Transverse Spin-Dependent Azimuthal Correlation of Charged Pion Pairs in $p^{\uparrow}p$ Collisions at $\sqrt{s} = 510$ GeV at STAR

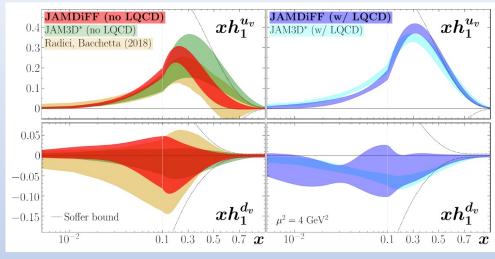
25th International Symposium on Spin Physics (SPIN 2023) Durham, North Carolina

Navagyan Ghimire (For the STAR Collaboration) 09/25/2023 TEMPLE Supported in part by

Office of Science

Motivation

Proton spin structure:



Parton Distribution Functions (PDFs):

At leading twist three collinear PDFs, integrated over parton transverse momenta, k_T

		Quark Polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U O	$f_1(x)$		
			$g_1(x) \longrightarrow - \bigoplus$	
	⊺ Ŏ⇒			$h_1(x) \xrightarrow{\bullet} - \xrightarrow{\bullet}$
STAF	Nucleor 9/25/23	n Momentum	Nucleon Polarization	Parton Polarization

Transversity PDF

C. Cocuzza et. al., arXiv:2306.12998 [hep-ph]

- \blacktriangleright Less known from experiments than $f_1(x)$ and $g_1(x)$
- Chiral-odd quantity
- Extraction requires coupling to another chiral-odd distribution, such as Collins or Interference Fragmentation Functions (FFs)
- For estimating tensor charge (g_T) , a precise determination of transversity is necessary

$$g_T = \int_0^1 dx [h_1^q(x) - h_1^{\bar{q}}(x)]$$

Transversity $(h_1(x))$ in $p^{\uparrow}p$ Collisions

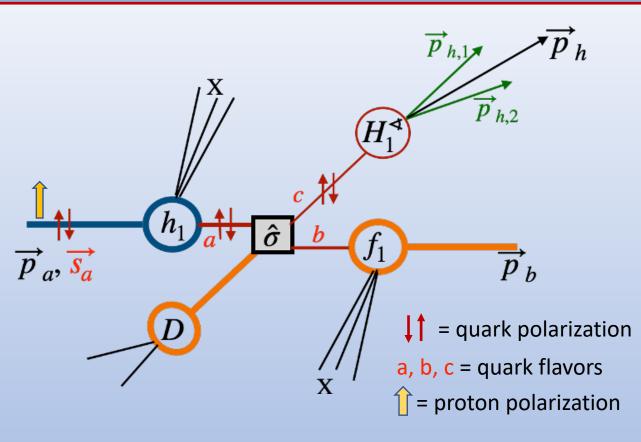
> Interference Fragmentation Function(H_1^{\bigstar}) channel :

 $p\uparrow +p \rightarrow h^+h^- + X$

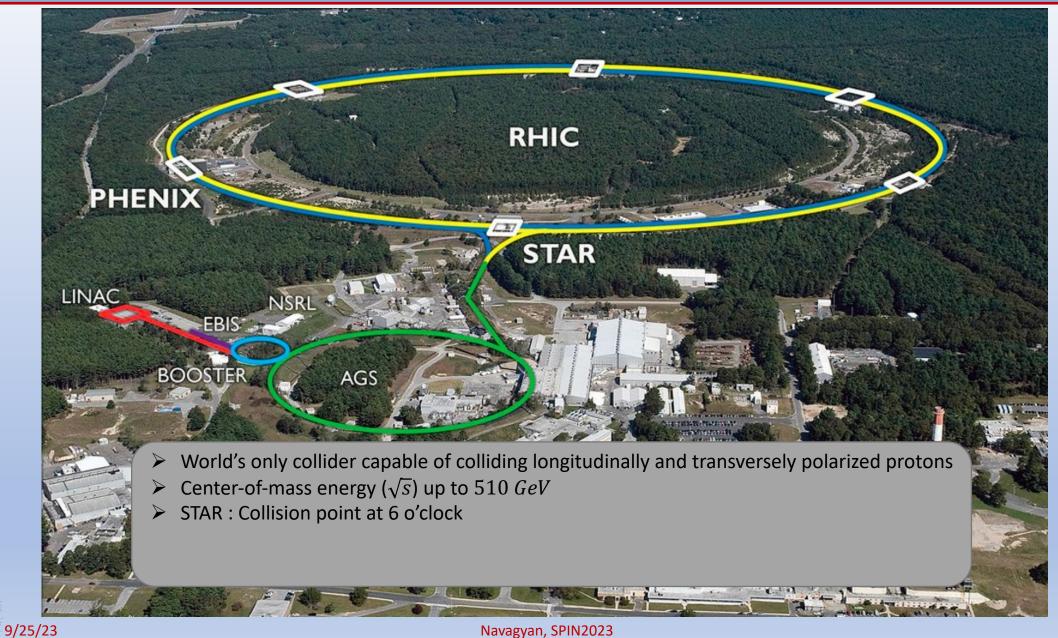
- Collinear framework preserved
- No jet reconstruction required
- Better access to d-quark than SIDIS

