New measurements of transverse spin asymmetries at COMPASS

Anna Martin

Istituto Nazionale di Fisica Nucleare Sezione di Trieste

on behalf of the COMPASS Collaboration

September 24 – 29, 2023 Durham Convention Center Durham, NC, USA

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

fixed target experiment on the M2 beam line at CERN SPS a facility, built by the COMPASS Collaboration, in the years 1997-2001 with a wide physics program

initially approved for 5 years of data taking, the experiment took data from 2002 to 2022

and the spectrometer is still there, being used by the AMBER Collaboration

the COMPASS spectrometer

designed to

- use high energy muon and hadron beams, and different targets
- have large angular acceptance, as flat as possible
- cover a broad kinematical range

two stages spectrometer

Large Angle Spectrometer (SM1), Small Angle Spectrometer (SM2)

 (μ) beam

- equipped with
- Very Small, Small, Large Area trackers
- RICH, muon detectors, calorimeters,
- trigger hodoscopes

calorimetry, µID

the COMPASS spectrometer

designed to

- use high energy muon and hadron beams, and different targets
- have large angular acceptance, as flat as possible
- cover a broad kinematical range

two stages spectrometer

Large Angle Spectrometer (SM1), Small Angle Spectrometer (SM2)

equipped with Very Small, Small, Large Area trackers RICH, muon detectors, calorimeters, trigger hodoscopes

2005 upgrade:

large acceptance PT magnet, RICH ... several upgrades in the years to fulfill the requirements of the different measurements

15 years of data taking

dedicated to nucleon structure and spectroscopy

	2002-2004	160 GeV/c μ⁺ beam L and T polarized d (⁶ LiD) target	ΔG , SIDIS	
	2006	160 GeV/c μ⁺ beam L polarized d (⁶ LiD) target	ΔG , SIDIS	spin physics B Parsamyan
	2007	160 GeV/c μ^+ beam L and T polarized p (NH ₃) target	SIDIS	— pienary
	2008, 2009	hadron beams LH and nuclear targets	Hadron Spectroscopy Primakoff	/
Addendum to the COMPASS Proposal	2010	160 GeV/c μ^+ beam T polarized p (NH ₃) target	SIDIS	G. Reicherz
	2011	190 GeV/c μ^+ beam L polarized p (NH ₃) target	SIDIS	Polarised targets
COMPASS II Proposal	2012	π^- (μ) beam Ni (LH) target	Primakoff (DVCS)	
	2015	190 GeV/c π^- beam T polarized p (NH ₃) target	Drell-Yan	
	2016, 2017	160 GeV/c μ^+ and μ^- beam LH target	DVCS / SIDIS	— J. Matoušek GPDs/TMDs
	2018	190 GeV/c π^- beam T polarized p (NH ₃) target	Drell-Yan	— V. Andrieux TMDs A. Vijayakumar, poster
Addendum to the COMPASS II Proposal	2022	160 GeV/c μ⁺ beam T polarized d (⁶ LiD) target	SIDIS	

15 years of data taking

dedicated to nucleon structure and spectroscopy

	2002-2004	160 GeV/c μ⁺ beam L and T polarized d (⁶ LiD) target	∆G, SIDIS	
	2006	160 GeV/c μ^+ beam L polarized d (⁶ LiD) target	ΔG , SIDIS	
	2007	160 GeV/c μ^+ beam L and T polarized p (NH ₃) target	SIDIS	
	2008, 2009	hadron beams LH and nuclear targets	Hadron Spectroscopy Primakoff	
Addendum to the COMPASS Proposal	2010	160 GeV/c μ^+ beam T polarized p (NH ₃) target	SIDIS	
	2011	190 GeV/c μ^+ beam L polarized p (NH $_3$) target	SIDIS	Collins and Sivers
COMPASS II Proposal	2012	π⁻ (μ) beam Ni (LH) target	Primakoff (DVCS)	asymmetries
	2015	190 GeV/c π^- beam T polarized p (NH $_3$) target	Drell-Yan	
	2016, 2017	160 GeV/c μ^+ and μ^- beam LH target	DVCS / SIDIS	
	2018	190 GeV/c π^- beam T polarized p (NH $_3$) target	Drell-Yan	
Addendum to the COMPASS II Proposal	2022	160 GeV/c μ⁺ beam T polarized d (⁶ LiD) target	SIDIS	

