Quark orbital angular momentum in the proton from a twist-3 generalized parton distribution

Michael Engelhardt, Jeremy Green, Nesreen Hasan, Stefan Krieg, Simonetta Liuti Stefan Meinel, John Negele, Andrew Pochinsky, Sergey Syritsyn
(LHPC)

Acknowledgments:

Gauge ensemble provided by JLab/W\&M Collaboration
Supported by U.S. DOE, Office of Science, Office of Nuclear Physics

Quark OAM and parton distributions

Ji sum rule:
$L_{3}=J_{3}-S_{3}=\frac{1}{2} \int d x x(H+E)-\frac{1}{2} \int d x \widetilde{H}$

Twist-2 GTMD F_{14} :
$L_{3}=-\int d x \int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}$
\longrightarrow from Ji to Jaffe-Manohar OAM

There is a third way to access Ji OAM: Twist-3 GPD $\widetilde{E}_{2 T}$
$L_{3}=\left(L_{3}+2 S_{3}\right)-2 S_{3}=-\int d x x \widetilde{E}_{2 T}-\int d x \bar{H}$
Note: A version of this approach was first noted by M. Polyakov, denoting the relevant twist-3 GPD variously as G_{2} or G_{3}. Relation to OAM derived using OPE. Here, will review alternative approach based on GTMDs.

Note: All distribution functions above taken in the forward limit!

Equation of motion relation

$$
-x \widetilde{E}_{2 T}-\widetilde{H}=-\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}+\widetilde{M} \quad L_{3}=-\int d x \int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}=-\int d x x \widetilde{E}_{2 T}-\int d x \bar{H}
$$

How? Consider correlator (straight gauge link \mathcal{U})

$$
W_{\Lambda^{\prime} \Lambda}^{\Gamma}=\left.\frac{1}{2} \int \frac{d z^{-} d^{2} z_{T}}{(2 \pi)^{3}} e^{i x P^{+} z^{-}-i k_{T} \cdot z_{T}}\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(-z / 2) \Gamma \mathcal{U} \psi(z / 2)|p, \Lambda\rangle\right|_{z^{+}=0}
$$

Use $\Gamma=i \sigma^{i+} \gamma^{5}$ and quark field equation of motion $\longrightarrow \quad(i \not D-m) \psi=0$ to generate (note zero skewness throughout)

$$
i k^{+} \epsilon^{i j} W_{\Lambda^{\prime} \Lambda}^{\gamma^{j}}+\frac{\Delta^{i}}{2} W_{\Lambda^{\prime} \Lambda}^{\gamma^{+}}-i \epsilon^{5} k^{i j} W_{\Lambda^{\prime} \Lambda}^{\gamma^{+}}+\mathcal{M}_{\Lambda^{\prime} \Lambda}^{i}=0
$$

Form combination $\frac{\Delta^{i}}{\Delta_{T}^{2}}\left(W_{++}^{\Gamma}-W_{--}^{\Gamma}\right)$, insert parametrizations of $W_{\Lambda^{\prime} \Lambda}^{\Gamma}$ in terms of GTMDs Integrate over k_{T}, identify GPDs

Extraction from QCD matrix element

$L_{3}+2 S_{3}=-\int d x x \widetilde{E}_{2 T}=2 \int d x x \int d^{2} k_{T}\left(\frac{k_{T} \cdot \Delta_{T}}{\Delta_{T}^{2}} F_{27}+F_{28}\right)=-i P^{+} \int d x x \int d^{2} k_{T} \epsilon_{i j} \frac{\Delta^{i}}{\Delta_{T}^{2}}\left(W_{++}^{\gamma^{j}}-W_{--}^{\gamma^{j}}\right)$
(all in forward limit - note $W_{\Lambda^{\prime} \Lambda}^{\gamma^{i}}$ is parametrized in terms of 8 twist-3 GTMDs F_{21}, \ldots, F_{28}).

$$
L_{3}+2 S_{3}=\left.\epsilon_{i j} \frac{1}{2} \frac{\partial}{\partial(z \cdot P)} \frac{\partial}{\partial \Delta^{i}}\left\langle P+\Delta_{T} / 2,+\right| \bar{\psi}(-z / 2) \gamma^{j} \mathcal{U} \psi(z / 2)\left|P-\Delta_{T} / 2,+\right\rangle\right|_{z^{+}=z^{-}=0, \Delta_{T}=0, z_{T} \rightarrow 0}
$$

Renormalize using number of valence quarks n

$$
2 P^{j} n=\left.\langle P,+| \bar{\psi}(-z / 2) \gamma^{j} \mathcal{U} \psi(z / 2)|P,+\rangle\right|_{z^{+}=z^{-}=0, z_{T} \rightarrow 0}
$$

i.e., ultimately determine ratio $\left(L_{3}+2 S_{3}\right) / n$

Setting up a lattice calculation

Lattice frame is boosted with respect to phenomenology frame; use invariants $z \cdot P, z^{2}$
Original frame: $z^{+}=0, \quad z \cdot P=z^{-} P^{+}, \quad z^{2}=-z_{T}^{2}$
Lattice frame: $z_{0}=0, \quad z \cdot P=-z_{3} P_{3}, \quad z^{2}=-z_{3}^{2}-z_{T}^{2}$

Use Rome direct derivative method to perform $\partial / \partial \Delta^{i}$
Perform $\partial / \partial z_{3}$ via finite difference at constant z^{2}

Setting up a lattice calculation

Lattice frame is boosted with respect to phenomenology frame; use invariants $z \cdot P, z^{2}$
Original frame: $z^{+}=0, \quad z \cdot P=z^{-} P^{+}, \quad z^{2}=-z_{T}^{2}$
Lattice frame: $\quad z_{0}=0, \quad z \cdot P=-z_{3} P_{3}, \quad z^{2}=-z_{3}^{2}-z_{T}^{2}$

Use Rome direct derivative method to perform $\partial / \partial \Delta^{i}$
Perform $\partial / \partial z_{3}$ via finite difference at constant z^{2}

Joan Miró, print, 1974, www.masterworksfineart.com

Ensemble details

Clover fermion ensemble provided by R. Edwards, B. Joó and K. Orginos (JLab / W\&M Collaboration)

$L^{3} \times T$	$a(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	$m_{N}(\mathrm{GeV})$	\#conf.	\#meas.
$32^{3} \times 96$	$0.11403(77)$	$317(2)(2)$	$1.077(8)$	967	23224

Dependence on z^{2}

Dependence on z^{2}

Result for L_{3} and comparison to other approaches; conclusions

- Combine with $2 S_{3}$ previously obtained on same ensemble, same parameters (arXiv:1703.06703): $2 S_{3}=1.18(2)$ (extrapolate $\widetilde{E}_{2 T}$ to $P=0$ to match).
- Different systematics within the various approaches appear to remain smaller than statistical uncertainty.
- Larger uncertainty of twist-3 GPD approach: Difference of large numbers, incomplete cancellation of fluctuations due to use of rotational symmetry in normalization.
- It is feasible to extract OAM from twist-3 GPDs, but higher effort compared to other approaches for comparable accuracy.