$$d\sigma_{UT} \propto \int dx_a dx_b f_1(x_b) h_1(x_a) \frac{d\Delta \hat{\sigma}}{d\hat{t}} H_1^{\not\prec}(z, M)$$

A. Bacchetta and M. Radici


Phys. Rev. D 70 (2004) 094032

Di-hadron correlation asymmetry


9/25/23

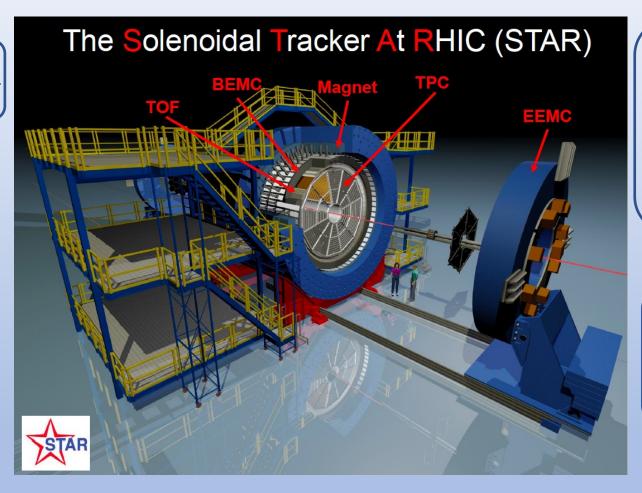
$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{h_1(x)H_1^{\measuredangle}(z, M)}{f_1(x)D_1(z, M)}$$

- > Independent measurement of $H_1^{\not <}$ is required from e^+e^- experiments (e.g. BELLE)
- > D_1 is least known, specifically for gluon fragmentation (New constrain from STAR at $\sqrt{s} = 200$ GeV, Refer to B. Pokhrel's talk 09/25, SPIN2023)

Relativistic Heavy Ion Collider(RHIC)

Navagyan, SPIN2023

STAR


Solenoidal Tracker At RHIC (STAR)

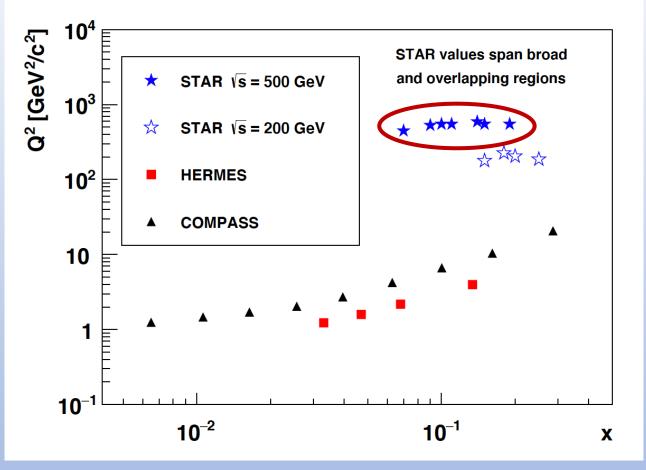
Magnet :

Uniform magnetic field of 0.5 T

Barrel Electromagnetic Calorimeter(BEMC) :