SIDIS cross-section

SIDIS cross-section

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h} F_{UU}^{\cos \gamma n} + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos 2\phi_{h}} + \lambda_{e} \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h} F_{LU}^{\sin\phi_{h}} \\ + S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} + \varepsilon \sin(2\phi_{h}) F_{UL}^{\sin 2\phi_{h}} \right] \\ + S_{\parallel}\lambda_{e} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h} F_{LU}^{\sin\phi_{h}} + \varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})} \right] \\ + \left| S_{\perp} \right| \left[\sin(\phi_{h}-\phi_{S}) \left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})} \right) \right] \\ + \left| \sin(\phi_{h}+\phi_{S}) F_{UT}^{\sin(\phi_{h}+\phi_{S})} \right] \\ + \left| \sin(\phi_{h}+\phi_{S}) F_{UT}^{\sin(\phi_{h}+\phi_{S})} \right| \\ + \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S} F_{UT}^{\sin(\phi_{h}} + \phi_{S}) + \varepsilon \sin(3\phi_{h}-\phi_{S}) F_{UT}^{\sin(3\phi_{h}-\phi_{S})} \\ + \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S} F_{UT}^{\sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}) - \frac{F_{UT}^{\sin(\phi_{h}+\phi_{S})}}{F_{UU}} \approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes H_{1q}^{1}}{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes H_{1q}^{1}} \\ + \left| S_{\perp} \right| \lambda_{e} \left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S}) F_{LT}^{\cos(\phi_{h}-\phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} F_{LT}^{\cos\phi_{S}} \right] \right\}, \\ \text{Anna Martin}$$

8

 $s'_{1} \mid f'_{1}$

II

SIDIS cross-section

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\sin \phi_h} \\ &+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] \\ &+ S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LU}^{\cos \phi_h} \right] \\ &+ |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right] \\ &+ \left[\sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right] \\ &+ \left[sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right] \\ &+ \left[S_{\perp} |\lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \sin(2\phi_h - \phi_S) \right] \right], \end{aligned}$$

deuteron target

first results published in 2005

PRL 94, 202002 (2005)

compatible with zero within the large statistical errors

deuteron target

first results published in 2005

compatible with zero within the large statistical errors

deuteron target

first results published in 2005

compatible with zero within the large statistical errors

HERMES, proton target

clear signal

similar situation for the Sivers asymmetry

deuteron target

first results published in 2005

compatible with zero within the large statistical errors

HERMES, proton target

clear signal

similar situation for the Sivers asymmetry

the COMPASS results were interpreted ad cancellation between u- and d-quark contributions

the different beam energy (160 vs 27.5 GeV/c) could also have a role

transverse spin asymmetries from 2007 and 2010 data

proton target

first results published in 2010 and 2012

Collins

very clear signal in the valence region opposite sign for h^+ and h^- , mirror symmetry vs x

in very good agreement with the HERMES results

*COMP*ASS

transverse spin asymmetries from 2007 and 2010 data

proton target

first results published in 2010 and 2012

Collins

very clear signal in the valence region opposite sign for h^+ and h^- , mirror symmetry vs x

in very good agreement with the HERMES results

SPIN2023, Durham, September 27, 2023

di-hadron

Sivers

transverse spin asymmetries from 2007 and 2010 data

- u-quark transversity is different from zero
- indication that u- and d-quark transversity PDFs have opposite sign

- u-quark transversity is different from zero
- indication that u- and d-quark transversity PDFs have opposite sign
- d-quark transversity much worse determined than u-quark transversity because of the scarcity of deuteron (neutron) data: all the HERMES data and most of the COMPASS data were collected with p target

ightarrow 2022 COMPASS run

COMPASS

request to CERN (2017): one year of data taking dedicated to SIDIS off transversely polarized deuteron (⁶LiD) in the same conditions of the 2010 proton run aim: balance the proton and deuteron statistics to improve, in particular, the knowledge of the d-quark transversity and of the tensor charge, in a unique $x - Q^2$ range, complementary to that of the future JLab experiments

