\phi)}$ opportunity to test the lack of Collins mechanism in the TFR
- 4. F_{LL}^1 link to the relatively well-known helicity TMD-PDF; contribution to global collinear fits
- 5. $F_{LU}^{\sin \phi}/F_{LL}^1$ test of twist-3 Q² dependence without F_{UU}

Tables

Twist-2

M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132

Twist-3 Collinear

Collinear terms; Chen, K. B., Ma, J. P. and Tong, X. B., [hep-ph] 2308.11251

Tables

Twist-2

M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132

Twist-3 Collinear

Collinear terms; Chen, K. B., Ma, J. P. and Tong, X. B., [hep-ph] 2308.11251

Tables

UCONN

Twist-2

Twist-3 Collinear

Chen, K. B., Ma, J. P. and Tong, X. B., [hep-ph] 2308.11251

26

M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132

Single hadron limitations

- FrFs describing transversely polarized quarks are chiral odd and inaccessible in TFR single hadron production where there is no access to a chiral odd FF.
- Functions with double superscripts containing h and ⊥ have give the unique possibility of measuring longitudinal polarized quarks in unpolarized nucleons (and vice versa) but disappear after integration over either momentum.

M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132

Depolarization Factors

$$\begin{aligned} \frac{d\sigma}{dxdyd\zeta dP_T^2 d\phi_h} = &\hat{\sigma}_U \bigg[F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} F_{UU}^{\cos\phi_h} \cos\phi_h + \varepsilon F_{UU}^{\cos2\phi_h} \cos(2\phi_h) + \\ &\lambda_\ell \sqrt{2\varepsilon(1-\varepsilon)} F_{LU}^{\sin\phi_h} \sin\phi_h + S_L \sqrt{2\varepsilon(1+\varepsilon)} F_{UL}^{\sin\phi_h} \sin\phi_h + \\ &\lambda_\ell S_L \sqrt{1-\varepsilon^2} F_{LL} + \lambda_\ell S_L \sqrt{2\varepsilon(1-\varepsilon)} F_{LL}^{\cos\phi_h} \cos\phi_h + S_L \varepsilon F_{UL}^{\sin2\phi_h} \sin(2\phi_h) \bigg] \end{aligned}$$

- Terms added event-by-event in likelihood function.
- Relatively small difference between event-by-event and weighted average; more appropriate for F_{UL} and F_{LL} (that have two terms).

$$B(\epsilon, y) \equiv \frac{y^2}{2(1-\epsilon)}\epsilon = \frac{1}{1+\gamma^2} \left(1-y-\frac{1}{4}\gamma^2 y^2\right) \approx (1-y), \qquad (1.16)$$

$$C(\epsilon, y) \equiv \frac{y^2}{2(1-\epsilon)}\sqrt{1-\epsilon^2} = \frac{y}{\sqrt{1+\gamma^2}} \left(1-\frac{1}{2}y\right) \approx y\left(1-\frac{1}{2}y\right), \tag{1.17}$$

$$V(\epsilon, y) \equiv \frac{y^2}{2(1-\epsilon)}\sqrt{2\epsilon(1+\epsilon)} = \frac{2-y}{1+\gamma^2}\sqrt{1-y-\frac{1}{4}\gamma^2 y^2} \approx (2-y)\sqrt{1-y},$$
(1.18)

$$W(\epsilon, y) \equiv \frac{y^2}{2(1-\epsilon)}\sqrt{2\epsilon(1-\epsilon)} = \frac{y}{\sqrt{1+\gamma^2}}\sqrt{1-y-\frac{1}{4}\gamma^2 y^2} \approx y\sqrt{1-y},$$
(1.19)

Consistent with both models

Pion Release

Figure 11: The P_T -dependence of the raw asymmetry in a bin in (left) and the double spin asymmetry corrected for polarization, dilution, and depolarization factors (right). Dotted line is for the equal widths of $f_1(x, k_T)$, dashed magenta line for 10% difference in Gaussian widths, and the red curve corresponds to widths predicted by lattice [Mus05] (see APPENDIX:A)

Twist-3 TFR Observables

In the TFR the sin(2\$\phi) and cos(2\$\phi) modulations appear at twist-4 because there are no appropriate FrFs to generate the correct tensor structure.

Mapping the Q² dependence

Double Ratio

$$\frac{d\sigma}{dxdyd\zeta dP_T^2 d\phi_h} = \hat{\sigma}_U \left[F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} F_{UU}^{\cos\phi_h} \cos\phi_h + \varepsilon F_{UU}^{\cos 2\phi_h} \cos(2\phi_h) + \lambda_\ell \sqrt{2\varepsilon(1-\varepsilon)} F_{LU}^{\sin\phi_h} \sin\phi_h + S_L \sqrt{2\varepsilon(1+\varepsilon)} F_{UL}^{\sin\phi_h} \sin\phi_h + \lambda_\ell S_L \sqrt{1-\varepsilon^2} F_{LL} + \lambda_\ell S_L \sqrt{2\varepsilon(1-\varepsilon)} F_{LL}^{\cos\phi_h} \cos\phi_h + S_L \varepsilon F_{UL}^{\sin 2\phi_h} \sin(2\phi_h) \right]$$

- The "double ratio" F_{LU}/F_{LL} should behave as a very clear twist-3/twist-2 ratio without the possible unconstrained contributions from F_{UU,L} that have been present in previous F_{LU}/F_{UU} studies.
- Important to do very precise multidimensional bins... defer this study until the full statistics are available.

$F_{LU} \sim F_{UL}$ in epX, $x_F < 0$

Back-to-back (dSIDIS) Formalism

- When two hadrons are produced "back-to-back"^{1,2} with one in the CFR and one in the TFR the structure function contains a convolution of a fracture function and a fragmentation function.
- Leading twist beam(target)-spin asymmetry.

Unique access to longitudinally polarized quarks in unpolarized nucleon... no corresponding PDF!

Access to unmeasured fracture functions

- x-dependence increases in magnitude in the valance quark region.
- ζ_2 -dependence shows decreasing amplitude with increasing momenta. Possibly due to correlations with x.
- Relatively flat as a function of z₁, possibly due to cancellation of fragmentation functions.
- First observation of TMD fracture functions and long-range correlations between current and target. Already working on follow up (negative pion, deuteron target, more statistics etc.)

 $A_{LU} \propto$