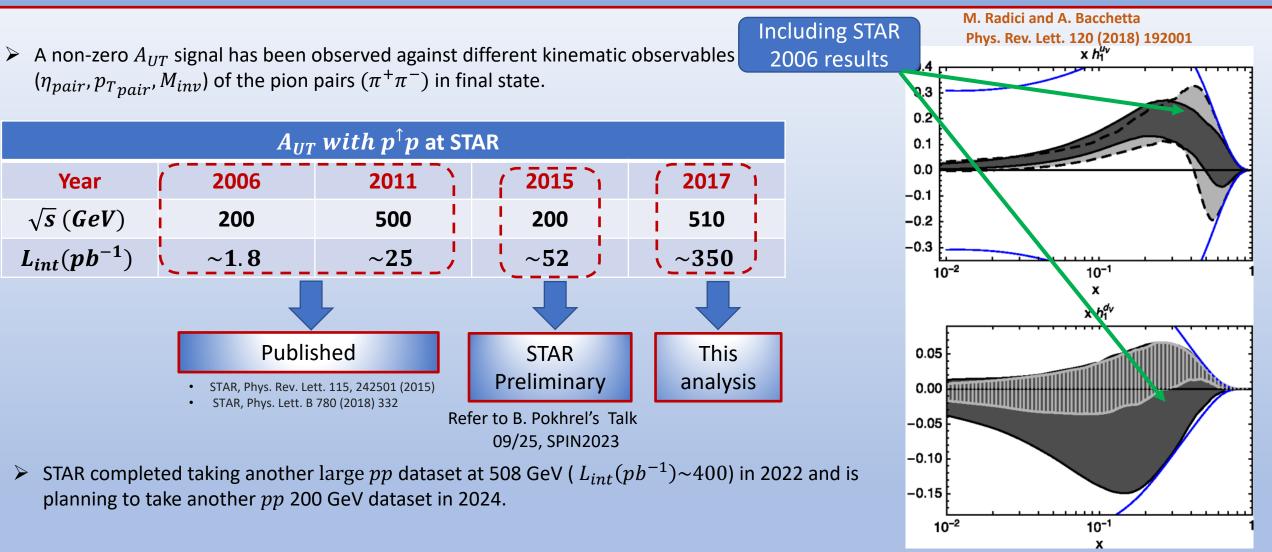
- $|\eta| < 1, 0 \le \phi \le 2\pi$
- Event triggering

Time Projection Chamber(TPC) :


- $|\eta| < 1, 0 \le \phi \le 2\pi$
- Charge determination and particle momentum reconstruction
- PID via measuring ionization energy loss

Time Of Flight(TOF) :

- $|\eta| < 1, 0 \le \phi \le 2\pi$
- Stopwatch for particles
- Helps to improve PID

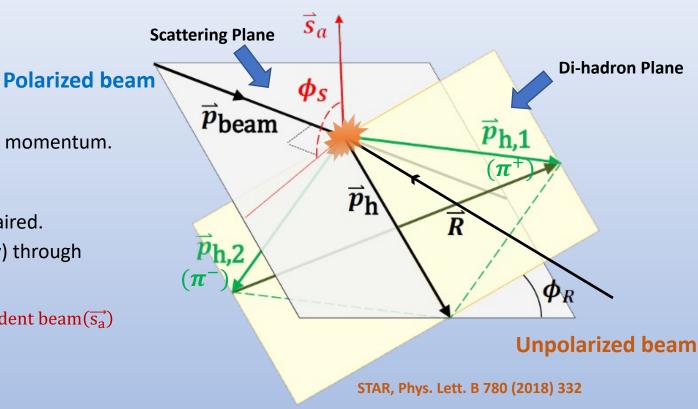


STAR Kinematics

- > STAR covers much higher Q^2 than HERMES and COMPASS.
- > Results from $p^{\uparrow}p$ at 510 GeV will provide valuable information about evolution and allow to access lower x compared to 200 GeV.

A_{UT} at STAR

STAR results play a crucial role in constraining the global fit of transversity.


9/25/23

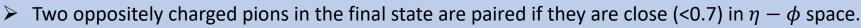
Analysis details for A_{UT} measurement

> A_{UT} is measured using a transversely polarized beam colliding with another unpolarized beam (integrating over all spin states).