COMPASS

CERN-SPSC-2017-034

SPSC-P-340-ADD-1

request to CERN (2017):

one year of data taking dedicated to SIDIS off transversely polarized

deuteron (⁶LiD) in the same conditions of the 2010 proton run aim:

balance the proton and deuteron statistics to improve, in particular, the knowledge of the d-quark transversity and of the tensor charge, in a unique $x - Q^2$ range, complementary to that of the future JLab experiments

expected statistical uncertainties $\sigma^d_{2022} \simeq 0.6 \cdot \sigma^p_{2010}$ for all the TSAs

impact on the Collins asymmetry

expected impact on transversity quantified using the point-by-point extraction from SIDIS and e^+e^- data and replicas

A.M., V. B. F.B PRD 2015

present: all p and d data

expected impact on transversity

quantified using the point-by-point extraction from SIDIS and e^+e^- data and replicas

A.M., V. B. F.B PRD 2015

projected: all p and 2022 d data

expected impact on transversity

quantified using the point-by-point extraction from SIDIS and e^+e^- data and replicas

A.M., V. B. F.B PRD 2015

projected: all p and 2022 d data

expected impact on transversity

quantified using the point-by-point extraction from SIDIS and e^+e^- data and replicas

90% CL

х

 10^{-1}

A.M., V. B. F.B PRD 2015

projected: all p and 2022 d data

and on the **tensor charge**

10⁻²

-0.4

 $\Omega_x: 0.008 \div 0.210$

	$\boldsymbol{\delta_{u}} = \int_{\Omega_{\mathrm{X}}} dx h_{1}^{u_{v}}(x)$	$\boldsymbol{\delta_d} = \int_{\Omega_{\mathrm{x}}} dx h_1^d(x)$	$g_T = \delta_u - \delta_d$
present	0.201 ± 0 . 032	-0.189 ± 0.108	0.390 ± 0 . 087
projected	0.201 ± 0 . 019	-0.189 ± 0 . 040	0.390 ± 0 . 044

we took data from June 8 to November 9, 2022, with some short break

in total 10 data taking periods, each divided in 2 sub periods with opposite polarization in the target cells to minimize possible systematic effects

data analysis started during data taking, and is going on as expected

some distribution

COMPASS

the processing of all the collected data has been completed the data quality tests have been performed

in June 2023 (IWHSS2023) we could give solid estimate of the final statistical uncertainties which are in agreement with the expectations of the proposal

a very successful run,

these data will allow us to performed on d target all the measurements done on p target, and more ... in the future

d	&р	Collins and Sivers asymmetries (1D)	several papers
d	&р	di-hadron asymmetries (1D)	several papers
d	&р	other TSAs (1D)	conf
p	1	multiD measurements of TSAs (x, Q^2, z, P_T) bins	conf
p	1	interplay 1h -2h asymmetries	PLB 753 (2016) 406
p)	Sivers (et al) asymmetry in Q ² bins	PLB 770 (2017) 138
p)	P_T - weighted Sivers asymmetries	NPB 940 (2019) 34
p)	transversity induced $\Lambda/\bar{\Lambda}$ polarization	PLB 824 (2022) 136834
d	&р	TSAs for high P_T pairs from PGF events	PLB 772 (2017) 85
p)	J/Ψ Sivers asymmetry	conf
p)	inclusive $ ho^0$ TSAs	PLB 845 (2023) 138155

the processing of all the collected data has

the processing of all the collected data has been completed the data quality tests have been performed

in June 2023 (IWHSS2023) we could give solid estimate of the final statistical uncertainties which are in agreement with the expectations of the proposal

a very successful run,

these data will allow us to performed on d target all the measurements done on p target, and more ... in the future

today, the very new results for the			
Collins and Sivers asymmetries			
for charged hadrons from ~50% of the data collected in 2022			

d & p	Collins and Sivers asymmetries (1D)	several papers
d & p	di-hadron asymmetries (1D)	several papers
d & p	other TSAs (1D)	conf
р	multiD measurements of TSAs (x, Q^2, z, P_T) bins	conf
р	interplay 1h -2h asymmetries	PLB 753 (2016) 406
р	Sivers (et al) asymmetry in Q ² bins	PLB 770 (2017) 138
р	P_T - weighted Sivers asymmetries	NPB 940 (2019) 34
р	transversity induced $arLambda/ar{A}$ polarization	PLB 824 (2022) 136834
d&p	TSAs for high P_{T} pairs from PGF events	PLB 772 (2017) 85
р	J/Ψ Sivers asymmetry	conf
D	inclusive ρ^0 TSAs	PLB 845 (2023) 138155