- Two hadrons in final state allow to relate spin with di-hadron momentum. $\vec{s_a} \cdot (\vec{R} \times \vec{p_h})$
- > Two oppositely charged pions($\pi^+\pi^-$) in the final state are paired.
- > Direction of \vec{R} should point from π^- to π^+ (or the other away) through out the analysis.

 ϕ_s = Angle between scattering plane and polarization of incident beam($\vec{s_a}$) ϕ_R = Angle between scattering plane and dihadron plane $\vec{p}_h = \vec{p}_{h_1} + \vec{p}_{h_2}$ $\vec{R} = \vec{p}_{h_1} - \vec{p}_{h_2}$ $\phi_{RS} = \phi_R - \phi_S$

Analysis details for A_{UT} measurement

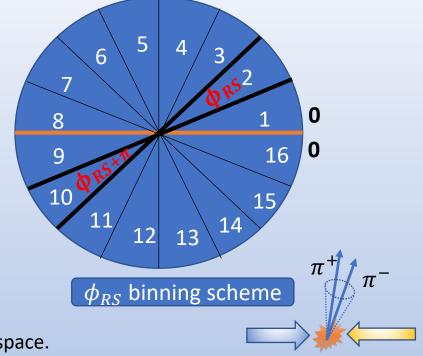

Navagyan, SPIN2023

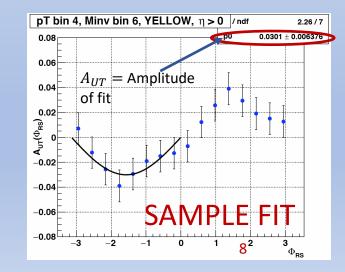
π

-π

- > For a symmetric detector like STAR (in azimuthal space),
 - > A_{UT} can be extracted from cross-ratio formula for different kinematic variables $(M_{inv}^{\pi^+\pi^-}, p_T^{\pi^+\pi^-}, \eta^{\pi^+\pi^-})$.
 - Free from effects related to detector efficiencies and spin-dependent luminosities.

$$A_{UT} \cdot sin(\phi_{RS}) = \frac{1}{P} \cdot \frac{\sqrt{N \uparrow (\phi_{RS}) N \downarrow (\phi_{RS} + \pi)}}{\sqrt{N \uparrow (\phi_{RS}) N \downarrow (\phi_{RS} + \pi)}} - \sqrt{N \downarrow (\phi_{RS}) N \uparrow (\phi_{RS} + \pi)}}{\sqrt{N \uparrow (\phi_{RS}) N \downarrow (\phi_{RS} + \pi)}} + \sqrt{N \downarrow (\phi_{RS}) N \uparrow (\phi_{RS} + \pi)}}$$

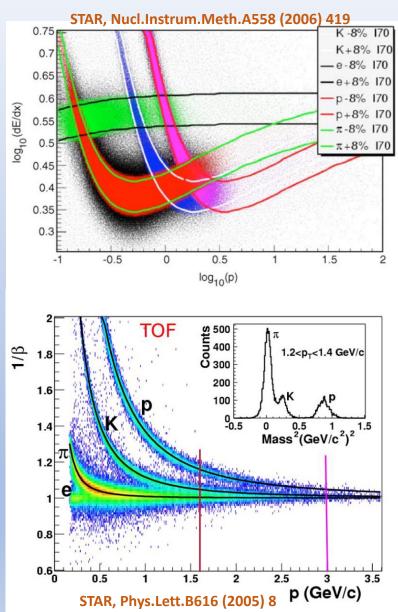



- ▶ The angle ϕ_{RS} modulates the A_{UT} by $sin(\phi_{RS})$.
- $ightarrow \phi_{RS}$ is divided into 16 bins of uniform bin-width in the range [−π, +π] and $N \uparrow (\downarrow)$ in each ϕ_{RS} bin is counted.
- > For each kinematic bin, the cross-ratio is calculated for each ϕ_{RS} and fitted with a sinusoidal function.
- > The amplitude of this sin fit gives the A_{UT} .

STAR

9/25/23

 A_{UT} is extracted for Blue and Yellow beams separately and the final result is weighted average.


Particle Identification (PID) at STAR

Navagyan, SPIN2023

- At STAR PID is done by measuring average specific ionization energy loss $\left\langle \frac{dE}{dx} \right\rangle$ in TPC.
- > When the $\frac{dE}{dx}$ vs p bands for two different particle types are close together or cross, TOF is extremely useful for PID.

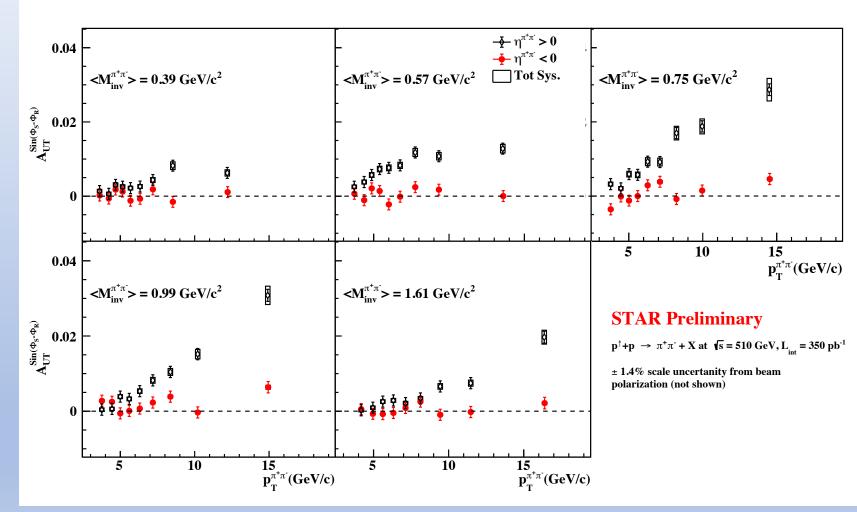
9/25/23

TOF detector is capable of separating proton from kaon and pion for momenta up to 3 GeV/c.

AUT Results

A_{UT} as a function of $\eta^{\pi^+\pi^-}$

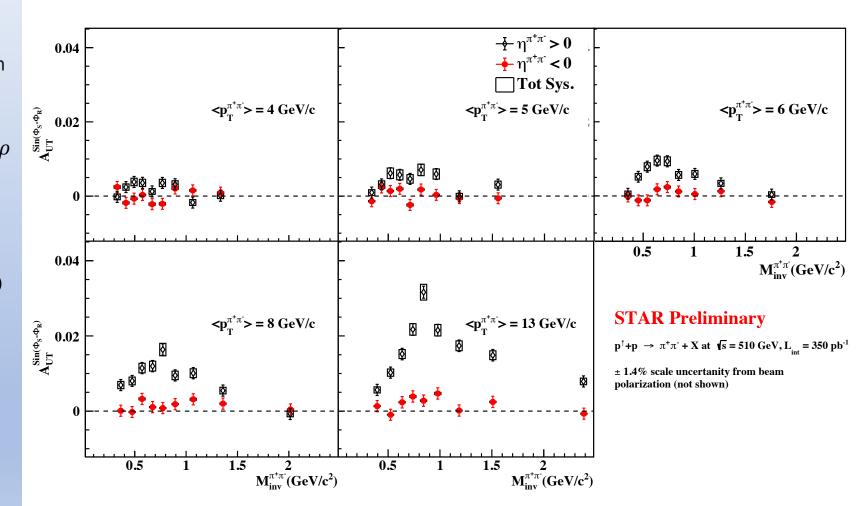
- \succ A_{UT} increases with $\eta^{\pi^+\pi^-}$
 - Forward direction $(\eta^{\pi^+\pi^-} > 0)$ probes higher x, valence region, where $h_1^q(x)$ is sizable, hence A_{UT} is large.
 - > Backward direction $(\eta^{\pi^+\pi^-} < 0)$ probes lower x resulting lower A_{UT} signal.
- Systematic uncertainties arising from the impurity of the sample and trigger biasing effect against quark-jets have been investigated.


A_{UT} Results

 A_{UT} as a function of $p_T^{\pi^+\pi^-}$ in different $M_{inv}^{\pi^+\pi^-}$ bins

Strong $p_T^{\pi^+\pi^-}$ dependence of A_{UT} has been found in the +ve $\eta^{\pi^+\pi^-}$ direction in all $M_{inv}^{\pi^+\pi^-}$ bins.