the 2022 run

results - Sivers asymmetry

*COMP*AS

results - Sivers asymmetry

 \sim 50% of the data collected in 2022 $Q^2 > 1 \, (\text{GeV}/c)^2$ SIDIS of 160 GeV μ^+ off deuteron $W^2 > 25 \, (\text{GeV}/c^2)^2$ z > 0.20.1 < y < 0.9NEW h⁺ <u>LiD 2022 (~50%, preliminary)</u> COMPASS data • NH₁ 2010 (PLB 717(2012)383) 0.05 $A_{UT}^{sin(\phi_h,-\phi_s)}$ ₫ ₽ -0.05LiD 2022 (~50%, preliminary) h^{-} •-NH₃ 2010 (PLB 717(2012)383) 0.05 $A_{UT}^{sin(\phi_h - \phi_S)}$ ╶┞╋┇╋┇╴╋ -0.05

0.2

x

0.4

0.6

0.8

Ζ

 $p_T > 0.1 \, \text{GeV}/c$

1

0.5

10⁻¹

10⁻²

1.5

 $p_{_{\rm T}}$ (GeV/c)

results - Sivers asymmetry

~50% of the data collected in 2022 SIDIS of 160 GeV μ^+ off **deuteron**

results - Collins asymmetry

 \sim 50% of the data collected in 2022 SIDIS of 160 GeV μ^+ off **deuteron** $Q^2 > 1 \, (\text{GeV}/c)^2$ *z* > 0.2 $W^2 > 25 (\text{GeV}/c^2)^2$ $p_T > 0.1 \, \, {\rm GeV}/c$ 0.1 < y < 0.9NEW COMPASS ⁶LiD data h^+ 2022 (~50%, preliminary) - 2002-04 (NPB 765(2007)31) 0.05 ${{{\sin(\phi_{\rm h}+\phi_{\rm s}^{-}\pi)}\over{\rm UT}}}$ ╶╋┰┋ -0.05+2022 (~50%, preliminary) h⁻ + 2002-04 (NPB 765(2007)3 tj) 0.05 $\sin(\phi_h + \phi_S - \pi)$ 5 -0.05 10⁻² 10⁻¹ 0.2 0.8 0.5 1.5 0.4 0.6 1 $p_{_{\rm T}}$ (GeV/c) х Ζ

*COMP*ASS

results - Collins asymmetry

~50% of the data collected in 2022 SIDIS of 160 GeV μ^+ off deuteron

NEW

 $Q^2 > 1 (\text{GeV}/c)^2$ $W^2 > 25 (\text{GeV}/c^2)^2$ 0.1 < y < 0.9

z > 0.2 $p_T > 0.1 \text{ GeV}/c$

*COMP*ASS

results - Collins asymmetry

~50% of the data collected in 2022 SIDIS of 160 GeV μ^+ off **deuteron**

z > 0.2 $p_T > 0.1 \text{ GeV}/c$

COMP_ASS

Anna Martin

in the last 20 years COMPASS has performed many relevant SIDIS measurements with transversely polarized targets

the 2022 run with the transversely polarized deuteron target has been successful, and a lot of new results will come they will stay unique for several years

first results shown here for the first time:

Collins and Sivers asymmetries for charged hadrons

- much higher precision than the previous COMPASS data
- an important step forward to constrain the extraction of the transversity function, the tensor charge, and of the Sivers function

in the last 20 years COMPASS has performed many relevant SIDIS measurements with transversely polarized targets

the 2022 run with the transversely polarized deuteron target has been successful, and a lot of new results will come they will stay unique for several years

first results shown here for the first time:

Collins and Sivers asymmetries for charged hadrons

- much higher precision than the previous COMPASS data
- an important step forward to constrain the extraction of the transversity function, the tensor charge, and of the Sivers function

thank you !

SPIN2023, Durham, September 27, 2023