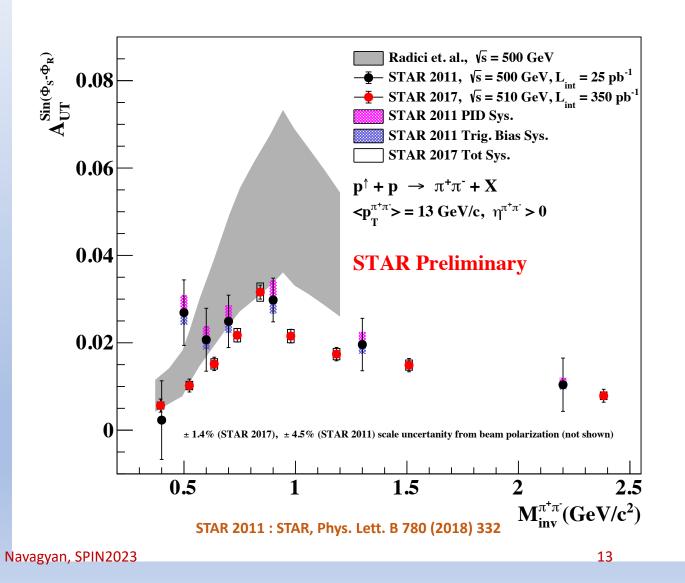
- Stronger rise in A_{UT} signal around ρ meson mass (~0.8 GeV/c²) region.
- Signal is stronger in forward $(\eta^{\pi^+\pi^-} > 0)$ direction and small in backward $(\eta^{\pi^+\pi^-} < 0)$ direction.


9/25/23

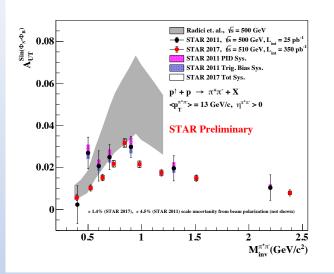
A_{UT} Results

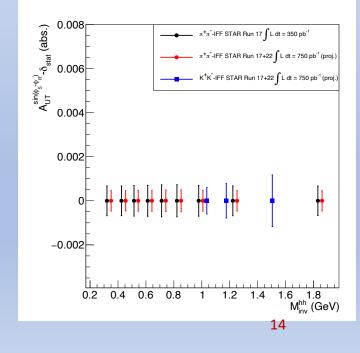
 A_{UT} as a function of $M_{inv}^{\pi^+\pi^-}$ in different $p_T^{\pi^+\pi^-}$ bins

- Strong $M_{inv}^{\pi^+\pi^-}$ dependence of A_{UT} has been found in the +ve $\eta^{\pi^+\pi^-}$ direction in all $p_T^{\pi^+\pi^-}$ bins.
- > The enhancement of A_{UT} signal around the ρ meson mass (~0.8 GeV/c²) is due to the interference between the different $\pi^+\pi^$ production channel.
- Signal is stronger in forward $(\eta^{\pi^+\pi^-} > 0)$ direction and small in backward $(\eta^{\pi^+\pi^-} < 0)$ direction.



A_{UT} Results


 A_{UT} as a function of $M_{inv}^{\pi^+\pi^-}$ for highest $p_T^{\pi^+\pi^-}$ bin and $\eta^{\pi^+\pi^-} > 0$


- > STAR's latest measurement of A_{UT} from 2017 dataset exhibits a notably higher level of precision.
 - Statistical and systematic precision is significantly improved by the new result.
- > A_{UT} from STAR 2017 dataset is consistent with previous STAR 2011 measurement and theory prediction from SIDIS, e^+e^- data.

Summary and Outlook

- > Di-hadron correlation asymmetry A_{UT} of final state pion pairs, as functions of various kinematic observables (η , p_T , M_{inv}), is expected to be sensitive to transversity.
- New STAR 2017 IFF A_{UT} measurement has higher level of precision and is consistent with previous STAR 2011 measurement.
- Results of this analysis will help to probe transversity at much higher Q^2 than SIDIS and test the universality of the mechanism which produces azimuthal correlations amongst SIDIS, e^+e^- , and $p^\uparrow p$ collisions.
- Planning for precision measurement of IFF asymmetries for pions/Kaon from 2017+2022 dataset.
- Planning for unpolarized di-hadron cross-section measurement at 500 GeV, which could reduce uncertainties in transversity extraction.

